

MATHS

BOOKS - JMD MATHS (PUNJABI ENGLISH)

RELATION & FUNCTIONS

Exercise

1. If
$$f(x) = x^2$$
 and $g(x) = \sin x$ then $f \circ g(x)$

is

C.
$$(x^2)(\sin x)$$

Answer: A

View Text Solution

2. If
$$f(x)=|x|$$
 and $g(x)=[x]$ then $f\circ gigg(-rac{1}{2}igg)$ is

B. 1

C. -2

D. -1

Answer: B

View Text Solution

3. If
$$f\!:\!R\!->R$$
 is defined and $f(x)=rac{3x+4}{2}$ then f^{-1} is

A.
$$(4x-3)/2$$

B. (4x-2)/3

C.(2x-4)/3

D. (4x+3)/2

Answer: C

View Text Solution

4. If
$$f\!:\!R o R$$
 given $f(x)=\left(x^3
ight)+3, then$ f^-1(x)` equals \cdot :

by

A.
$$6(x^4)+(x^2)+ 12$$

B.
$$(x^2)+(6x)+12$$

C.
$$(x^4)+(6x)+12$$

D.
$$(x^4)+(6x^2)+12$$

Answer: D

Watch Video Solution

5. If
$$f(x) = (x^2)$$
, then $f \circ f(x)$ =

6. If
$$f(x)=2x-3$$
, then $f^{-1}(x)$ =

Watch Video Solution

7. The smallest equivalence relation R on set

$$A = \{1, 2, 8\}$$
 is=

Watch Video Solution

8. The range of $\frac{|x-1|}{x-1}$ is 1

9. If
$$f(x)=4x-5$$
then $f^{-1}(x)=rac{x+5}{4}$

Watch Video Solution

10. If f(x)=[x], g(x)=|x|, then find the value of $(fog)\Big(rac{5}{2}\Big)-(gof)\Big(-rac{5}{2}\Big)$

11. If f: N->N is defined by

$$\left\{ \left[rac{n+1}{2} (\ \ ext{if} \ \ nisodd)
ight], \left[\left(rac{n}{2}
ight) (\ \ ext{if} \ \ niseven)
ight]$$

Watch Video Solution

is f(n) is one one function?

12. Prove that function
$$f\colon R o R, f(x) = rac{3-2x}{7}$$
 is one-one and onto. Also find f^{-1} .

13. Show that the relation $R = \{(a,b) : a \leq b\}$ is not equivalence relation

Watch Video Solution

14. Let T be the set of all triangles in a plane with R as a relation in T given by $R\cong\{(T_1,T_2)\!:\!T_1\cong T_2\}$ Show that R is an equivalence relation.

neither one one nor onto

Watch Video Solution

16. Let
$$f\colon R-\left\{-\frac{3}{5}\right\}->R$$
 be a function defined as $f(x)=\frac{2x}{5x+3}$ find $f^{-1}\colon Ran\geq offR>R-\left\{-\frac{3}{5}\right\}$

15. Let $f\colon R->R$ is defined as $f(x)=x^2$ is

17. If $R=\{(x,y)\colon x+2y=8\}$ is a relation on

N write the range of R

Watch Video Solution

18. If $f\!:\!R o R$ be given by:

$$f(x)=\left(3-x^3
ight)^1/3$$
, then f(f(x)) is:

19. Let $A = R - \{3\}$ and $B = R - \{1\}$.

Consider the function $f\colon A->B$. defined by $f(x)=rac{x-2}{x-3}$ is fone one or Onto? Justify your answer

20. Show that the relation R defined by $R=\{(a,b)(a-b), \text{ is divisible by 5, `a, b in N}\}$ is an equivalence relation.

21. If
$$f(x)=rac{4x+3}{6x-4}$$
 , $x
eq rac{2}{3}$ show that $f\circ f(x)=x$ for all $x
eq rac{2}{3}.$ what is inverse of

f?

