

MATHS

BOOKS - JMD MATHS (PUNJABI ENGLISH)

VECTOR ALGEBRA

Example

1. If
$$\overrightarrow{a}=2\hat{i}-6\hat{j}-3\hat{k}$$
 then $\left|\overrightarrow{a}\right|$ =

A.
$$\sqrt{7}$$

B. 7

C. 6

D. 5

Answer: B

2. Find x, y and z if vectors
$$x\hat{i}-2\hat{j}+z\hat{k}=2\hat{i}-y\hat{j}+\hat{k}$$

A.
$$2, 1, 2$$

B.
$$1, 2, 2$$

$$\mathsf{C.}\ 1,\,1,\,2$$

D.
$$2, 2, 1$$

Answer: D

3. If
$$\overrightarrow{a}=2\hat{i}-\hat{j}+\hat{k},$$
 $\overrightarrow{b}=3\hat{i}+2\hat{j}-3\hat{k}$ and $\overrightarrow{c}=\hat{i}+2\hat{j}+\hat{k}$ then $2\overrightarrow{a}+\overrightarrow{b}-\overrightarrow{c}=$

A.
$$6\hat{i}-2\hat{j}-2\hat{k}$$

B.
$$6\hat{i}+2\hat{j}-2\hat{k}$$

C.
$$6\hat{i}-2\hat{j}+2\hat{k}$$

D.
$$6\hat{i}+2\hat{j}+2\hat{k}$$

Answer: A

Watch Video Solution

4. Find a if the vectors $\overrightarrow{x}=2\hat{i}-3\hat{j}+4\hat{k}$ and

$$\overrightarrow{y}=a\hat{i}+6\hat{j}-8\hat{k}$$
 are collinear?

$$B. - 4$$

$$D.-2$$

Answer: B

5. Find p if vectors
$$\overrightarrow{a}=2\hat{i}-\hat{j}+p\hat{k}$$
 and

$$\overrightarrow{b}=\hat{i}-2\hat{j}+\hat{k}$$
 are perpendicular.

A. 4

B. 2

 $\mathsf{C.}-4$

D. 3

Answer: C

6. If
$$\overrightarrow{a}$$
 is a unit vector and

$$\Big(\overrightarrow{x}-\overrightarrow{a}\Big).\,\Big(\overrightarrow{x}+\overrightarrow{a}\Big)=255$$
 then find $\Big|\overrightarrow{x}\Big|$

B. 16

C. 1

D. 0

Answer: B

7. If
$$\overrightarrow{a}=2\hat{i}+\hat{j}+4\hat{k}$$
 and $\overrightarrow{b}=3\hat{i}-2\hat{j}+\hat{k}$ then \overrightarrow{a} . $\overrightarrow{b}=$

A. 6

B. 3

C. 8

D. 5

Answer: C

8. If
$$\left|\overrightarrow{a}\right|=1,\left|\overrightarrow{b}\right|=2$$
 and $\overrightarrow{a}\cdot\overrightarrow{b}=1$. Then the angle between \overrightarrow{a} and \overrightarrow{b} is :

A.
$$\frac{\pi}{2}$$

$$\mathsf{B.}\;\frac{\pi}{6}$$

D.
$$\frac{\pi}{3}$$

Answer: D

9. If
$$\left|\overrightarrow{a}\cdot\overrightarrow{b}\right|=\sqrt{3}\left|\overrightarrow{a}\times\overrightarrow{b}\right|$$
, then angle between \overrightarrow{a} and \overrightarrow{b} is :

A.
$$\frac{\pi}{2}$$

$$\mathsf{B.}\;\frac{\pi}{4}$$

C.
$$\frac{\pi}{3}$$

D.
$$\frac{\pi}{6}$$

Answer: D

10. Find
$$\left|\overrightarrow{a} - \overrightarrow{b}\right|$$
, if two vectors \overrightarrow{a} and \overrightarrow{b} are such that $\left|\overrightarrow{a}\right| = 2$, $\left|\overrightarrow{b}\right| = 3$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 4$.

A.
$$\sqrt{5}$$

B. 5

C. 3

D. $\sqrt{3}$

Answer: A

Watch Video Solution

If $\overrightarrow{a}=x\hat{i}+2\hat{j}-3\hat{k}$ and $\overrightarrow{b}=3\hat{i}+b\hat{j}-9\hat{k}$ are parallel then $x =_{\dots \dots}$

12. Fill in the blanks:

Unit vector in direction of

$$2\hat{i}-3\hat{j}+6\hat{k}=_{......}$$

13. Fill in the blanks:

If
$$\overrightarrow{a} = 3\hat{i} + \hat{j} - 2\hat{k}$$
 and $\overrightarrow{b} = \hat{i} + \lambda\hat{j} - 3\hat{k}$

are perpendicular then $\lambda =_{.........}$

Watch Video Solution

14. If
$$\begin{vmatrix} \overrightarrow{a} \cdot \overrightarrow{b} \end{vmatrix} = \begin{vmatrix} \overrightarrow{a} \times \overrightarrow{b} \end{vmatrix}$$
, then angle between \overrightarrow{a} and \overrightarrow{b} is :

Watch Video Solution

15. Fill in the blanks:

If
$$\left|\overrightarrow{a} imes\overrightarrow{b}
ight|^2+\left(\overrightarrow{a}.\overrightarrow{b}
ight)^2=400$$
 and $\left|\overrightarrow{a}
ight|=5$ then $\left|\overrightarrow{b}
ight|=$

16. State True/False

The value of \overrightarrow{a} . \overrightarrow{a} is $\left|\overrightarrow{a}\right|^2$.

Watch Video Solution

17. State True/False

If \overrightarrow{a} is unit vector and

$$\left(2\overrightarrow{x}-3\overrightarrow{a}
ight).\left(2\overrightarrow{x}+3\overrightarrow{a}
ight)=9$$
, then

$$\left|\overrightarrow{x}\right| = \frac{9}{2}.$$

18. State True/False

Then magnitude of $2\hat{i}-3\hat{j}+6\hat{k}$ is 7 units.

Watch Video Solution

19. Write the value of $\left(\hat{i} imes\hat{j}
ight)$. $k+\left(\hat{j} imes\hat{k}
ight)$. \hat{i}

•

20. Write the value of p for which $\overrightarrow{a}=3\hat{i}+2\hat{j}+9\hat{k}$ and $\overrightarrow{b}=\hat{i}+p\hat{j}+3\hat{k}$ are parallel vectors.

Watch Video Solution

21. **Prove** that

$$\left(\overrightarrow{a} imes\overrightarrow{b}
ight)^2=\left|\overrightarrow{a}
ight|^2.\left|\overrightarrow{b}
ight|^2-\left(\overrightarrow{a}.\overrightarrow{b}
ight)^2.$$

22. If
$$\overrightarrow{a}=4\hat{i}+3\hat{j}+\hat{k}$$
 and $\overrightarrow{b}=\hat{i}-2\hat{k}$, find $\left|2\overrightarrow{b} imes\overrightarrow{a}\right|.$

- **23.** The projection of $\overrightarrow{a}=2\hat{i}-\hat{j}+\hat{k}$ on $\overrightarrow{b}=\hat{i}-2\hat{j}+\hat{k}$ is equal to:
 - Watch Video Solution

24. Find unit vector in the direction of veca+vecb, where $\overrightarrow{a} = - \hat{i} + \hat{j} + \hat{k}$ and 'vecb=2hati+hatj-3hatk'

Watch Video Solution

25. Find the angle between the vectors

$$\overrightarrow{a} = \hat{i} - \hat{j} + \hat{k}$$
 and $\overrightarrow{b} = \hat{i} + \hat{j} - \hat{k}$.

26. If $\left|\overrightarrow{a}\right|=\sqrt{3},\left|\overrightarrow{b}\right|=2$ and angle between \overrightarrow{a} and \overrightarrow{b} is 60^o . Find \overrightarrow{a} . \overrightarrow{b} .

Watch Video Solution

27. If $\left|\overrightarrow{a}\right|=2,\left|\overrightarrow{b}\right|=\sqrt{3}$ and \overrightarrow{a} . $\overrightarrow{b}=\sqrt{3}$, find the angle between $\overset{
ightarrow}{a}$ and $\overset{
ightarrow}{b}$.

28. For what value of λ are the vectors $\overrightarrow{a}=2\hat{i}+\lambda\hat{j}+\hat{k}$ and $\overrightarrow{b}=\hat{i}-2\hat{j}+3\hat{k}$ are perpendicular to each other?

Watch Video Solution

29. Find the projection of \overrightarrow{a} on \overrightarrow{b} if \overrightarrow{a} . $\overrightarrow{b}=8$ and $\overrightarrow{b}=2\hat{i}+6\hat{j}+3\hat{k}$.

30.

The

value of

$$\hat{i}\cdot\left(\hat{j} imes\hat{k}
ight)+\hat{j}\cdot\left(\hat{i} imes\hat{k}
ight)+\hat{k}\cdot\left(\hat{i} imes\hat{j}
ight)$$
 is :

Watch Video Solution

31. Let \overrightarrow{a} and \overrightarrow{b} be two vectors such that $\left|\overrightarrow{a}
ight|=3$ and $\left|\overrightarrow{b}
ight|=rac{\sqrt{2}}{2}$ and $\overrightarrow{a} imes\overrightarrow{b}$ is a unit vector. Then what is the angle between vectors \overrightarrow{a} and \overrightarrow{b} ?

32. What is the cosine of the angle which the vector $\sqrt{2\hat{i}}+\hat{j}+\hat{k}$ makes with y-axis ?

Watch Video Solution

33. If \overrightarrow{p} is a unit vector and

$$\Big(\overrightarrow{x}-\overrightarrow{p}\Big).$$
 $\Big(\overrightarrow{x}+\overrightarrow{p}\Big)=80$, then find $\Big|\overrightarrow{x}\Big|.$

34. Write a vector of magnitude 15 units in the direction of vector $\hat{i}-2\hat{j}+2\hat{k}$.

Watch Video Solution

35. If \overrightarrow{a} and \overrightarrow{b} are two vectors such that $\left| \overrightarrow{a} \cdot \overrightarrow{b} \right| = \left| \overrightarrow{a} \times \overrightarrow{b} \right|$, then what is the angle between \overrightarrow{a} and \overrightarrow{b} ?

36. Find the angle between two vectors \overrightarrow{a} and \rightarrow

$$\overrightarrow{b}$$
 with magnitudes 1 and 2 respectively and when $\left|\overrightarrow{a} imes\overrightarrow{b}\right|=\sqrt{3}.$

Watch Video Solution

37. Find the value of p if

$$\left(2\hat{i}+6\hat{j}+27\hat{k}
ight) imes\left(\hat{i}+3\hat{j}+p\hat{k}
ight)=\stackrel{
ightarrow}{0}.$$

38. For what value of 'a' the vectors

$$2\hat{i}-3\hat{j}+4\hat{k}$$
 and $a\hat{i}+6\hat{j}-8\hat{k}$ are collinear?

Watch Video Solution

39. Find the angle between the vectors

$$\overrightarrow{a} = \hat{i} - \hat{j} + \hat{k}$$
 and $\overrightarrow{b} = \hat{i} + \hat{j} - \hat{k}$.

40. Determine the area of the parallelogram whose adjacent sides are $2\hat{i}$ and $3\hat{j}$.

Watch Video Solution

41. P and Q are two points with position vectors $3\overrightarrow{a}-3\overrightarrow{b}$ and $\overrightarrow{a}+\overrightarrow{b}$ respectively. Write the position vector of a point R which divides the line segment PQ in the ratio 2:1 externally.

42. Find a unit vector perpendicular to both the vectors $\left(3\hat{i}+2\hat{j}-\hat{k}
ight)$ and $\left(\hat{i}+2\hat{j}+\hat{k}
ight)$

Watch Video Solution

43. Find a vector of magnitude 8, which is perpendicular to both the vectors $2\hat{i}-\hat{j}+3\hat{k}$ and $-\hat{i}+2\hat{j}-\hat{k}$.

44. If
$$\overrightarrow{a}=3\hat{i}+2\hat{j}+2\hat{k}$$
 and

 $\stackrel{
ightarrow}{b}=\hat{i}+2\hat{j}-2\hat{k}$, then find a unit vector which is perpendicular to both the vectors $\left(\overrightarrow{a}-\overrightarrow{b}
ight)$ and $\left(\overrightarrow{a}+\overrightarrow{b}
ight)$.

Watch Video Solution

45. Find the area of parallelogram whose adjacent sides are given by the vectors $\overrightarrow{a}=\hat{i}-\hat{j}+3\hat{k}$ and $\overrightarrow{b}=2\hat{i}-7\hat{j}+\hat{k}.$

46. Find the area of parallelogram whose diagnolas are $2\hat{i}+3\hat{j}+6\hat{k}$ and $3\hat{i}-6\hat{j}+2\hat{k}$

Watch Video Solution

47. Find a vector of magnitude 5 units and parallel to the resultant of the vectors \rightarrow

$$\overrightarrow{a}=2\hat{i}+3\hat{j}-\hat{k}$$
 and $\overrightarrow{b}=\hat{i}-2\hat{j}+\hat{k}$.

48. If two vectors \overrightarrow{a} and \overrightarrow{b} are such that $\left|\overrightarrow{a}
ight|=3,\left|\overrightarrow{b}
ight|=2$ and \overrightarrow{a} . $\overrightarrow{b}=4$ then find the value of $\left(3\overrightarrow{a}-4\overrightarrow{b}\right)$. $\left(2\overrightarrow{a}+5\overrightarrow{b}\right)$.

Watch Video Solution

49. If veca and vecb are perpendicular vectors,

$$\left|\overrightarrow{a}+\overrightarrow{b}
ight|=1$$
3, $\left|\overrightarrow{a}
ight|=5$ then find |vecb|`.

50. Find x for which the angle between the

vectors
$$\overrightarrow{a} = 2x^2 \hat{i} + 4x \hat{j} + \hat{k}$$
 and

$$\overrightarrow{b}=7\hat{i}-2\hat{j}+x\hat{k}$$
 is obtuse.

51. Find
$$\overrightarrow{a}$$
. $\left(\overrightarrow{b} \times \overrightarrow{c}\right)$, if $\overrightarrow{a} = 2\hat{i} + \hat{j} + 3\hat{k}$, $\overrightarrow{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j} + 2\hat{k}$.

52. If \vec{a} and \vec{b} are two unit vectors such that $\overrightarrow{a} + \overrightarrow{b}$ is also a unit vector, then find the angle between vectors \overrightarrow{a} and \overrightarrow{b} .

53. If
$$\overrightarrow{a}=2\hat{i}+\hat{j}+3\hat{k}$$
 and $\overrightarrow{b}=3\hat{i}+5\hat{j}-2\hat{k}$, then find $\left|\overrightarrow{a} imes\overrightarrow{b}\right|$.

54. Find
$$\lambda$$
, if the vectors

$$\overrightarrow{a}=\hat{i}+3\hat{j}+\hat{k}, \overrightarrow{b}=2\hat{i}-\hat{j}-\hat{k}$$
 and

$$\overrightarrow{c} = \lambda \hat{j} + 3\hat{k}$$
 are coplanar.

