

MATHS

BOOKS - PSEB

MATRICES

Example

1. If a matrix has 8 elements, what are the possible orders it can have?

2. Construct a 3×2 matrix whose elements are given by

$$a_ij=rac{1}{2}|i-3j|$$

Watch Video Solution

 $\textbf{3. If } \begin{bmatrix} x+3 & z+4 & 2y-7 \\ 4x+6 & a-1 & 0 \\ b-3 & 3b & z+2c \end{bmatrix} = \begin{bmatrix} 0 & 6 & 3y-2 \\ 2x & -3 & 2c+2 \\ 2b+4 & -21 & 0 \end{bmatrix},$

obtain the values of a,b,c and x,y and z.

4. Find the values of a, b, c and d from the following equation:

$$\begin{bmatrix} 2a+b & a-2b \\ 5c-d & 4c+3d \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 11 & 24 \end{bmatrix}.$$

5. Given
$$A=egin{bmatrix}\sqrt{3}&1&-1\\2&3&0\end{bmatrix}$$
 and $B=egin{bmatrix}2&\sqrt{5}&1\\-2&3&rac{1}{2}\end{bmatrix}$ find A +

В

6. If
$$A=\begin{bmatrix}1&2&3\\2&3&1\end{bmatrix}$$
 and $B=\begin{bmatrix}3&-1&3\\-1&0&2\end{bmatrix}$, then find 2A – B.

7. If
$$A=\begin{bmatrix}8&0\\4&-2\\3&6\end{bmatrix}$$
 and $B=\begin{bmatrix}2&-2\\4&2\\-5&1\end{bmatrix}$, then find the

matrix X, such that 2A+3X=5B

8. Find matrices X and Y if : $X+Y=\begin{bmatrix}5&2\\0&9\end{bmatrix}$ and

$$X-Y=egin{bmatrix} 3 & 6 \ 0 & -1 \end{bmatrix}.$$

9. Find the values of x and y from the following equation:

$$2egin{bmatrix} x & 5 \ 7 & y-3 \end{bmatrix} + egin{bmatrix} 3 & -4 \ 1 & 2 \end{bmatrix} = egin{bmatrix} 7 & 6 \ 15 & 14 \end{bmatrix}$$

10. Find the values of x and y from the following equation:

$$2\begin{bmatrix} x & 2 \\ 6 & y - 2 \end{bmatrix} + \begin{bmatrix} -4 & 3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 7 \\ 14 & 15 \end{bmatrix}$$

11. Find AB, if
$$A=\begin{bmatrix}6&9\\2&3\end{bmatrix}$$
 and $B=\begin{bmatrix}2&6&0\\7&9&8\end{bmatrix}$

Watch Video Solution

12. If
$$A=\begin{bmatrix}1&-2&3\\-4&2&5\end{bmatrix}$$
 and $B=\begin{bmatrix}2&3\\4&5\\2&1\end{bmatrix}$, then find AB, BA.

Show that AB
eq BA

13. If
$$A=\begin{bmatrix}1&0\\0&-1\end{bmatrix}$$
 and $B=\begin{bmatrix}0&1\\1&0\end{bmatrix}$, then $AB=\begin{bmatrix}0&1\\-1&0\end{bmatrix}$ and $BA=\begin{bmatrix}0&-1\\1&0\end{bmatrix}$. Clearly $AB\neq BA$ Thus matrix multiplication is not commutative.

14. Find AB, if
$$A=\begin{bmatrix}0&-1\\0&2\end{bmatrix}$$
 and $B=\begin{bmatrix}3&5\\0&0\end{bmatrix}$

Watch Video Solution

- **15.** If $A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & 3 \\ 3 & -1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 3 \\ 0 & 2 \\ -1 & 4 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 2 & 3 & -4 \\ 2 & 0 & -2 & 1 \end{bmatrix}$, find A(BC), (AB)C and show that (AB)C = A(BC)
 - Watch Video Solution

16. If
$$A=\begin{bmatrix}0&6&7\\-6&0&8\\7&-8&0\end{bmatrix}, B=\begin{bmatrix}0&1&1\\1&0&2\\1&2&0\end{bmatrix}, C=\begin{bmatrix}2\\-2\\3\end{bmatrix}$$
 Calculate AC, BC and $(A+B)C$. Also, verify that

$$(A+B)C = AC + BC$$

17. If
$$A=egin{array}{cccc}1&2&3\\3&-2&1\\4&2&1\end{bmatrix}$$
 , then find $A^2-23A-40I$ where I is

Identify Matrix.

18. If
$$A=egin{bmatrix}1&2&3\\3&-2&1\\4&2&1\end{bmatrix}$$
 , then show that $A^3-23A-40I=O$

19. If
$$A=\left[\left[3,\sqrt{3},2\right],\left[4,2,0\right] ext{ and } B=\left[\begin{matrix}2&-1&2\\1&2&4\end{matrix}\right]$$
 , verify that : $(A')'=A$

20. If $A=\left[\left[3,\sqrt{3},2\right],\left[4,2,0\right] \text{ and } B=\left[\begin{matrix}2&-1&2\\1&2&4\end{matrix}\right]$, verify

that : (A + B)' = A' + B'

21. If
$$A=\left[\left[3,\sqrt{3},2\right],\left[4,2,0\right] \text{ and } B=\left[\begin{matrix}2&-1&2\\1&2&4\end{matrix}\right]$$
 , verify that : $(A')'=A$

22. If
$$A=\begin{bmatrix} -2\\4\\5\end{bmatrix}, B=\begin{bmatrix} 1\\3\\6\end{bmatrix}$$
, verify that $(AB)'=B'A'$.

23. Express the following matrices as the sum of a symmetric

and skew-symmetric matrix. $\begin{bmatrix} 2 & -2 & 4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$

24. By using elementary operations, find the inverse of the matrix $A=\begin{bmatrix}1&2\\2&-1\end{bmatrix}$

25. Using elementary transformations find inverse of

$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}.$$

26. Find
$$P^{-1}$$
, if it exists, given $P = \begin{bmatrix} 10 & -2 \\ -5 & 1 \end{bmatrix}$

Watch Video Solution

27. If
$$A=egin{bmatrix}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{bmatrix}$$
 then prove that $A^n=egin{bmatrix}\cos n \theta & \sin n \theta \\ -\sin n \theta & \cos n \theta\end{bmatrix}, n\in N$

28. If A and B are symmetric matrices of the same order, then show that AB is symmetric if and only if A and B commute, that is AB = BA.

29. Let $A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 5 & 2 \\ 7 & 4 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 5 \\ 3 & 8 \end{bmatrix}$ Find a matrix D such that CD – AB = O.

Exercise

1. In the matrix
$$A=egin{bmatrix}2&5&19&-7\\35&-2&rac{5}{2}&12\\\sqrt{3}&1&-5&17\end{bmatrix}$$
 , write: The order of

the matrix.

2. In the matrix $A=\begin{bmatrix}2&5&19&-7\\35&-2&\frac{5}{2}&12\\\sqrt{3}&1&-5&17\end{bmatrix}$, write:The number

of elements.

3. In the matrix $A=egin{bmatrix}2&5&19&-7\\35&-2&rac{5}{2}&12\\\sqrt{3}&1&-5&17\end{bmatrix}$, write: write the

elements $a_{13}, a_{21}, a_{33}, a_{24}, a_{23}$

4. If a matrix has 24 elements, what are the possible orders it can have? What, if it has 13 elements?

5. If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements?

- **6.** Construct a 2 imes 2 matrix, $A=[a_ij]$ whose elements are given by:: $a_ij=rac{{(i+j)}^2}{2}$
 - Watch Video Solution

- **7.** Construct 2 imes 2 matrix $A = [a_i j]$ whose elements are given by $a_i j = rac{i}{j}.$
 - Watch Video Solution

8. Construct a 2 imes 2 matrix, $A=[a_ij]$ whose elements are given by:: $a_ij=rac{{(i+2j)}^2}{2}$

9. Construct a 3 imes 4 matrix, whose elements are given by: $a_i j = rac{1}{2} |-3i+j|$

10. Construct a 3×4 matrix, whose elements are given by:

$$a_i j = 2i - j$$

11. Find the values of x, y and z from the following equation:

$$\begin{bmatrix} 4 & 3 \\ x & 5 \end{bmatrix} = \begin{bmatrix} y & z \\ 1 & 5 \end{bmatrix}$$

12. Find the values of x, y and z from the following equation:

$$\left[egin{array}{cc} x+y & 2 \ 5+z & xy \end{array}
ight] = \left[egin{array}{cc} 6 & 2 \ 5 & 8 \end{array}
ight]$$

13. Find the values of x, y and z from the following equation:

$$\begin{bmatrix} x+y+z \\ x+z \\ y+z \end{bmatrix} = \begin{bmatrix} 9 \\ 5 \\ 7 \end{bmatrix}$$

14. Find the values of a, b, c and d from the equation :

$$\left[\begin{array}{cc} a-b & 2a+c \\ 2a-b & 3c+d \end{array}\right] = \left[\begin{array}{cc} -1 & 5 \\ 0 & 13 \end{array}\right] \ \ \text{and} \ \ \text{write} \ \ \text{correct answer}$$

from the following:

Watch Video Solution

15. $A = [a_i j]_m imes n$ is a square matrix, if:

A. m < n

B. m > n

 $\mathsf{C}.m=n$

D. None of these

Answer:

16. Which of the given values of x and y make the following pair of matrices equal: $\begin{bmatrix} 3x+7 & 5 \\ y+1 & 2-3x \end{bmatrix}, \begin{bmatrix} 0 & y-2 \\ 8 & 4 \end{bmatrix}$

A.
$$x = -\frac{1}{3}, y = 7$$

B. Not possible to find

C.
$$y = 7, x = -\frac{2}{3}$$

D.
$$x = -\frac{1}{3}, y = -\frac{2}{3}$$

Answer:

17. The number of all possible matrices of order 3×3 with each entry 0 or 1 is:

C. 81

D. 512

Answer:

Watch Video Solution

18. Let $A=\begin{bmatrix}2&4\\3&2\end{bmatrix}, B=\begin{bmatrix}1&3\\-2&5\end{bmatrix}, C=\begin{bmatrix}-2&5\\3&4\end{bmatrix}$, Find the following: A + B

Watch Video Solution

19. Let $A=\begin{bmatrix}2&4\\3&2\end{bmatrix}, B=\begin{bmatrix}1&3\\-2&5\end{bmatrix}, C=\begin{bmatrix}-2&5\\3&4\end{bmatrix}$, Find the following: A - B

20. Let
$$A=\begin{bmatrix}2&4\\3&2\end{bmatrix}, B=\begin{bmatrix}1&3\\-2&5\end{bmatrix}, C=\begin{bmatrix}-2&5\\3&4\end{bmatrix}$$
, Find the following: $3A-C$

21. Let
$$A=\begin{bmatrix}2&4\\3&2\end{bmatrix}, B=\begin{bmatrix}1&3\\-2&5\end{bmatrix}, C=\begin{bmatrix}-2&5\\3&4\end{bmatrix}$$
, Find the following: AB

22. Let
$$A=\begin{bmatrix}2&4\\3&2\end{bmatrix}, B=\begin{bmatrix}1&3\\-2&5\end{bmatrix}, C=\begin{bmatrix}-2&5\\3&4\end{bmatrix}$$
, Find the following: BA

23. Compute the following: $\begin{bmatrix} a & b \\ -b & a \end{bmatrix} + \begin{bmatrix} a & b \\ b & a \end{bmatrix}$

Watch Video Solution

24. Compute the following:

$$\left[egin{array}{ccc} a^2+b^2&b^2+c^2\ a^2+c^2&a^2+b^2 \end{array}
ight]+\left[egin{array}{ccc} 2ab&2bc\ -2ac&-2ab \end{array}
ight]$$

25. Compute the following:

$$\begin{bmatrix} -1 & 4 & -6 \\ 8 & 5 & 16 \\ 2 & 8 & 5 \end{bmatrix} + [[12, 7, 6], [8, 0, 5], [3, 2, 4]$$

26. Compute the
$$\begin{bmatrix} \cos^2 x & \sin^2 x \\ \sin^2 x & \cos^2 x \end{bmatrix} + \begin{bmatrix} \sin^2 x & \cos^2 x \\ \cos^2 x & \sin^2 x \end{bmatrix}$$

following:

- - Watch Video Solution

27. Compute the indicated products: $\begin{vmatrix} a & b \\ -b & a \end{vmatrix} \begin{vmatrix} a & -b \\ b & a \end{vmatrix}$

28. Compute the indicated products: $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}$

- **Watch Video Solution**

- **Watch Video Solution**

29. Compute the indicated products: $\begin{bmatrix} 1 & -2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$

30. Compute the indicated products:
$$\begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & -3 & 5 \\ 0 & 2 & 4 \\ 3 & 0 & 5 \end{bmatrix}$$

31. Compute the indicated products:
$$\begin{bmatrix} 2 & 1 \\ 3 & 2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \end{bmatrix}$$

32. Compute the indicated products:
$$\begin{bmatrix} 3 & -1 & 3 \\ -1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 1 & 0 \\ 3 & 1 \end{bmatrix}$$

- $A = \begin{bmatrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{bmatrix}, B = \begin{bmatrix} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{bmatrix} \text{ and } C = \begin{bmatrix} 4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3 \end{bmatrix}$

If

- , then compute (A+B) and (B-C). Also, verify that
- A + (B C) = (A + B) C.

compute 3A-5B

Watch Video Solution

Watch Video Solution

34. If $A = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{3}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{4}{3} \\ \frac{7}{3} & \frac{2}{3} & \frac{2}{3} \end{bmatrix}$ and $B = \begin{bmatrix} \frac{1}{5} & \frac{2}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{2}{5} & \frac{4}{5} \\ \frac{7}{6} & \frac{2}{3} \end{bmatrix}$,

35. Simplify, $\cos \theta \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} + \sin \theta \begin{bmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{bmatrix}$

36. Find X and Y, if
$$X+Y=\begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix}$$
 and $X-Y=\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$

37. Find X and Y, if
$$2X+3Y=\begin{bmatrix}2&3\\4&0\end{bmatrix}$$
 and $3X+2Y=\begin{bmatrix}2&-2\\-1&5\end{bmatrix}$

38. Find X , if
$$Y=\begin{bmatrix}3&2\\1&4\end{bmatrix}$$
 and $2X+Y=\begin{bmatrix}1&0\\-3&2\end{bmatrix}$

39. Find x and y, if
$$2\begin{bmatrix}1&3\\0&x\end{bmatrix}+\begin{bmatrix}y&0\\1&2\end{bmatrix}=\begin{bmatrix}5&6\\1&8\end{bmatrix}$$

40. If
$$x \begin{bmatrix} 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$$
 , find the values of x and y.

41. Given
$$3\begin{bmatrix}x&y\\z&w\end{bmatrix}=\begin{bmatrix}x&6\\-1&2w\end{bmatrix}+\begin{bmatrix}4&x+y\\z+w&3\end{bmatrix}$$
 , find the values of x, y, z and w.

42. If
$$f(x)=egin{bmatrix}\cos x & -\sin x & 0 \ \sin x & \cos x & 0 \ 0 & 0 & 1\end{bmatrix}$$
 , show that

$$f(x). f(y) = f(x + y)$$

43. Show that:
$$\begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \neq \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{bmatrix} \neq \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

45. If
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$$
 then find $A^2 - 5A + 6I$.

Watch Video Solution

46. If
$$A=egin{bmatrix}1&0&2\0&2&1\2&0&3\end{bmatrix}$$
 , prove that $A^3-6A^2+7A+2I=0$

47. If
$$(A=egin{bmatrix} 3 & -2 \ 4 & -2 \end{bmatrix}$$
), find K such that $(A^2=KA-2I_2)$.

48. If
$$A=egin{bmatrix}0&-rac{ anlpha}{2}\\rac{ anlpha}{2}&0\end{bmatrix}$$
 and I is the identity matrix of order 2, show that $I+A=(I-A)egin{bmatrix}\coslpha&-\sinlpha\\\sinlpha&\coslpha\end{bmatrix}$

49. A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs.30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of: Rs.1800

50. A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs.30,000 among

the two types of bonds. If the trust fund must obtain an annual total interest of: Rs.2000

51. The book shop of a particular school has 10 dozen Chemistry books, 8 dozen Physics books, 10 dozen Economics books. The selling prices are Rs 80, Rs 60 and Rs 40 each respectively. Find rhe total amount the book-shop will receive from selling all the books, using matrix algebra.

52. Assume X, Y, Z, W and P are matrices of order $2 \times n, 3 \times k, 2 \times p, n \times 3$ and $p \times k$ respectively. The restriction on n, k and p so that PY + WY will be defined are:

A.
$$k = 3, p = n$$

B. k is arbitrary,
$$p = 2$$

C. p is arbitrary,
$$k = 3$$

D.
$$k = 2, p = 3$$

Answer:

Watch Video Solution

53. Assume X, Y, Z, W and P are matrices of order $2\times n, 3\times k, 2\times p, n\times 3$ and $p\times k$ respectively.If n = p, then the order of the matrix 7X-5Z is:

A.
$$p imes 2$$

B.
$$2 imes n$$

C.
$$n imes 3$$

Answer:

Watch Video Solution

54. Find the transpose of the following matrix: $\begin{vmatrix} 0 \\ \frac{1}{2} \\ -1 \end{vmatrix}$

55. Find the transpose of the following matrix : $\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$

56. Find the transpose of the following matrix:
$$\begin{bmatrix} -1 & 3 & 0 \\ \sqrt{3} & 5 & 6 \\ 2 & 3 & -1 \end{bmatrix}$$

57. If
$$A=\begin{bmatrix} -1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1 \end{bmatrix}$$
 and $B=\begin{bmatrix} -4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1 \end{bmatrix}$, then verify that $(A+B)'=A'+B'$

58. If
$$A=\begin{bmatrix} -1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1 \end{bmatrix}$$
 and $B=\begin{bmatrix} -4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1 \end{bmatrix}$, then verify that $(A-B)'=A'-B'$

59. If A' = [[3,4],[-1,2],[0,1]] and B = [[-1,2,3],[1,2,3]]

, thenver if $yt^{(A+B)'} = A' + B'$

60. If
$$A'=\begin{bmatrix}3&4\\-1&2\\0&1\end{bmatrix}$$
 and $B=\begin{bmatrix}-1&2&3\\1&2&3\end{bmatrix}$, then verify that $(A-B)'=A'-B'$

61. If
$$A=\begin{bmatrix} -2 & 3 \\ 1 & 2 \end{bmatrix}$$
 and $B=\begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}$, then find $(A+2B)$ '

62. For the matrices A and B, verify that (AB)'=B'A', where

$$A = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix}, B = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}$$

63. For the matrices A and B, verify that $(AB)^{\,\prime}=B^{\,\prime}A^{\,\prime}$, where

$$A = egin{bmatrix} 0 \ 1 \ 2 \end{bmatrix}, B = egin{bmatrix} 1 & 5 & 7 \end{bmatrix}$$

64. If
$$A=egin{bmatrix}\coslpha&\sinlpha\ -\sinlpha&\coslpha\end{bmatrix}$$
 , then verify that $A\,'A=I$

65. If
$$A=egin{bmatrix} \sin lpha & \cos lpha \ -\cos lpha & \sin lpha \end{bmatrix}$$
 , then verify that A ' $A=I$

66. Show that the matrix $A=\begin{bmatrix}1&-1&5\\-1&2&1\\5&1&3\end{bmatrix}$ is a symmetric matrix.

67. Show that the matrix $A=\begin{bmatrix}0&1&-1\\-1&0&1\\1&-1&0\end{bmatrix}$ is a skew symmetric matrix.

68. For the matrix $A=\begin{pmatrix} 1 & 5 \\ 6 & 7 \end{pmatrix}$, verify that : A + A' is a Symmetric Matrix

69. For the matrix
$$A=\begin{pmatrix} 1 & 5 \\ 6 & 7 \end{pmatrix}$$
 , verify that : A - A' is a Skew-Symmetric Matrix

70. Find 1/2 (A + A') and (A-A')whenA = [[0,a,b],[-a,0,c],[-b,-c,0]]

71. Express the following matrices as the sum of a symmetric and a skew symmetric matrix: $\begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}$

72. Express the following matrices as the sum of a symmetric

and a skew symmetric matrix: : $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$

73. Express the following matrices as the sum of a symmetric

and a skew symmetric matrix: $\begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{bmatrix}$

74. Express the following matrices as the sum of a symmetric

and a skew symmetric matrix: : $\begin{bmatrix} 1 & 5 \\ -1 & 2 \end{bmatrix}$

Watch Video Solution

75. If A and B are symmetric matrices of same order then

AB - BA is a :

- A. Skew symmetric matrix
- B. Symmetric matrix
- C. Zero matrix
- D. Identity matrix

Answer:

76. If $A=egin{bmatrix}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}$ and A+A'=I, then the value

of
$$\alpha$$
 is:

A.
$$\frac{\pi}{6}$$

$$\operatorname{B.}\frac{\pi}{3}$$

C.
$$\pi$$

D.
$$3\frac{\pi}{2}$$

Answer:

Watch Video Solution

77. Using elementary transformations find the inverse of matrix

$$A = egin{bmatrix} 1 & -1 \ 2 & 3 \end{bmatrix}$$

watch video Solution

78. Using elementary transformations, find the inverse of each of the matrix, if it exists: $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$

Watch Video Solution

79. Using elementary transformations, find the inverse of each of the matrix, if it exists: $\begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}$

Watch Video Solution

80. Using elementary transformations, find the inverse of each of the matrix, if it exists: $\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$

81. Using elementary transformations, find the inverse of each of the matrix, if it exists: $\begin{vmatrix} 2 & 1 \\ 7 & 4 \end{vmatrix}$

Watch Video Solution

82. Using elementary transformations, find the inverse of each of the matrix, if it exists: $\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$

Watch Video Solution

83. Using elementary transformations, find the inverse of each of the matrix, if it exists: $\begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$

84. Using elementary transformations, find the inverse of each of the matrix, if it exists: $\begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}$

85. Using elementary transformations, find the inverse of each of the matrix, if it exists: $\begin{bmatrix} 3 & 10 \\ 2 & 7 \end{bmatrix}$

86. By using elementary transformations, find the inverse of the $\mathsf{matrix}: A = [[3,\ -1][\ -4,2]]$

87. By using elementary transformations, find the inverse of the matrix : $A = [[2, \ -6][1, \ -2]]$

88. Using elementary transformations, find the inverse of each of the matrix, if it exists: $\begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix}$

89. Using elementary transformations find the inverse of matrix

$$A = \left[egin{array}{cc} 2 & -3 \ -1 & 2 \end{array}
ight]$$

90. Using elementary transformations, find the inverse of each of the matrix, if it exists: $\begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$

Watch Video Solution

91. Using elementary transformations, find the inverse of each of the matrix, if it exists: $\begin{vmatrix} 2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2 \end{vmatrix}$

92. Using elementary transformations find the inverse of the

matrix.
$$\begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0 \end{bmatrix}$$

93. Matrices A and B will be inverse of each other only if:

$$A. AB = BA$$

$$B.AB = BA = O$$

$$C. AB = 0, BA = I$$

D.
$$AB = BA = I$$

Answer:

Watch Video Solution

94. Let $A=egin{bmatrix}0&1\\0&0\end{bmatrix}$, show that $(aI+bA)^n=a^nI+na^{n-1}bA$, where I is the identity matrix of order 2 and $n\in N$

95. If
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
, prove that

Watch Video Solution

97. If A and B are symmetric matrices, prove that AB – BA is a skew symmetric matrix

98. Show that the matrix B'AB) is symmetric or skew symmetric according as A is symmetric or skew symmetric.

Watch Video Solution

99. Find the values of x, y, z if the matrix $A=\begin{bmatrix} 0&zy&z\\x&y&-z\\x&-y&z\end{bmatrix}$ satisfy the equation A ' A=I

Watch Video Solution

100. For what values of x: $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ x \end{bmatrix} = O$

101. If
$$A=\left[egin{array}{cc} 3 & 1 \ -1 & 2 \end{array}
ight]$$
 , show that $A^2-5A+7I=O$

102. ਜੇਕਰ
$$\begin{bmatrix} x & -5 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = O$$
 ਹੈ ਤਾਂ x ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ।

103. ਮੈਟ੍ਰਿਕਸ X ਪਤਾ ਕਰੋ ਜੇਕਰ
$$Xegin{bmatrix}1&2&3\\4&5&6\end{bmatrix}=egin{bmatrix}-7&-8&-9\\2&4&6\end{bmatrix}$$
 ਹੈ।

104. f A and B are square matrices of the same order such that AB = BA, then prove by induction that $AB^n = B^nA$ Further, prove that $(AB)^n=A^nB^n$ for all $n\in N$

Watch Video Solution

105. If
$$A=\left[egin{array}{cc} lpha & eta \\ \gamma & -lpha \end{array}
ight]$$
 is such that $A^2=I$, then:

A.
$$I+lpha^2+eta\gamma=0$$

B.
$$I - \alpha^2 + \beta \gamma = 0$$

C.
$$I-lpha^2-eta\gamma=0$$

D.
$$I+lpha^2-eta\gamma=0$$

Answer:

106. If the matrix A is both symmetric and skew symmetric, then :

A. A is a diagonal matrix

B. A is a zero matrix

C. A is a square matrix

D. None of these

Answer:

Watch Video Solution

107. If A is square matrix such that $A^2=A$,then $(I+A)^3-7A$ is equal to:

- A. A
- B. I-A
- C. I
- D. 3A

Answer:

