

MATHS

BOOKS - PSEB

RELATIONS AND FUNCTIONS

Example

1. Let A be the set of all students of a boys school. Show that the relation R in A given by $R = \{(a,b) : a \text{ is sister of } b\}$ is the empty relation and $R' = \{(a, b) : the difference between heights$ $of a and b is less than 3 meters} is the universal relation.$

2. Let T be the set of all triangles in a plane with R a relation in T given by : $R = \{(T_1, T_2) : T_1 \text{ is congruent to T_2}\}$. Show that R is an equivalence relation.

3. Let a relation $R = \{(L_1, L_2) : L_1 \text{ is perpendicular to } L_2\}$, be defined on the set of all lines L in a plane. Show that R is symmetric metric but neither reflexive nor transitive.

4. Show that the relation R in the set $\{1, 2, 3\}$ given by R = $\{(1, 1),$

(2, 2), (3, 3), (1, 2), (2, 3)} is reflexive but neither symmetric nor

transitive.

5. Show that the relation R in the set Z of integers given by R =

 $\{(a, b) : 2 \text{ divides } a - b\}$ is an equivalence relation.

Watch Video Solution

6. Let R be the relation defined in the set A = $\{1, 2, 3, 4, 5, 6, 7\}$ by R = $\{(a, b) : both a and b are either odd or even\}$. Show that R is an equivalence relation. Further, show that all the elements of the subset $\{1, 3, 5, 7\}$ are related to each other and all the elements of the subset $\{2, 4, 6\}$ are related to each other, but no element of the subset $\{1, 3, 5, 7\}$ is related to any element of the subset $\{2, 4, 6\}$. 7. Let A be the set of all 50 students of class XII in a school. Let

 $f\!:\!A o N$ be the function defined by : `f (x) = Roll number of

the student x. Prove that 'f' is one-one but not onto.

Solution

8. Show that the function $f\colon N o N$ given by f(x)=2x is

one-one but not onto.

9. Prove that the function $f\!:\!R o R$ given by f(x)=2x is

one-one and onto.

10. Show that the function: f:N o N given by f(1)=f(2)=1 and f(x)=x-1 , for every x>2 is onto but not one-one.

Watch Video Solution

11. Show that function $f\!:\!R o R$ given by $f(x)=x^2$ is neither

one-one nor onto.

Watch Video Solution

12. Show that
$$f:N o N$$
 , given by :
 $f(x)= egin{cases} x+1 & ext{if } xisodd \\ x-1 & ext{if } xiseven \end{cases}$ is both one-one and

onto.

13. Show that an onto function $f \colon \{1,2,3\} o \{1,2,3\}$ is

always one-one.

Watch Video Solution

14. Show that a one-one function $f \colon \{1,2,3\} o \{1,2,3\}$ must

be onto.

15. Let
$$f: (2, 3, 4, 5) \to (3, 4, 5, 9)$$
 and
 $g = (3, 4, 5, 9) \to (7, 11, 15)$ be functions defined as:
 $f(2) = 3, f(3) = 4, f(4) = f(5) = 5$ and $g(3) = g(4) = 7$,
and $g(5) = g(11) = 11$. Find gof

16. Show that if $f \colon A o B$ and $g \colon B o C$ are one-one, then

 $gof \colon A o C$ is also one-one.

Watch Video Solution

17. Consider functions f and g such that composite gof is

defined and is one-one. Are f and g both necessarily one-one.

Watch Video Solution

18. Are f and g both necessarily onto, if gof is onto?

19. Let $f: \{1, 2, 3\} \rightarrow \{a, b, c\}$ be one-one and onto function given by f(1) = a, f(2) = b and f(3) = c. Show that there exists a function $g: \{a, b, c\} \rightarrow \{1, 2, 3\}$ such that $gof = I_x$ and $fog = l_y$ where $X = \{1, 2, 3\}$ and $Y = \{a, b, c\}$.

Watch Video Solution

20. Let $f:N
ightarrow Y, beafunction def \in edasf(x)=4x+3,$

where, $Y = \{y \in N \colon y = 4x + 3 ext{ for some } x \in N \}$. Show that f

is invertible. Find the inverse.

Watch Video Solution

21. Let $Y = \left\{n^2 \colon n \in N
ight\}$ sub NConsiderf : N rarr Yasf (n) =

n^2` Show that f is invertible. Find the inverse of f.

22. Let f:N o R, be a function defined as $f(x)=4x^2+12x+15,\ orall x\in N$, show that f:N o S where S, is range of f is invertible.

23. Consider f:N o N, g:N o N and h:N o R defined as $f(x)=2x, \ g(y)=3y+4$ and $h(z)=\sin z, \ orall x, y$ and z Show that ho(gof)=(hog)of.

Watch Video Solution

24. Let $f \colon X \to Y$ and $g \colon Y \to Z$ be two invertible functions.

Then gof is also invertible with $\left(gof\right)^{-}1=f^{-}1ofg^{-}1$

26. Let $S = \{1, 2, 3\}$ Determine whether the functions $f: S \to S$ defined as below have inverses. Find f^-1 , , if it exists: $f = \{(1, 3), (3, 2), (2, 1)\}$

27. Show that addition, subtraction and multiplication are binary operations on R, but division is not a binary operation on R. Further, show that division is a binary operation on the set R of nonzero real numbers.

Watch Video Solution

28. Show that subtraction and division are not binary operations on N.

Watch Video Solution

29. Show that $\ \cdot : R imes R o R, given by (a,b) o a + 4b^2$ is a

binary operation.

30. Let P be the set of all subsets of a given set X. Show that

 $\cup: P imes P o P, given by(A, B) o A \cup B$ and $\cap: P imes P o P, given by(A, B) o A \cap B$ are binary

operations on the set P.

Watch Video Solution

31. Show that $\vee : R \times R \to R$ given by $(a, b) \to \max . [a, b)$ and $\wedge : R \times R \to R$ given by $(a, b) \to \min (a, b)$ are binary operations.

32. Show that $+: R \times R \to R$ and $\times : R \times R \to R$ are commutative binary operations, but $\div R \times R \to R$ and $\div : R \times R \to R$ are not commutative.

33. Show that $\ \cdot : R imes R o R$ defined by $a \cdot b = a + 2b$ is not

commutative.

34. Show that addition and multiplication are associative binary operation on R. But subtraction is not associative on R. Division is not associative on R_{*} .

35. Show that $\ \cdot : R imes R o R$ defined by $a \cdot b = a + 2b$ is not commutative.

Watch Video Solution

36. Show that zero is the identity for addition on R and 1 is the identity for multiplication on R. But there is no identity element for the operations $-: R \times R \to R$ and $\div R_{+} \times R_{-} \to R_{-}$

Watch Video Solution

37. Show that -a is the inverse of a for the addition operation ' + ' on R and $\frac{1}{a}$ is the inverse of $a \neq 0$ for the multiplication operation ' × ' on R.

38. Show that -a is not the inverse of $a \in N$ for the addition operation ' + ' on N and $\frac{1}{a}$ is not the inverse of $a \in N$ for multiplication operation ' \times 'on N, for $a \neq 1$.

Watch Video Solution

39. If R_1 and R_2 are equivalence relations in a set A, show that

 $R_1\cap R_2$ is also an equivalence relation

40. Let R be a relation on the set A of ordered pairs of positive integers defined by R, (x, y)R(u, v), if and only if xv = yu.

Show that R is an equivalence relation.

Watch Video Solution

41. Let $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Let R_1 be a relation in X given by $R_1 = \{(x, y) : x - y \text{ is divisible by } 3\}$ and R_2 bea $\neg herrelationonXgivenbyR_2 = \{(x, y): \{x, y\} \text{ sub } \{1, 4, 7\} \text{ or } \{x, y\} \text{ sub } \{2, 5, 8\}$ or $\{(x, y\} \text{ sub } \{3, 6, 9\}$. Showt $R_1 = R_2$.

Watch Video Solution

42. Let $f: X \to Y$ be a function. Define a relation R in X given by $R = \{(a, b): f(a) = f(b)\}$ Examine whether R is an equivalence relation or not. **43.** Determine whether the following binary operation on the set N is associative and commutative a*b=1 $orall a,b\in N.$

45. Find the number of all one-one functions from set $A = \{1, 2, 3\}$ to itself.

46. Let $A = \{1, 2, 3\}$. Then show that the number of relations containing (1, 2) and (2, 3) which are reflexive and transitive but not symmetric is three.

Watch Video Solution

47. Show that the number of equivalence relation in the set {1,

2, 3} containing (1, 2) and (2, 1) is two.

48. Show that the number of binary operations on {1, 2} having

1 as identity and having 2 as the inverse of 2 is exactly one.

49. Consider the identity function $I_N:N o N$ defined as $I_N(x)=x,\ orall x\in N$ Show that although I_N is onto but $I_N+I_N:N o N$ defined as : $(I_N+I_N)(x)=I_N(x)+I_N(x)=x+x=2x$ is not onto.

Watch Video Solution

50. Consider a function $f: \left[0, \frac{\pi}{2}\right] \to R$ given by $f(x) = \sin x$ and $g: \left[0, \frac{\pi}{2}\right] \to R$ given by $g(x) = \cos x$. Show that f and gare one-one, but f + g is not one-one.

1. Determine whether the following relations are reflexive, symmetric and transitive: Relation R in the set $A=\{1,2,3,...,13,14\}$ defined as $R=\{(x,y): 3x-y=0\}$

Watch Video Solution

2. Determine whether the following relations are reflexive, symmetric and transitive:Relation R in the set N of natural numbers defined as $R=\{(x,y):y=x+5$ ਅਤੇ $x<4\}$

Watch Video Solution

3. Determine whether the following relations are reflexive, symmetric and transitive:Relation R in the set $A = \{1, 2, 3, 4, 5, 6\}$ as $R = \{(x, y) : yis \div isib \le byx\}$

4. Prove that the following relation R in Z of integers is an

equivalence relation : R = [(x, y) : x - y is an integer}

Watch Video Solution

5. Determine whether the following relations are reflexive, symmetric and transitive: Relation R in the set A of human beings in a town at a particular time given by, $R = \{(x, y) : x \text{ and } y \}$ work at the same place

6. Determine whether the following relations are reflexive, symmetric and transitive: Relation R in the set A of human beings in a town at a particular time given by, $R = \{(x, y) : x \text{ and } y \}$ live in the same locality

Watch Video Solution

7. Determine whether the following relations are reflexive, symmetric and transitive:Relation R in the set A of human beings in a town at a particular time given by, $R = \{(x, y) : x \text{ is} exactly 7 cm taller than y\}$

8. Determine whether the following relations are reflexive, symmetric and transitive: Relation R in the set A of human beings in a town at a particular time given by, $R = \{(x, y) : xisw \text{ if } eofy\}$

Watch Video Solution

9. Determine whether the following relations are reflexive, symmetric and transitive:Relation R in the set A of human beings in a town at a particular time given by, $R = \{(x, y): xisfatherofy\}$

10. Show that the relation R in the set R of real numbers, defined as $R = \{(a, b) : a \le b^2\}$, is neither reflexive nor symmetric nor transitive.

Watch Video Solution

11. Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6}

as $R = \{(a, b) : b = a + 1\}$ is reflexive, symmetric or transitive.

12. Show that the relation R in the set R of real numbers defined as $R = ((a, b) : a \le b)$, is reflexive and transitive but not symmetric.

13. Check whether the relation R in R defined by R = {(a, b) : a le

b^3} is reflexive, symmetric or transitive.

14. Show that the relation R in the set {1, 2, 3} given by $R = \{(1, 2), (2, 1)\}$ is symmetric but neither reflexive nor transitive.

Watch Video Solution

15. Show that the relation R in the set A of all the books in a

library of a college, given by

 $R = \{(x,y) : x \hspace{0.1 cm} ext{and} \hspace{0.1 cm} yhave same
umber of pa \geq s \} \hspace{0.1 cm} ext{is} \hspace{0.1 cm} ext{an}$

equivalence relation.

16. Show that the relation in the set $A = \{1, 2, 3, 4, 5\}$, given by : $R = \{(a, b) : Ia - bIiseven\}$ is an equivalence relation. Show that all the elements of $\{1, 3, 5\}$ are related to each other and all the elements of $\{2, 4\}$ are related to each other. But no element of $\{1, 3, 5\}$ is related to any element of $\{2, 4\}$.

17. Show that the relation R in the set : $R = \{x : x \in Z, 0 \le x \le 12\}, given by : R = \{(a, b) : |a - b|` is a$ multiple of 4} is an equivalence relation. 18. Show that each of the relation R in the set $A = \{x \in Z : 0 \le x \le 12\}$, given by: $R = \{(a, b) : a = b\}$, is an equivalence relation. Find the set of all elements related to 1 in each case.

Watch Video Solution

19. Give an example of a relation. Which is: Symmetric but neither reflexive nor transitive.

20. Give an example of a relation. Which is: Transitive but neither reflexive nor symmetric.

22. Give an example of a relation which is reflexive and transitive but not symmetric.

23. Give an example of a relation which is symmetric and transitive but not reflexive.

24. Show that the relation R in the set A of points in a plane given by R = {(P, Q) : distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all points related to a point $P \neq (0, 0)$ is the circle passing through P with origin as centre.

25. Show that the relation R, defined by the set A of all triangles as : $R = \{(T_1, T_2) = T_1 \text{ is similar to T_2}\}$ is an equivalence relation. Consider three right-angled triangles T_1 with sides 3, 4, 5, T_2 with sides 5, 12, 1 3 and T_3 with sides 6, 8, 10.

Watch Video Solution

26. Show that the relation R defined in the set A of all polygons as $R = \{(P1, P2): P1 \text{ and } P2 \text{ have same number of sides}\}$, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?

27. Let T be the set of all triangles in a plane with R a relation in T given by : $R = \{(T_1, T_2) : T_1 \text{ is congruent to T_2}\}$. Show that R is an equivalence relation.

28. Let R be the relation in the set {1, 2, 3, 4} given by R = {(1, 2),

(2, 2), (1, 1), (4,4), (1, 3), (3, 3), (3, 2)}. Choose the correct answer.

A. R is reflexive and symmetric but not transitive.

B. R is reflexive and transitive but not symmetric.

C. R is symmetric and transitive but not reflexive.

D. R is an equivalence relation.

Answer:

29. Let R be the relation in the set N given by $R = \{(a, b) : a = b-2, b > 6\}$. Choose the correct answer: A. $(2, 4) \in R$ B. $(3, 8) \in R$ C. $(6, 8) \in R$ D. $(8, 7) \in R$

Answer:

30. Show that the function $f:R_{+} \to R_{+}$ defined by $f(x) = \frac{1}{x}$ is one-one and onto, where R_{+} is the set of all non-zero real

numbers. Is the result true, if the domain R_{\perp} is replaced by N

with co-domain being same as $R_{.}$?

31. Check the injectivity and surjectivity of the following function: $f\colon N o N$ given by $f(x)=x^2$

Watch Video Solution

32. Check the injectivity and surjectivity of the following

function: $f\!:\!Z o Z$ given by $f(x)=x^2$

33. Check the injectivity and surjectivity of the following function: $f\!:\!R o R$ given by $f(x)=x^2$

34. Check the injectivity and surjectivity of the following function: $f\colon N o N$ given by $f(x)=x^3$

35. Check the injectivity and surjectivity of the following function: $f\colon Z o Z$ given by $f(x)=x^3$

36. Check the injectivity and surjectivity of the following function: $f\!:\!R o R$ given by $f(x)=x^3$

37. Prove that greatest integer function $f: R \to R$, given by f(x) = [x], is neither one-one nor onto where [x] denotes the greatest integer less than or equal to x.

38. Prove that Modulus Function $f: R \to R$ given by : f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive and |x| is - x, if x is negative.

39. Show that the Signum Function
$$f: R \to Rgivenbyf(x) = egin{cases} 1 & ext{if } x > 0 \\ 0 & ext{if } x = 0 \\ -1 & ext{if } x < 0 \end{cases}$$
, is neither

one-one nor onto.

Watch Video Solution

40. Let $A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}$ and

 $f = \{(1,4),(2,5),(3,6)\}$ be a function from A to B. Show that

f is one-one.

41. In the following case, state whether the function is one-one,

onto or bijective. Justify your answer: $f\!:\!R o R$ defined by

f(x) = 3 - 4x

A.

В. С.

D.

Answer:

42. In the following case, state whether the function is one-one, onto or bijective. Justify your answer: $f\!:\!R o R$ defined by $f(x)=1+x^2$

43. Let
$$f: N \to N$$
 be defined by,
 $f(n) = \begin{cases} rac{n+1}{2} & ext{if n isodd} \\ rac{n}{2} & ext{if n iseven} \end{cases}$ for all $n \in N$. State

whether the function f is bijective. Justify your answer.

44. Let $A = R - \{3\}$ and $B = R - \{1\}$. Consider the function

 $f{:}\,A{-}>B.$ defined by $f(x)=rac{x-2}{x-3}$ ls f one one or Onto?

Justify your answer

Watch Video Solution

45. Let $f \colon R o R$ be defined as f(x) = 3x Choose the correct

answer.

A. f is one-one onto

B. f is many-one onto

C. f is one-one but not onto

D. f is neither one-one nor onto.

Answer:

O Watch Video Solution

46. Let
$$f: (2, 3, 4, 5) \to (3, 4, 5, 9)$$
 and
 $g = (3, 4, 5, 9) \to (7, 11, 15)$ be functions defined as:
 $f(2) = 3, f(3) = 4, f(4) = f(5) = 5$ and $g(3) = g(4) = 7$,
and $g(5) = g(11) = 11$. Find gof

47. Let f, g and h be functions from R to R. Show that (f + g)oh = foh + goh (f, g)oh = (foh). (goh)

Watch Video Solution

48. Find gof and fog, if f(x) = |x| and g(x) = |5x - 2|

Watch Video Solution

49. Find gof and fog, if
$$f(x) = 8x^3$$
 and $g(x) = x^{rac{1}{3}}$

50. If
$$f(x)=rac{4x-3}{6x-4}$$
 , $x
eqrac{2}{3}$ show that $f\circ f(x)=x$ for all $x
eqrac{2}{3}$.what is inverse of f?

51. State with reason whether following functions have inverse:

 $f\!:\!\{1,2,3,4\}
ightarrow\{10\}$ with

$$f = \{(1, 10), (2, 10), (3, 10), (4, 10)\}$$

Watch Video Solution

52. State with reason whether following functions have inverse:

$$g \colon \{5, 6, 7, 8\} o \{1, 2, 3, 4\}$$
 with

```
g=\{(5,4),(6,3),(7,4),(8,2)\}
```

53. State with reason whether following functions have inverse:

$$h\!:\!\{2,3,4,5\}
ightarrow\{7,9,11,13\}$$
 with $f=\{(2,7),(3,9),(4,11),(5,13)\}$

Watch Video Solution

54. Consider $f: R \rightarrow R$ given by f(x) = 4x + 3. Show that f is

invertible. Find the inverse of f.

Watch Video Solution

55. Consider $f: R_+ \to [4, \infty)$ given by $f(x) = x^2 + 4$ Show that f is invertible with the inverse $f^-1, offgivenby f^-1(y) = \sqrt{y-4}$, where R_+ is the set of all non-negative real numbers.

56. Consider

 $f \colon \{1, 2, 3\} \to \{a, b, c\}, given by f(1) = a, f(2) = b \text{ and } f(3) = c$

. Find $f^{-}1$ and show that $(f^{-}1)^{-}1=f$

Watch Video Solution

57. Let $f\colon X o Y$ be an invertible function. Show that the inverse of f^-1 is f, i.e. $(f^-1)^-1=f$

Watch Video Solution

58. If $f\!:\!R o R, begiven by f(x)=\left(3-x^3
ight)^{rac{1}{3}}$, then fof(x) is :

A.
$$rac{x^1}{3}$$

 $\mathsf{B.}\,x^3$

C. x

D.
$$\left(3-x^3
ight)$$

Answer:

59. Let
$$f: R - \left\{\frac{4}{3}\right\} \to R$$
 be a function defined as $f(x) = 4\frac{x}{3x+4}$ The inverse of f is the $(Map)g$: Range $f \to R - \left\{\frac{4}{3}\right\}$, given by :

A.
$$g(y)=3rac{y}{3+4y}$$

B. $g(y)=4rac{y}{4-3y}$
C. $g(y)=4rac{y}{3-4y}$

$$\mathsf{D}.\,g(y)=3\frac{y}{4-3y}$$

Answer:

Watch Video Solution

60. Determine whether or not each of the definition of "*" given below gives a binary operation. In the event that "*" is not a binary operation, give justification for this: $OnZ^+, def \in e \cdot bya \cdot b = a - b$

Watch Video Solution

61. Determine whether or not each of the definition of '*' given below gives a binary operation. In the event that '*' is not a

 $OnZ^{\,+}\,, def \in e$ ' \cdot 'bya $*b = ab^2$

63. Determine whether or not each of the definition of '*' given below gives a binary operation. In the event that '*' is not a binary operation, give justification for this: $OnZ^+, def \in e' \cdot 'bya * b = |a - b|$

64. Determine whether or not each of the definition of '*' given below gives a binary operation. In the event that '*' is not a binary operation, give justification for this: $OnZ^+, def \in e' \cdot 'bya * b = a$

Watch Video Solution

65. For operation * defined below, determine whether * is

binary, commutative or associative: On Z, define $a \cdot b = a - b$

66. For operation * defined below, determine whether * is binary, commutative or associative: On Q, define $a \cdot b = ab + 1$

68. For operation * defined below, determine whether * is binary, commutative or associative: On Z^+ , define $a \cdot b = 2^{ab}$

69. For operation * defined below, determine whether * is binary, commutative or associative: On Z^+ , define $a \cdot b = a^b$

70. For operation * defined below, determine whether * is binary, commutative or associative: On $R - \{-1\}$, define $a \cdot b = \frac{a}{b+1}$

Watch Video Solution

71. Consider the binary operation \land on the set $\{1, 2, 3, 4, 5\}$ defined by $a \land b = \min \{a, b\}$ Write the operation table of the operation \land .

72. Consider a binary operation * on the set $\{1, 2, 3, 4, 5\}$

given by the following multiplication table

*	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1
3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	1	5

commutative?

Watch Video Solution

73. Consider a binary operation * on the set $\{1, 2, 3, 4, 5\}$ given by the following multiplication table

ls

*

*	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1
3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	1	5

Compute (2*3)*(4*5)

Watch Video Solution

74. Let * be the binary operation on N given by $\cdot a \cdot b = L. C. M. of a$ and b. Find : $5 \cdot 7, 20 \cdot 16$

:

75. Let * be the binary operation on N given by $\cdot a \cdot b = L. C. M. of a$ and b. Find : Is * commutative?

76. Let * be the binary operation on N given by $\cdot a \cdot b = L. C. M. of a$ and b. Find : Is * associative?

77. Let
$$*$$
 be the binary operation on N given by $\cdot a \cdot b = L. C. M. of a$ and b . Find : Find the identity of $*$ in N

78. Let * be the binary operation on N given by $\cdot a \cdot b = L. C. M. of a$ and b. Find : Which elements of N are invertible for the operation *?

Watch Video Solution

79. Is * defined on the set $\{1, 2, 3, 4, 5\}$ by $a \cdot b = L. C. M. of a$ and b a binary operation? Justify your answer.

Watch Video Solution

80. Let * be the binary operation on N defined by $a \cdot b = H. C. F. of a$ and b. Is * commutative?

81. Let * be the binary operation on N defined by $a \cdot b = H. C. F. of a$ and b. Is * associative?

82. Let * be the binary operation on N defined by $a \cdot b = H. C. F. of a$ and b. Does there exist identity for this binary operation on N?

Watch Video Solution

83. Let * be a binary operation on the set Q of rational numbers as follows: $a \cdot b = a - b$ find is it commutative?

84. Let * be a binary operation on the set Q of rational numbers as follows: $a \cdot b = a - b$ find is it associative?

Watch Video Solution		

85. Let * be a binary operation on the set Q of rational numbers as follows: $a \cdot b = a2 - b2$ find is it commutative?

86. Let * be a binary operation on the set Q of rational numbers as follows: $a \cdot b = a2 - b2$ find is it associative?

87. Let * be a binary operation on the set Q of rational numbers as follows: $a \cdot b = a + ab$ find is it commutative?

Watch Video Solution	
-----------------------------	--

88. Let * be a binary operation on the set Q of rational numbers as follows: $a \cdot b = a + ab$ find is it associative?

Watch Video Solution

89. Let * be a binary operation on the set Q of rational

numbers as follows: $a \cdot b = \left(a - b
ight)^2$ find is it commutative?

90. Let * be a binary operation on the set Q of rational numbers as follows: $a \cdot b = (a - b)^2$ find is it associative?

Watch Video Solution

91. Let * be a binary operation on the set Q of rational numbers as follows: $a \cdot b = \frac{a^b}{4}$ find is it commutative?

92. Let * be a binary operation on the set Q of rational numbers as follows: $a \cdot b = \frac{a^b}{4}$ find is it associative?

93. Let * be a binary operation on the set Q of rational numbers as follows: $a \cdot b = (ab)^2$ find is it commutative?

Watch Video Solution

94. Let * be a binary operation on the set Q of rational numbers as follows: $a \cdot b = (ab)^2$ find is it associative?

Watch Video Solution

95. Let $A = N \times N$ and * be the binary operation on A defined by $(a, b) \cdot (c, d) = (a + c, b + d)$ Show that * is commutative and associative. Find the identity element for * on A, if any.

96. State whether the following statement is true or false. Justify:For an arbitrary binary operation \cdot on a set N, $a \cdot a = a, f$ or $alla \in N$

Watch Video Solution

97. State whether the following statement is true or false. Justify: If * is a commutative binary operation on N, then $a \cdot (b \cdot c) = (c \cdot b) \cdot a$

98. Consider a binary operation * on N defined as $a \cdot b = a^3 + b^3$ Choose the correct answer: Is * neither

99. Consider a binary operation * on N defined as $a \cdot b = a^3 + b^3$ Choose the correct answer: Is * commutative but not associative?

Watch Video Solution

100. Consider a binary operation * on N defined as $a \cdot b = a^3 + b^3$ Choose the correct answer: Is * neither commutative nor associative?

101. Let $f\!:\!R o R$, be defined as f(x)=10x+7. Find the function $g\!:\!R o R$ such that $gof=fog=1_R$

Watch Video Solution

102. Let $f: W \to W$, be defined as f(n) = n-1, if n is odd and f(n) = n + 1, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers.

Watch Video Solution

103. If $f\!:\!R o R$ is defined by $f(x)=x^2\!\!-\!3x+2$, find f(f(x))

104. Show that the function $f\colon R o \{x\in R\colon -1< x<1\}$ defined by $f(x)=rac{x}{1+|x|}, x\in R$ is one one and onto function.

Watch Video Solution

105. Show that the function $f\!:\!R o R$ given by $f(x)=x^3$ is

injective.

Watch Video Solution

106. Give examples of two functions $f\!:\!N o Z$ and $g\!:\!Z o Z$

such that gof is injective but g is not injective.

107. Give examples of two functions $f\!:\!N o N$ and $g\!:\!N o N$

such that gof is onto but f is not onto.

108. Given a non empty set X, consider P(X) which is the set of all subsets of X. Define the relation R in P(X) as follows: For subsets A, B in P(X), ARB if and only if $A \subset B$. Is R an equivalence relation on P(X)? Justify your answer.

Watch Video Solution

109. Find the number of all one-one functions from set $A=\{1,2,3\}$ to itself.

110. Let $S = \{a, b, c\}$ and $T = \{1, 2, 3\}$. Find F^-1 of the following functions F from S to T, if it exists: $F = \{(a, 3), (b, 2), (c, 1)\}$

Watch Video Solution

111. Let $S = \{a, b, c\}$ and $T = \{1, 2, 3\}$. Find F^-1 of the following functions F from S to T, if it exists: $F = \{(a, 2), (b, 1), (c, 1)\}$

112. Consider the binary operations $\cdot: R imes R o R$ and o: R imes R o R defined as $a \cdot b = |a - b|$ and

 $aob = a, \forall a, b \in R$ Show that ***** is commutative but not associative, o is associative but not commutative. Further, show that $\forall a, b, c \in R, a \cdot (boc) = (a \cdot b)o(a \cdot c)$. [If it is so, we say that the operation ***** distributes over the operation o]. Does o distribute over *****? Justify your answer.

Watch Video Solution

113. Given a non-empty set X, let $\cdot : P(X) \times P(X) \to P(X)$, be defined as $A \cdot B = (A - B) \cup (B - A), \forall A, B \in P(X)$.Show that the empty set ϕ is the identity for the operation * and all the elements A of P(X) are invertible with $A^-1 = A$.

114. Define a binary operation * on the set $\{0, 1, 2, 3, 4, 5\}$ as $a \cdot b = \{a + b, \text{ if } a + b < 6a + b - 6, \text{ if } a + b \ge 6.$ Show that zero is the identity for this operation and each element 'a' of the set is invertible with (6-a) being the inverse of a.

Watch Video Solution

115. Let $A = \{-1, 0, 1, 2\}, B = \{-4, -2, 0, 2\}$ and $f, g: A \rightarrow B$, be functions defined by $f(x) = x^2 - x, x \in A$ and g(x)=2|x-(1/2)|-1, x in A'. Are f and g equal? Justify your answer.

116. Let $A = \{1, 2, 3\}$ Then number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is :

- A. 1
- B. 2
- C. 3
- D. 4

Answer:

117. Let $A = \{1, 2, 3\}$ Then number of equivalence relations containing (1, 2) is:

A. 1

B. 2

C. 3

D. 4

Answer:

Watch Video Solution

118. Number of binary operations on the set {a, b} is :

A. 10

B. 16

C. 20

D. 8

Answer: