©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - PSEB

APPLICATION OF DERIVATIVES

Example

1. Find the rate of change of the area of a circle per second with respect to its radius r when $r=5$
cm.
2. The volume of a cube is increasing at a rate of $9 \frac{(\mathrm{~cm})^{3}}{s}$. How fast is the surface area increasing when the length of an edge is 10 centimetres ?

(D) Watch Video Solution

3. A stone is dropped into a quiet lake and waves move in circles at a speed of 4 cm per second. At the instant, when the radius of the circular wave
is 10 cm , how fast is the enclosed area increasing?

(D) Watch Video Solution

4. The length ' x ' of a rectangle is decreasing at the rate of 5 cm per minute and the width ' y ' is increasing at the rate of 4 cm per minute, when x
$=8 \mathrm{~cm}$ and $\mathrm{y}=6 \mathrm{~cm}$, find the rate of change of the perimeter of the rectangle.
5. The total cost $C(x)$ in Rupees, associated with
the production of x units of an item is given by
$C(x)=0.005 x^{3}-0.02 x^{2}+30 x+5000 \quad$ Find
the marginal cost when 3 units are produced,
where by marginal cost we mean the instantaneous rate of change of total cost at any level of output.

D Watch Video Solution

6. The total revenue in Rupees received from the sale of x units of a product is given by
$R(x)-3 x^{2}+36 x+5 \quad$ Find the marginal revenue, when $x=5$, where by marginal revenue we mean the rate of change of total revenue with respect to the number of items sold at an instant.

D Watch Video Solution

7. Show that the function given by
$f(x)=7 x-3$, is increasing on R .

D Watch Video Solution

8. Show that the function f given by, $f(x)=x^{3}-3 x^{2}+4 x, x \in R$ is increasing on R.

(D) Watch Video Solution

9. $f(x)=\cos x$ is strictly decreasing in $(0, \pi)$

(D) Watch Video Solution

10. $f(x)=\cos x$ is strictly increasing in $(\pi, 2 \pi)$
11. $f(x)=\cos x$ is neither increasing nor decreasing in $(0,2 \pi)$
(D) Watch Video Solution
12. Find the intervals in which the function f given by $f(x)=x^{2}-4 x+6$, is increasing.
13. Find the intervals in which the function f given
by $f(x)=x^{2}-4 x+6$, is strictly decreasing.

D Watch Video Solution

14. Find the intervals in which the function f given by $f(x)=4 x^{3}-6 x^{2}-72 x+30$ is increasing.
15. Find the intervals in which the function f given
by $f(x)=4 x^{3}-6 x^{2}-72 x+30$ is decreasing.

D Watch Video Solution

16. Find the intervals in which the function given
by $f(x)=\sin 3 x, \mathrm{x}$ in $\left[0, \frac{\pi}{2}\right]$ is increasing.

(D) Watch Video Solution

17. Find the intervals in which the function given
by $f(x)=\sin 3 x, \mathrm{x}$ in $\left[0, \frac{\pi}{2}\right]$ is decreasing.

- Watch Video Solution

18. Find the intervals in which the function f given
by $\quad f(x)=\sin x+\cos x, 0 \leq x \leq 2 \pi$ increasing

(D) Watch Video Solution

19. Find the intervals in which the function given
by : $f(x)=\sin x+\cos x, 0 \leq x \leq 2 \pi$. is strictly increasing and strictly decreasing.
20. Find the slope of the tangent to the curve $y=x^{3}-x$ at $x=2$
(D) Watch Video Solution
21. Find the point at which the tangent to the
curve $y=\sqrt{4 x-3-1}$ has its slope $\frac{2}{3}$.
(D) Watch Video Solution
22. Find the equation of all lines having slope 2 and being tangent to the curve $y+\frac{2}{x-3}=0$

D Watch Video Solution

23. Find points on the curve $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$ at which the tangents are parallel to x-axis.

(D) Watch Video Solution

24. Find points on the curve $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$ at which the tangents are parallel to y-axis.

- Watch Video Solution

25. Find the equation of the tangent to the curve
$y=\frac{x-7}{(x-2)(x-3)}$ at the point where it cuts the x-axis.

D Watch Video Solution

26. Find the equations of the tangent and normal to the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=2$ at (1, 1).
27. Find the equation of tangent to the curve given by $x=a \sin ^{3} t, y=b \cos ^{3} t$ at a point where $t=\frac{\pi}{2}$.

(D) Watch Video Solution

28. Use differential to approximate $\sqrt{36.6}$

(D) Watch Video Solution

29. Use differential to approximate $(25)^{\frac{1}{3}}$
30. Find the approximate value of $f(3.02)$, where
$f(x)=3 x^{2}+5 x+3$

D Watch Video Solution

31. Find the approximate change in the volume \vee of a cube of side x meters caused by increasing the side by 2%
32. If the radius of a sphere is measured as 9 cm with an error of 0.03 cm , then find the approximate error in calculating its volume.

(D) Watch Video Solution

33. Find the maximum and the minimum values, if
any, of the function f given by $f(x)=x^{2}, x \in R$
(D) Watch Video Solution
34. Find the maximum and minimum values of f,
if any, of the function given by
$f(x)=|x|, x \in R$

(D) Watch Video Solution

35. Find the maximum and the minimum values, if

$$
\begin{aligned}
& \text { any, of the function given by } \\
& f(x)=x, x \in(0,1) \text {. }
\end{aligned}
$$

36. Find all points of local maxima and local minima of the function f given by $f(x)=x^{3}-3 x+3$

(D) Watch Video Solution

37. Find all the points of local maxima and local minima of the function f given by $f(x)=2 x^{3}-6 x^{2}+6 x+5$
38. Find local minimum value of the function f given by $f(x)=3+|x|, x \in R$

(D) Watch Video Solution

39. Find local maximum and local minimum
values of the function f given by
$f(x)=3 x^{4}+4 x^{3}-12 x^{2}+12$
(D) Watch Video Solution
40. Find all the points of local maxima and local minima of the function f given by $f(x)=2 x^{3}-6 x^{2}+6 x+5$

(D) Watch Video Solution

41. Find two positive numbers whose sum is 16 and whose sum of cubes is minimum.
42. Find the shortest distance of the point $(0, c)$
from the parabola $y=x^{2}$ where $0 \leq c \leq 5$

D Watch Video Solution

43. In a triangle, P, Q and R are mid-points of sides $B C, C A$ and $A B$ respectively. If $A C=21 \mathrm{~cm}, B C$
$=29 \mathrm{~cm}$ and $A B=30 \mathrm{~cm}$, find the perimeter of the quadrilateral ARPQ.
44. Find absolute maximum and minimum values
of a function f given by
$f(x)=12 x^{\frac{4}{3}}-6 x^{\frac{1}{3}}, x \in[-1,1]$.

(D) Watch Video Solution

45. An Apache helicopter of enemy is flying along the curve given by $y=x^{2}+7$. A soldier, placed at (3, 7), wants to shoot down the helicopter when it is nearest to him. Find the nearest distance.
46. A car starts from a point P at time $t=0$ seconds and stops at point Q. The distance x, in metres, covered by it, in t seconds is given by $x=t^{2}\left(2-\left(\frac{t}{3}\right)\right)$ Find the time taken by it to reach Q and also find distance between P and Q .

(D) Watch Video Solution

47. A water tank has the shape of an inverted right circular cone with its axis vertical and vertex lowermost. Its semi-vertical angle is $\tan ^{-1}(0.5)$.

Water is poured into it at a constant rate of $5 \frac{m^{3}}{h}$. Find the rate at which the level of the water is rising at the instant when the depth of water in the tank is $4 m$.

(D) Watch Video Solution

48. A man of height $2 m$ walks at a uniform speed of $5 k \frac{m}{h}$ away from a lamp post which is $6 m$ high. Find the rate at which the length of his shadow increases.
49. Find the equation of the normal to curve $x^{2}=4 y$ which passes through the point $(1,2)$.

D Watch Video Solution

50. Find the equation of tangents to the curve
$y=\cos (x+y),-2 \pi \leq x \leq 2 \pi \quad$ that are parallel to the line $x+2 y=0$.

D Watch Video Solution

51. Find intervals in which the function given by
$f(x)=\left(\frac{3}{10}\right) x^{4}-\left(\frac{4}{5}\right) x^{3}-3 x^{2}+\left(\frac{36}{5}\right) x+11$
is increasing.

(D) Watch Video Solution

52. Find intervals in which the function given by
$f(x)=\left(\frac{3}{10}\right) x^{4}-\left(\frac{4}{5}\right) x^{3}-3 x^{2}+\left(\frac{36}{5}\right) x+11$
is decreasing.

D Watch Video Solution

53. Show that the function f given by $f(x)=\tan ^{-1}(\sin x+\cos x), x>0$ is always an increasing function in $f,\left(0, \frac{\pi}{4}\right)$

(D) Watch Video Solution

54. A circular disc of radius 3 cm is being heated.

Due to expansion, its radius increases at the rate of $0.05 c \frac{\mathrm{~m}}{\mathrm{~s}}$. Find the rate at which its area is increasing when radius is 3.2 cm .
55. An open topped box is to be constructed by
removing equal squares from each corner of a 3
metre by 8 metre. rectangular sheet of aluminium and folding up the sides. Find the volume of the largest such box.

(D) Watch Video Solution

56. Manufacturer can sell x items at a price of rupees $\operatorname{Rs}\left(5-\left(\frac{x}{100}\right)\right)$ each. The cost price of x items is $R s\left(\left(\frac{x}{5}\right)+500\right)$. Find the number of items he should sell to earn maximum profit.

D Watch Video Solution

57. Show that if $x^{2}-5 x+6=0$ then $x=3$ or $x=2$
(D) Watch Video Solution
58. Prove that the function $f: R \rightarrow R$ defined by $f(x)=2 x+5$ is one-one.
(D) Watch Video Solution
59. Show that if $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, then
$A^{n}=\left[\begin{array}{cc}\cos n \theta & \sin n \theta \\ -\sin n \theta & \cos n \theta\end{array}\right]$

(D) Watch Video Solution

60. Show that in any triangle $A B C$,

$$
a=b \cos C+c \cdot \cos B
$$

(D) Watch Video Solution
61. Show that the set of all prime numbers is infinite.

D Watch Video Solution

62. Prove that the function $f: R \rightarrow R$ defined by
$f(x)=2 x+5$ is one-one.
(D) Watch Video Solution
63. Show that "if a matrix A is invertible, then A is
non-singular".

- Watch Video Solution

64. For each $\left.\mathrm{n},\left(2^{\left(2^{n}\right)+1}\right)\right)$ is a prime $n \in N$

- Watch Video Solution

65. Every continuous function is differentiable.

(D) Watch Video Solution

66. Find the height of a given tower using mathematical modelling.

- Watch Video Solution

Exercise

1. Find the rate of change of the area of a circle with respect to its radius r when $r=3 \mathrm{~cm}$

(D) Watch Video Solution

2. Find the rate of change of the area of a circle
with respect to its radius r when $\mathrm{r}=4 \mathrm{~cm}$
3. The volume of a cube is increasing at the rate
of $8 c \frac{m^{3}}{s}$. How fast is the surface area increasing when the length of an edge is 12 cm ?

- Watch Video Solution

4. The radius of a circle is increasing uniformly at the rate of $3 \mathrm{~cm} / \mathrm{s}$. Find the rate at which the area of the circle is increasing when the radius is 10 cm.
5. An edge of a variable cube is increasing at the rate of $3 \mathrm{~cm} / \mathrm{s}$. How fast is the volume of the cube increasing when the edge is 10 cm long?

(D) Watch Video Solution

6. A stone is dropped into a quiet lake and waves move in circles at the speed of $5 \mathrm{~cm} / \mathrm{s}$. At the instant when the radius of the circular wave is 8 cm, how fast is the enclosed area increasing?
7. The radius of a circle is increasing at the rate of $0.7 \mathrm{~cm} / \mathrm{s}$. What is the rate of increase of its circumference?

D Watch Video Solution

8. The length ' x ' of a rectangle is decreasing at the rate of 5 cm per minute and the width ' y ' is increasing at the rate of 4 cm per minute, when x
$=8 \mathrm{~cm}$ and $\mathrm{y}=6 \mathrm{~cm}$, find the rate of change of the perimeter of the rectangle.

- Watch Video Solution

9. The length ' x ' of a rectangle is decreasing at the rate of 5 cm per minute and the width ' y ' is increasing at the rate of 4 cm per minute, when x
$=8 \mathrm{~cm}$ and $\mathrm{y}=6 \mathrm{~cm}$, find the rate of change of the area of the rectangle.

D Watch Video Solution

10. A balloon, which always remains spherical on inflation, is being inflated by pumping in $900 \mathrm{~cm}^{3}$

Of gas per sec. Find the rate at which the radius of the balloon increases when the radius is 15 cm .

(D) Watch Video Solution

11. A balloon, which always remains spherical has
a variable radius. Find the rate at which its
volume is increasing with the radius when the later is 10 cm .

- Watch Video Solution

12. A ladder 5 m long is leaning against a wall.

The bottom of the ladder is pulled along the ground, away from the wall, at the rate of $2 \mathrm{~cm} / \mathrm{s}$. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall ?

- Watch Video Solution

13. A particle moves along the curve $6 y=x^{3}+2$.

Find the points on the curve at which the y -
coordinate is changing 8 times as fast as the x coordinate.

- Watch Video Solution

14. The radius of an air bubble is increasing at
the rate of $\frac{1}{2} c \frac{m}{s}$. At what rate is the volume of the bubble increasing when the radius is 1 cm ?

(D) Watch Video Solution

15. A balloon, which always remains spherical, has
a variable diameter $\frac{3}{2}(2 x+1)$. Find the rate of
change of its volume with respect to x.

- Watch Video Solution

16. Sand is pouring from a pipe at the rate of 12 cubic $\mathrm{cm} . / \mathrm{sec}$. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base.

At which rate is the height of the sand-cone increasing when the height is 4 cm . ?
17. The total cost $C(x)$ in Rupees associated with
the production of x units of an item is given by
$C(x)=0.007 x^{3}+0.003 x^{2}+15 x+4000$ Find
the marginal cost when 17 units are produced.

(D) Watch Video Solution

18. The total revenue in Rupees received from the sale of x units of a product is given by
$R(x)=13 x^{2}+26 x+15$ Find the marginal revenue when $x=7$.
19. Find the rate of change of the area of a circle with respect to its radius r at $r=6 \mathrm{~cm}$
A. 10π
B. 12π
C. 8π
D. 11π

Answer:

D Watch Video Solution
20. The total revenue in Rupees received from its
sale of x units of a product is given by
$R(X)=3 x^{2}+36 x+5$. Find the marginal
revenue, when $x=15$
A. 116
B. 96
C. 90
D. 126
21. Show that the function given by $f(x)=3 x+17$ is increasing on R.

D Watch Video Solution

22. Show that the function given by $f(x)=e^{2} x$ is increasing on R .

(Watch Video Solution

23. Show that the function given by $f(x)=\sin x$
is increasing in $\left(0, \frac{\pi}{2}\right)$.

D Watch Video Solution

24. $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$ is a strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$

- Watch Video Solution

25. Show that the function given by $f(x)=\sin x$ is neither increasing nor decreasing in $(0, \pi)$.
26. Find the intervals in which the function f given by $f(x)=2 x^{2}-3 x$ is increasing

(D) Watch Video Solution

27. Find the intervals in which the function f given by $f(x)=2 x^{2}-3 x$ is decreasing.

(D) Watch Video Solution

28. Find the intervals in which the function :

$$
f(x)=2 x^{3}-3 x^{2}-36 x+7 \quad \text { is } \quad \text { Strictly }
$$

- Watch Video Solution

29. Find the intervals in which the function :
$f(x)=2 x^{3}-3 x^{2}-36 x+7 \quad$ is \quad Strictly
decreasing

(D) Watch Video Solution

30. Find the intervals in which the following functions are strictly increasing

$$
f(x)=x^{2}+2 x+5
$$

- Watch Video Solution

31. Find the intervals in which the following functions are strictly decreasing $f(x)=x^{2}+2 x+5$

(D) Watch Video Solution

32. Find the intervals in which the following functions are strictly increasing $f(x)=10-6 x-2 x^{2}$
33. Find the intervals in which the following functions are strictly decreasing
$f(x)=10-6 x-2 x^{2}$

Watch Video Solution
34. Find the intervals in which the following functions are strictly increasing
$f(x)=-2 x^{3}-9 x^{2}-12 x+1$

D Watch Video Solution

35. Find the intervals in which the following functions are strictly decreasing
$f(x)=-2 x^{3}-9 x^{2}-12 x+1$

(D) Watch Video Solution

36. Find the intervals in which the following functions are strictly increasing

$$
f(x)=6-9 x-x^{2}
$$

37. Find the intervals in which the following functions are strictly decreasing $f(x)=6-9 x-x^{2}$

(D) Watch Video Solution

38. Find the intervals in which the following functions are strictly increasing $f(x)=(x+1)^{3}(x-3)^{3}$
39. Find the intervals in which the following functions are strictly decreasing
$f(x)=(x+1)^{3}(x-3)^{3}$

(D) Watch Video Solution

40. Show that $y=\log (1+x)-2 \frac{x}{2+x}, x \succ 1$, is an increasing function of x . throughout its domain.
41. Find the values of x for which $y=[x(x-2)]^{2}$
is an increasing function.

D Watch Video Solution

42. Prove that $y=4 \frac{\sin \theta}{2+\cos \theta}-\theta$, is an increasing function of θ in $\left[0, \frac{\pi}{2}\right]$.

D Watch Video Solution

43. Prove that the logarithmic function is increasing on $(0, \infty)$.

- Watch Video Solution

44. Prove that the function f given by $f(x)=x^{2}-x+1$ is neither strictly increasing nor decreasing on $(-1,1)$.

(D) Watch Video Solution

45. Which of the following functions are strictly decreasing on $\left(0, \frac{\pi}{2}\right)$?
A. $\cos x$
B. $\cos 2 x$

C. $\cos 3 x$

D. $\tan x$

Answer:

(D) Watch Video Solution

46. On which of the following intervals is the
function f given by $f(x)=x^{100}+\sin x-1$ decreasing ?
A. $(0,1)$
B. $\left(\frac{\pi}{2}, \pi\right)$
C. $\left(0, \frac{\pi}{2}\right)$
D. None of these

Answer:

D Watch Video Solution

47. For what values of a the function f given by

$$
f(x)=x^{2}+a x+1 \text { is increasing on }[1,2] ?
$$

48. Let I be any interval disjoint from $[-1,1]$

Prove that the function f given by $f(x)=x+\frac{1}{x}$ is increasing on I .

(D) Watch Video Solution

49. Prove that the function f given by $f(x)=\log \sin x, i s \in c r e a \sin \operatorname{gon}\left(0, \frac{\pi}{2}\right)$ and decreasing on $\left(\frac{\pi}{2}, \pi\right)$.
50. Prove that the function f given by $f(x)=\log |\cos x|$ isdecrea $\sin \operatorname{gon}\left(0, \frac{\pi}{2}\right) \quad$ and increasing on $\left(3 \frac{\pi}{2}, 2 \pi\right)$

(D) Watch Video Solution

51. Prove that the function given by $f(x)=x^{3}-3 x^{2}+3 x-100$ is increasing in R.
52. The interval in which $y=x^{2} e^{-x}$ is increasing is:
A. $(-\infty, \infty)$
B. $(-2,0)$
C. $(2, \infty)$
D. $(0,2)$

Answer:

(D) Watch Video Solution
53. Find the slope of the tangent to the curve

$$
y=3 x^{4}-4 x a t x=4
$$

(D) Watch Video Solution

54. Find the slope of the tangent to the curve
$y=\frac{x-1}{x-2}$ at $\mathrm{x}=10$.

(D) Watch Video Solution

55. Find the slope of the tangent to curve $y=x^{3}-x+1$ at the point whose x -coordinate
is 2 .

D Watch Video Solution

56. Find the slope of the tangent to the curve $y=x^{3}-3 x+2$ at the point whose x coordinate is 3.

(D) Watch Video Solution

57. Find the slope of the normal to the curve

$$
x=a \cos ^{3} \theta, y=a \sin ^{3} \theta a t \theta=\frac{\pi}{4}
$$

58. Find the slope of the normal to the curve $x=1-a \sin \theta, y=b \cos ^{2} \theta a t \theta=\frac{\pi}{2}$

D Watch Video Solution

59. Find points at which the tangent to the curve $y=x^{3}-3 x^{2}-9 x+7$ is parallel to the x -axis.

D Watch Video Solution

60. Find a point on the curve $y=(x-2)^{2}$ at which the tangent is parallel to the chord joining the points (2,0) and (4,4)

(D) Watch Video Solution

61. Find the point on the curve $y=x^{3}-11 x+5$
at which the tangent is $y=x-11$
(Watch Video Solution
62. Find the equation of all lines having slope - 1
that are tangents to the curve
$y=\frac{1}{x-1}, x \neq-1$

(D) Watch Video Solution

63. Find the equations of all lines having slope 0 which are tangent to the curve
$y=\frac{1}{x 2-2 x+3}$
64. Find points on the curve $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ at which the tangents are parallel to x -axis

D Watch Video Solution

65. Find points on the curve $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ at which the tangents are parallel to y-axis

(D) Watch Video Solution

66. Find the equations of the tangent to the given curves at the indicated points:

$$
y=x^{4}-6 x^{3}-13 x^{2}-10 x+5 \text { at }(0,5)
$$

(D) Watch Video Solution

67. Find the equations of the tangent to the given curves at the indicated points:

$$
y=x^{4}-6 x^{3}-13 x^{2}-10 x+5 \text { at }(1,3)
$$

(D) Watch Video Solution

68. Find the equations of the tangent to the given curves at the indicated points: $y=x^{3}$ at $(1,1)$

- Watch Video Solution

69. Find the equations of the tangent to the given curves at the indicated points: $y=x^{2}$ at $(0,0)$

- Watch Video Solution

70. Find the equations of the tangent to the given curves at the indicated points: $x=\cos t, y=\sin t$ at $t=\frac{\pi}{4}$
71. Find the equations of the normal to the given curves at the indicated points:
$y=x^{4}-6 x^{3}-13 x^{2}-10 x+5$ at $(0,5)$

D Watch Video Solution

72. Find the equations of the normal to the given
curves at the indicated points:
$y=x^{4}-6 x^{3}-13 x^{2}-10 x+5$ at $(1,3)$
73. Find the equation of normal to the curve, $y=. x^{3}$ at the point $(1,1)$.

D Watch Video Solution

74. Find the equations of the normal to the given curves at the indicated points: $y=x^{2}$ at $(0,0)$

(D) Watch Video Solution

75. Find the equations of the normal to the given
curves at the indicated points:
$x=\cos t, y=\sin t$ at $t=\frac{\pi}{4}$

(D) Watch Video Solution

76. Find the equation of the tangent line to the curve $y=x^{2}-2 x+7$, which is parallel to the line $2 x-y+9=0$.

(D) Watch Video Solution

77. Find the equation of the tangent line to the curve $y=x^{2}-2 x+7$ which is perpendicular to
the line $5 y-15 x=13$

- Watch Video Solution

78. Show that the tangents to curve $y=$ $7 x^{3}+11$ at the points $\mathrm{x}=2$ and $\mathrm{x}=-2$ are parallel.

(D) Watch Video Solution

79. Find the points on the curve $y=x^{3}$ at which the slope of the tangent is equal to the y coordinate of the point.
80. For the curve $y=4 x^{3}-2 x^{5}$, find all the points at which the tangent passes through the origin.

(D) Watch Video Solution

81. Find the points on the curve
$x^{2}+y^{2}-2 x-3=0$ at which the tangents are parallel to the x-axis.
82. Find the equation of the normal at the point $\left(a m^{2}, a m^{3}\right)$ for the curve $a y^{2}=x^{3}$

(D) Watch Video Solution

83. Find the equation of the normals to the curve
$y=x^{3}+2 x+6$ which are parallel to the line $x+14 y+4=0$
(D) Watch Video Solution
84. Find the equations of the tangent and normal to the parabola $y^{2}=4 a x$ at the point $\left(a t^{2}, 2 a t\right)$

D Watch Video Solution

85. Prove that the curves $x=y^{2}$ and $x y=k$ cut at right angles* if $8 k^{2}=1$

(D) Watch Video Solution

86. Find the equations of the tangent and normal to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point

$\left(x_{0}, y_{0}\right)$

(D) Watch Video Solution

87. Find the equation of the tangent line to the curve $y=\sqrt{3 x-2}$ which is parallel to the line $4 x-2 y+5=0$.

(D) Watch Video Solution

88. The slope of the normal to the curve $y=2 x^{2}+3 \sin x$ at $x=0$ is:
A. 3
B. $\frac{1}{3}$
C. -3
D. $-\frac{1}{3}$

Answer:

D Watch Video Solution

89. The line $y=x+1$, is a tangent to the curve
$y^{2}=4 x$ at the point.
A. $(1,2)$
B. $(2,1)$
C. $(1,-2)$
D. $(-1,2)$

Answer:

- Watch Video Solution

90. Using differentials, find the approximate value of each of the following up to 3 places of decimal: $\sqrt{25.3}$
91. Using differentials, find the approximate value of each of the following up to 3 places of decimal: $\sqrt{49.5}$

D Watch Video Solution

92. Using differentials, find the approximate value
of each of the following up to 3 places of decimal: $\sqrt{0.6}$

D Watch Video Solution

93. Using differentials find the approximate value of $\sqrt[3]{0.009}$

(D) Watch Video Solution

94. Using differential, find the approximate value of $(0.999)^{\frac{1}{10}}$

(D) Watch Video Solution

95. Using differentials, find the approximate value of each of the following up to 3 places of
decimal: $\frac{(15)^{1}}{4}$

(D) Watch Video Solution

96. Using differential find approximate value of $\sqrt[3]{26}$

D Watch Video Solution

97. Using differentials, find the approximate value of each of the following up to 3 places of decimal: $\frac{(255)^{1}}{4}$

Watch Video Solution

98. Using differentials, find the approximate value of each of the following up to 3 places of
decimal: $\frac{(82)^{1}}{4}$

(Watch Video Solution

99. Using differentials, find the approximate value of each of the following up to 3 places of decimal: $(401)^{\frac{1}{4}}$
100. Using differentials, find the approximate value of each of the following up to 3 places of decimal: $(0.0037)^{\frac{1}{2}}$

(D) Watch Video Solution

101. Using differentials, find the approximate value of each of the following up to 3 places of decimal: $(26.57)^{\frac{1}{3}}$
102. Using differentials, find the approximate value of each of the following up to 3 places of decimal: $(81.5)^{\frac{1}{4}}$

(D) Watch Video Solution

103. Using differentials, find the approximate
value of each of the following up to 3 places of decimal: `(3.968)^ $3 / 2$
104. Using differentials, find the approximate value of each of the following up to 3 places of decimal.
$(32.15)^{1 / 5}$

(D) Watch Video Solution

105. Find the approximate value of $f(2.01)$ where

$$
f(x)=4 x^{2}+5 x+2
$$

(D) Watch Video Solution
106. Find the approximate value of $f(5 \cdot 001)$, where $f(x)=x^{3}-7 x^{2}+15$.

(D) Watch Video Solution

107. Find the approximate change in the volume
V of a cube of side x metres caused by increasing the side by 1%.
108. Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%.

(D) Watch Video Solution

109. If the radius of a sphere is measured as 7 m with an error of 0.02 m , then find the approximate error in calculating its volume.
(D) Watch Video Solution
110. If the radius of a sphere is measured as 9 m with an error of 0.03 m , then find the approximate error in calculating its surface area.

D Watch Video Solution

111. If $f(x)=3 x^{2}+15 x+5$, then the approximate value of $f(3.02)$ is :
A. 47.66
B. 57.66
C. 67.66

D. 77.66

Answer:

D Watch Video Solution

112. The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is:
A. $0.06 x^{3} m^{3}$
B. $0.6 x^{3} m^{3}$
C. $0.09 x^{3} m^{3}$

D. $0.9 x^{3} m^{3}$

Answer:

D Watch Video Solution

113. Find the maximum and minimum values, if any, of the following functions given by:
$f(x)=(2 x-1)^{2}+3$

- Watch Video Solution

114. Find the maximum and minimum values, if any, of the following functions given by: $f(x)=9 x^{2}+12 x+2$

(D) Watch Video Solution

115. Find the maximum and minimum values, if any, of the following functions given by:

$$
f(x)=-(x-1)^{2}+10
$$

116. Find the maximum and minimum values, if any, of the following functions given by: $g(x)=x^{3}+1$

(D) Watch Video Solution

117. Find the maximum and minimum values, if any, of the following functions given by: $f(x)=|x+2|-1$
118. Find the maximum and minimum values, if
any, of the following functions given by:
$g(x)=-|x+1|+3$

(D) Watch Video Solution

119. Find the maximum and minimum values, if any, of the following functions given by: $h(x)=\sin (2 x)+5$
120. Find the maximum and minimum values, if
any, of the following functions given by:
$f(x)=|\sin (4 x)+3|$

(D) Watch Video Solution

121. Find the maximum and minimum values, if any, of the following functions given by:

$$
h(x)=x+1, x \in(-1,1)
$$

122. Find the local maxima and local minima, if any, of the following functions. $f(x)=x^{\wedge} 2^{`}$

D Watch Video Solution

123. Find the local maxima and local minima, if any, of the following functions.: $g(x)=x^{\wedge} 3-3 x$

(D) Watch Video Solution

124. Find the local maxima and local minima of the following functions. Find also the local
maximum and the local minimum values, as the
case may be: 'h(x)= sinx-cosx','0

(D) Watch Video Solution

125. Find the local maxima and local minima of
the following functions. Find also the local maximum and the local minimum values, as the
case may be: 'h(x)= sinx - cosx','0

D Watch Video Solution

126. Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the
case may be: $f(x)=x^{3}-6 x^{2}+9 x+15$

(D) Watch Video Solution

127. Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the
case may be: $f(x)=\frac{x}{2}+\frac{2}{x}, x>0$
128. Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be: $f(x)=\frac{1}{x^{2}+2}$

(Watch Video Solution

129. Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be: $f(x)=x \sqrt{1-x}$

- Watch Video Solution

130. Prove that the following functions do not have maxima or minima: $f(x)=e^{x}$

D Watch Video Solution

131. Prove that the following functions do not
have maxima or minima: $g(x)=\log x$
(D) Watch Video Solution
132. Prove that the following functions do not have maxima or minima:
$h(x)=x^{3}+x^{2}+x+1$

(D) Watch Video Solution

133. Find the absolute maximum value and the absolute minimum value of the following
functions in the given intervals:
$f(x)=x^{3}, x \in[-2,2]$
134. Find the absolute maximum value and the absolute minimum value of the following functions in the given intervals:
$f(x)=\sin x+\cos x, x \in[0, \pi]$

D Watch Video Solution

135. Find the absolute maximum value and the absolute minimum value of the following functions in the given intervals:
$f(x)=4 x-\frac{1}{2} x^{2}, x \in\left[-2, \frac{9}{2}\right]$
136. Find the absolute maximum value and the absolute minimum value of the following functions in the given intervals:
$f(x)=(x-1)^{2}+3, x \in[-3,1]$

D Watch Video Solution

137. Find the maximum profit that a company can make, if the profit function is given by $p(x)=41-72 x-18 x^{2}$
138. Find both the maximum value and the minimum value of $3 x^{4}-8 x^{3}+12 x^{2}-48 x+25$ on the interval $[0,3]$

D Watch Video Solution

139. The value of x for which function $\sin 2 x$ attains its maximum is :

Watch Video Solution

140. What is the maximum value of the function $\sin x+\cos x ?$

(D) Watch Video Solution

141. Find the maximum value of $2 x^{3}-24 x+107$ in the interval $[1,3]$. Find the maximum value of the same function in $[-3,-1]$.
142. It is given that at $x=1$, the function $x^{4}-62 x^{2}+a x+9$ attains its maximum value, on the interval $[0,2]$. Find the value of a.

(D) Watch Video Solution

143. Find the maximum and minimum values of $x+\sin 2 x$ on $[0,2 \pi]$
144. . Find two numbers whose sum is 24 and whose product is as large as possible.

(D) Watch Video Solution

145. Find two positive numbers x and y such that $x+y=60$ and $x y^{3}$ is maximum.

(D) Watch Video Solution

146. Find two positive numbers x and y such that their sum is 35 and the product $x^{2} y^{5}$ is a
maximum.

- Watch Video Solution

147. Find two positive numbers whose sum is 16 and whose sum of cubes is minimum.

D Watch Video Solution

148. A square piece of tin of side 18 cm is to be made into a box without top by cutting a square
from each comer and folding up the flaps to form
a box. What should be the side of square to be
cut off so that the volume of box is maximum and also find the volume of box?

D Watch Video Solution

149. A rectangular sheet of tin $45 \mathrm{~cm} \times 24 \mathrm{~cm}$ is to
be made into a box without top, by cutting off square from each corner and folding up the flaps.

What should be the side of the square to be cut
off so that the volume of the box is the maximum possible.
150. Show that of all rectangles inscribed in a given circle the square has maximum area.

(D) Watch Video Solution

151. Show that the right circular cylinder of given
surface and maximum volume is such that its height is equal to the diameter of the base.

152. Of all the closed cylindrical cans (right

 circular), of a given volume of $100 \mathrm{~cm}^{3}$, find thedimensions of the can which has the minimum surface area?

(D) Watch Video Solution

153. A wire of length 28 m is to be cut into two pieces, one of the pieces is to be made into a square and the other into a circle. What should be the length of two pieces so that the
combined area of the square and the circle is minimum ?

(D) Watch Video Solution

154. Prove that volume of largest cone, which can
be inscribed in a sphere, is $\left(\frac{8}{27}\right)^{t h}$ part of volume of sphere.
155. Show that the right circular cone of least curved surface and given volume has an altitude equal to $\sqrt{2}$ time the radius of the base.

(D) Watch Video Solution

156. Show that the semi-vertical angle of the right-circular cone of maximum volume and of given slant height is $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
157. Show that semi-vertical angle of right circular cone of given surface area and maximum volume is $\sin ^{-1}\left(\frac{1}{3}\right)$.

D Watch Video Solution

158. The point on the curve $x^{2}=2 y$ which is nearest to the point $(0,5)$ is:
A. $(2 \sqrt{2}, 4)$
B. $(2 \sqrt{2}, 0)$
C. $(0,0)$
D. $(2,2)$

Answer:

- Watch Video Solution

159. For all real values of x, the minimum value of $\frac{1-x+x^{2}}{1+x+x^{2}}$ is:
A. 0
B. 1
C. 3
D. $\frac{1}{3}$

Answer:

D Watch Video Solution

$$
\begin{aligned}
& \text { 160. The maximum value of } \\
& {[x(x-1)+1]^{\frac{1}{3}}, 0 \leq x \leq 1 \text { is: }}
\end{aligned}
$$

A. $\left(\frac{1}{3}\right)^{\frac{1}{3}}$
B. $\frac{1}{2}$
C. 1
D. 0

Answer:

(Watch Video Solution

161. Using differentials, find the approximate
value of the following: $\left(\frac{17}{81}\right)^{\frac{1}{4}}$
(Watch Video Solution
162. Using differentials, find the approximate value of the following: $33^{-\frac{1}{5}}$

D Watch Video Solution

163. Show that the function given by
$f(x)=\frac{\log x}{x}$ has maximum at $x=e$

D Watch Video Solution

164. The two equal sides of an isosceles triangle with fixed base b are decreasing at the rate of 3
cm per second. How fast is the area decreasing when the two equal sides are equal to the base ?

(D) Watch Video Solution

165. Find the equation of the normal to curve $x^{2}=4 y$ which passes through the point $(1,2)$.

(D) Watch Video Solution

166. Show that the normal at any point θ to the curve
$x=a \cos \theta+a \theta \sin \theta, y=a \sin \theta-a \theta \cos \theta \quad$ is
at a constant distance from the origin.

(D) Watch Video Solution

167. Find the intervals in which the function f
given by $f(x)=\sin x+\cos x, 0 \leq x \leq 2 \pi$ is increasing

(D) Watch Video Solution

168. Find the intervals in which the function f given by $f(x)=\frac{4 \sin x-2 x-x \cos x}{2+\cos x}$ is
increasing.

(Watch Video Solution

169. Find the intervals in which the function f given by $\quad f(x)=x^{3}+\left(\frac{1}{x^{3}}\right), x \neq 0 \quad$ is increasing.

D Watch Video Solution

170. Find the intervals in which the function f
given by $f(x)=x^{3}+\left(\frac{1}{x^{3}}\right), x \neq 0$
decreasing.

(D) Watch Video Solution

171. Find the maximum area of an isosceles
triangle inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with its vertex at one end of the major axis.

D Watch Video Solution

172. A tank with rectangular base and rectangular
sides, open at the top is to be constructed so
that its depth is 2 m and volume is $\frac{8}{m^{3}}$. If building of tank costs Rs 70 per sq metres for the base and Rs 45 per square metre for sides. What is the cost of least expensive tank?

- Watch Video Solution

173. The sum of the perimeter of a circle and square is k, where k is some constant. Prove that the sum of their areas is least when the side of square is double the radius of the circle.

D Watch Video Solution

174. A window is in the form of a rectangle surmounted by a semi-circular opening. The total perimeter of the window is 10 m . Find the dimensions of the window to admit maximum light through the whole opening.

D Watch Video Solution

175. A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle.Show that the minimum length of the
hypotenuse is $\left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)^{\frac{2}{3}}$

- Watch Video Solution

176. Find the points at which the function f given by $f(x)=(x-2)^{4}(x+1)^{3}$ has local maxima.

(D) Watch Video Solution

177. Find the points at which the function f given
by $f(x)=(x-2)^{4}(x+1)^{3}$ has local minima.
178. Find the points at which the function f given by $\quad f(x)=(x-2)^{4}(x+1)^{3}$ has point of inflexion.

(D) Watch Video Solution

179. Find the absolute maximum and minimum
values of the function f given by
$f(x)=\cos ^{2} x+\sin x, x \in[0, \pi]$
(D) Watch Video Solution
180. Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is $4 \frac{r}{3}$.

(D) Watch Video Solution

181. Let f be a function defined on $[a, b]$ such that
$f^{\prime}(x)>0$ for all $x \in(a, b)$. Then prove that f is
an increasing function on (a, b).
(D) Watch Video Solution
182. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is $2 \frac{R}{\sqrt{3}}$. Also find the maximum volume.

(D) Watch Video Solution

183. Evaluate
$\int \frac{d x}{x^{2}+4 x+8}$
(D) Watch Video Solution
184. A cylindrical tank of radius 10 m is being
filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of:
A. $1 \frac{m}{h}$
B. $0.1 \frac{\mathrm{~m}}{\mathrm{~h}}$
C. $1.1 \frac{\mathrm{~m}}{\mathrm{~h}}$
D. $0.5 \frac{\mathrm{~m}}{\mathrm{~h}}$

Answer:
185. The slope of the tangent to the curve
$x=t^{2}+3 t-8, y=2 t^{2}-2 t-5$ at the point
$(2,-1)$ is:
A. $\frac{22}{7}$
B. $\frac{6}{7}$
C. $\frac{7}{6}$
D. $-\frac{6}{7}$

Answer:

- Watch Video Solution

186. The line $y=m x+1$, is a tangent to the curve $y^{2}=4 x$ if the value of m is:
A. 1
B. 2
C. 3
D. $\frac{1}{2}$

Answer:

- Watch Video Solution

187. The normal at the point $(1,1)$ on the curve $2 y+x^{2}=3$ is:
A. $x+y=0$
B. $x-y=0$
C. $x+y+1=0$
D. $x-y=1$

Answer:
(D) Watch Video Solution
188. The normal to the curve $x^{2}=4 y$ passing $(1,2)$ is:
A. $x+y=3$
B. $x-y=3$
C. $x+y=1$
D. $x-y=1$

Answer:

- Watch Video Solution

189. The points on the curve $9 y^{2}=x^{3}$, where the normal to the curve makes equal intercepts with the axes are:
A. $\left(4, \pm\left(\frac{8}{3}\right)\right)$
B. $\left(4,\left(-\frac{8}{3}\right)\right)$
C. $\left(4, \pm\left(\frac{3}{8}\right)\right)$
D. $\left(\pm 4,\left(\frac{3}{8}\right)\right)$

Answer:

