©゙" doubtnut India's Number 1 Education App

MATHS

BOOKS - PSEB

RELATIONS AND FUNCTIONS

Example

1. Let A be the set of all students of a boys school. Show that the relation R in A given by $R=\{(a, b)$: a is sister of $b\}$ is the empty relation and $R^{\prime}=\{(a, b)$: the difference between heights of a and b is less than 3 meters $\}$ is the universal relation.
2. Let T be the set of all triangles in a plane with R a relation in T given by : $R=\left\{\left(T_{1}, T_{2}\right): T_{1}\right.$ is congruent to $\left.T_{-} 2\right\}$. Show that R is an equivalence relation.

- Watch Video Solution

3. Let a relation $R=\left\{\left(L_{1}, L_{2}\right): L_{1}\right.$ is perpendicular to $\left.L_{2}\right\}$, be defined on the set of all lines L in a plane. Show that R is symmetric metric but neither reflexive nor transitive.

- Watch Video Solution

4. Show that the relation R in the set $\{1,2,3\}$ given by $R=\{(1,1)$,
$(2,2),(3,3),(1,2),(2,3)\}$ is reflexive but neither symmetric nor transitive.
5. Show that the relation R in the set Z of integers given by $R=$ $\{(a, b): 2$ divides $a-b\}$ is an equivalence relation.

D Watch Video Solution

6. Let R be the relation defined in the set $A=\{1,2,3,4,5,6,7\}$ by $R=\{(a, b)$: both a and b are either odd or even $\}$. Show that R is an equivalence relation. Further, show that all the elements of the subset $\{1,3,5,7\}$ are related to each other and all the elements of the subset $\{2,4,6\}$ are related to each other, but no element of the subset $\{1,3,5,7\}$ is related to any element of the subset $\{2,4,6\}$.
7. Let A be the set of all 50 students of class XII in a school. Let $f: A \rightarrow N$ be the function defined by : ${ }^{\mathrm{f}}(\mathrm{x})=$ Roll number of the student x. Prove that ' f ' is one-one but not onto.

D Watch Video Solution

8. Show that the function $f: N \rightarrow N$ given by $f(x)=2 x$ is one-one but not onto.

D Watch Video Solution

9. Prove that the function $f: R \rightarrow R$ given by $f(x)=2 x$ is one-one and onto.
10. Show that the function: $f: N \rightarrow N$ given by $f(1)=f(2)=1$ and $f(x)=x-1$, for every $x>2$ is onto but not one-one.

D Watch Video Solution

11. Show that function $f: R \rightarrow R$ given by $f(x)=x^{2}$ is neither one-one nor onto.

D Watch Video Solution

12. Show that $f: N \rightarrow N$, given by : $f(x)=\left\{\begin{array}{ll}x+1 & \text { if xisodd } \\ x-1 & \text { if xiseven }\end{array} \quad\right.$ is both one-one and onto.
13. Show that an onto function $f:\{1,2,3\} \rightarrow\{1,2,3\}$ is always one-one.

- Watch Video Solution

14. Show that a one-one function $f:\{1,2,3\} \rightarrow\{1,2,3\}$ must be onto.

D Watch Video Solution

15. Let $f:(2,3,4,5\} \rightarrow(3,4,5,9\}$
and $g=(3,4,5,9\} \rightarrow(7,11,15\}$ be functions defined as: $f(2)=3, f(3)=4, f(4)=f(5)=5$ and $g(3)=g(4)=7$, and $g(5)=g(11)=11$. Find gof
16. Show that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are one-one, then gof: $A \rightarrow C$ is also one-one.

- Watch Video Solution

17. Consider functions f and g such that composite $g o f$ is defined and is one-one. Are fand g both necessarily one-one.

- Watch Video Solution

18. Are f and g both necessarily onto, if gof is onto?

- Watch Video Solution

19. Let $f:\{1,2,3\} \rightarrow\{a, b, c\}$ be one-one and onto function given by $f(1)=a, f(2)=b$ and $f(3)=c$. Show that there exists a function $g:\{a, b, c\} \rightarrow\{1,2,3\}$ such that $g \circ f=I_{x}$ and $f o g=l_{y}$. where $X=\{1,2,3\}$ and $Y=\{a, b, c\}$.

- Watch Video Solution

20. Let $f: N \rightarrow Y$, beafunctionde $f \in \operatorname{edas} f(x)=4 x+3$, where, $Y=\{y \in N: y=4 x+3$ for some $x \in N\}$. Show that f is invertible. Find the inverse.

- Watch Video Solution

21. Let $Y=\left\{n^{2}: n \in N\right\}$ sub N Considerf : N rarr Yasf $(\mathrm{n})=$ $n^{\wedge} 2^{\wedge}$ Show that f is invertible. Find the inverse of f.
22. Let $f: N \rightarrow R$, be a function defined as $f(x)=4 x^{2}+12 x+15, \forall x \in N$, show that $f: N \rightarrow S$ where S, is range of f is invertible.

D Watch Video Solution

23. Consider $f: N \rightarrow N, g: N \rightarrow N$ and $h: N \rightarrow R$ defined as
$f(x)=2 x, \quad g(y)=3 y+4 \quad$ and $\quad h(z)=\sin z, \forall x, y$ and z Show that $h o(g o f)=(h o g) o f$.

D Watch Video Solution

24. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two invertible functions.

Then $g o f$ is also invertible with $(g o f)^{-} 1=f^{-} 1 o f g^{-} 1$

- Watch Video Solution

25. Let $S=\{1,2,3\}$ Determine whether the functions $f: S \rightarrow S$ defined as below have inverses. Find $f^{-} 1$, , if it exists: $f=\{(1,2),(2,1),(3,1)\}$

(D) Watch Video Solution

26. Let $S=\{1,2,3\}$ Determine whether the functions $f: S \rightarrow S$ defined as below have inverses. Find $f^{-} 1$, , if it exists:

$$
f=\{(1,3),(3,2),(2,1)\}
$$

- Watch Video Solution

27. Show that addition, subtraction and multiplication are binary operations on R , but division is not a binary operation on R. Further, show that division is a binary operation on the set R of nonzero real numbers.

- Watch Video Solution

28. Show that subtraction and division are not binary operations on N .

- Watch Video Solution

29. Show that $\cdot: R \times R \rightarrow R$, givenby $(a, b) \rightarrow a+4 b^{2}$ is a binary operation.
30. Let P be the set of all subsets of a given set X. Show that $\cup: P \times P \rightarrow P, \operatorname{givenby}(A, B) \rightarrow A \cup B \quad$ and $\cap: P \times P \rightarrow P, \operatorname{givenby}(A, B) \rightarrow A \cap B \quad$ are binary operations on the set P.

(D) Watch Video Solution

31. Show that $\vee: R \times R \rightarrow R$ given by $(a, b) \rightarrow \max .[a, b)$ and $\wedge: R \times R \rightarrow R$ given by $(a, b) \rightarrow \min (a, b)$ are binary operations.

- Watch Video Solution

32. Show that $+: R \times R \rightarrow R$ and $\times: R \times R \rightarrow R$ are commutative binary operations, but $\div R \times R \rightarrow R$ and $\div: R \times R \rightarrow R$ are not commutative.

D Watch Video Solution

33. Show that $\cdot: R \times R \rightarrow R$ defined by $a \cdot b=a+2 b$ is not commutative.

(D) Watch Video Solution

34. Show that addition and multiplication are associative binary operation on R. But subtraction is not associative on R. Division is not associative on R_{*}.
35. Show that $\cdot: R \times R \rightarrow R$ defined by $a \cdot b=a+2 b$ is not commutative.

- Watch Video Solution

36. Show that zero is the identity for addition on R and 1 is the identity for multiplication on R. But there is no identity element for the operations $-: R \times R \rightarrow R$ and $\div R . \times R . \rightarrow R$.

(D) Watch Video Solution

37. Show that $-a$ is the inverse of a for the addition operation
, + ' on R and $\frac{1}{a}$ is the inverse of $a \neq 0$ for the multiplication operation ' \times ' on R.
38. Show that -a is not the inverse of $a \in N$ for the addition operation ' + ' on N and $\frac{1}{a}$ is not the inverse of $a \in N$ for multiplication operation ' \times 'on N , for $a \neq 1$.

(D) Watch Video Solution

39. If R_{1} and R_{2} are equivalence relations in a set A , show that
$R_{1} \cap R_{2}$ is also an equivalence relation

- Watch Video Solution

40. Let R be a relation on the set A of ordered pairs of positive integers defined by $R,(x, y) R(u, v)$, if and only if $x v=y u$.

Show that R is an equivalence relation.

(D) Watch Video Solution

41. Let $X=\{1,2,3,4,5,6,7,8,9\}$. Let R_{1} be a relation in X
given by $R_{1}=\{(x, y): x-y$ is divisible by 3$\}$ and R_2 bea \neg herrelationonX givenby $_2=\{(\mathrm{x}, \mathrm{y}):\{\mathrm{x}, \mathrm{y}\}$ sub $\{1,4,7\}$ or $\{x, y\} \operatorname{sub}\{2,5,8\}$ or $\left\{(x, y\} \operatorname{sub}\{3,6,9\}\right.$. Showt ${ }^{\wedge}$ R_ $_{-}=$R_ 2.

- Watch Video Solution

42. Let $f: X \rightarrow Y$ be a function. Define a relation R in X given by $R=\{(a, b): f(a)=f(b)\}$ Examine whether R is an equivalence relation or not.
43. Determine whether the following binary operation on the set N is associative and commutative $a * b=1 \forall a, b \in N$.

- Watch Video Solution

44. Determine the following binary operations on the set R are associative or commutative: $a \cdot b=\frac{a+b}{2}, \forall a, b \in R$

- Watch Video Solution

45. Find the number of all one-one functions from set
$A=\{1,2,3\}$ to itself.

(D) Watch Video Solution

46. Let $A=\{1,2,3\}$. Then show that the number of relations containing (1, 2) and (2, 3) which are reflexive and transitive but not symmetric is three.

- Watch Video Solution

47. Show that the number of equivalence relation in the set $\{1$, $2,3\}$ containing $(1,2)$ and $(2,1)$ is two.

D Watch Video Solution

48. Show that the number of binary operations on $\{1,2\}$ having

1 as identity and having 2 as the inverse of 2 is exactly one.
49. Consider the identity function $I_{N}: N \rightarrow N$ defined as $I_{N}(x)=x, \forall x \in N$ Show that although I_{N} is onto but $I_{N}+I_{N}: N \rightarrow N$ defined as
$\left(I_{N}+I_{N}\right)(x)=I_{N}(x)+I_{N}(x)=x+x=2 x$ is not onto.

- Watch Video Solution

50. Consider a function $f:\left[0, \frac{\pi}{2}\right] \rightarrow R$ given by $f(x)=\sin x$ and $g:\left[0, \frac{\pi}{2}\right] \rightarrow R$ given by $g(x)=\cos x$. Show that f and g are one-one, but $f+g$ is not one-one.

D Watch Video Solution

Exercise

1. Determine whether the following relations are reflexive, symmetric and transitive: Relation R in the set $A=\{1,2,3, \ldots, 13,14\}$ defined as $R=\{(x, y): 3 x-y=0\}$

(D) Watch Video Solution

2. Determine whether the following relations are reflexive, symmetric and transitive:Relation R in the set N of natural numbers defined as $R=\{(x, y): y=x+5$ भुडे $x<4\}$

- Watch Video Solution

3. Determine whether the following relations are reflexive, symmetric and transitive:Relation R in the set $A=\{1,2,3,4,5,6\}$ as $R=\{(x, y): y i s \div i s i b \leq b y x\}$
4. Prove that the following relation R in Z of integers is an equivalence relation : $R=[(x, y): x-y$ is an integer $\}$

- Watch Video Solution

5. Determine whether the following relations are reflexive, symmetric and transitive: Relation R in the set A of human beings in a town at a particular time given by, $R=\{(x, y)$: x and y work at the same place\}
6. Determine whether the following relations are reflexive, symmetric and transitive: Relation R in the set A of human beings in a town at a particular time given by, $R=\{(x, y)$: x and y live in the same locality\}

- Watch Video Solution

7. Determine whether the following relations are reflexive, symmetric and transitive:Relation R in the set A of human beings in a town at a particular time given by, $R=\{(x, y)$: x is exactly 7 cm taller than y$\}$

- Watch Video Solution

8. Determine whether the following relations are reflexive, symmetric and transitive: Relation R in the set A of human beings in a town at a particular time given by, $R=\{(x, y): x i s w$ if eofy $\}$

- Watch Video Solution

9. Determine whether the following relations are reflexive, symmetric and transitive:Relation R in the set A of human beings in a town at a particular time given by, $R=\{(x, y):$ xisfatherofy $\}$
10. Show that the relation R in the set R of real numbers, defined as $R=\left\{(a, b): a \leq b^{2}\right\}$, is neither reflexive nor symmetric nor transitive.

- Watch Video Solution

11. Check whether the relation R defined in the set $\{1,2,3,4,5,6\}$ as $R=\{(a, b): b=a+1\}$ is reflexive, symmetric or transitive.

D Watch Video Solution

12. Show that the relation R in the set R of real numbers defined as $R=((a, b): a \leq b\}$, is reflexive and transitive but not symmetric.
13. Check whether the relation R in R defined by $R=\{(a, b)$: a le $\left.b^{\wedge} 3\right\}$ is reflexive, symmetric or transitive.

- Watch Video Solution

14. Show that the relation R in the set $\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$ is symmetric but neither reflexive nor transitive.

- Watch Video Solution

15. Show that the relation R in the set A of all the books in a library of a college, given by
$R=\{(x, y): x$ and yhavesamenmberofpa $\geq s\} \quad$ is
equivalence relation.

- Watch Video Solution

16. Show that the relation in the set $A=\{1,2,3,4,5\}$, given by : $R=\{(a, b): I a-b$ Iiseven $\}$ is an equivalence relation.

Show that all the elements of $\{1,3,5\}$ are related to each other and all the elements of $\{2,4\}$ are related to each other. But no element of $\{1,3,5\}$ is related to any element of $\{2,4\}$.

- Watch Video Solution

17. Show that the relation R in the set :

$$
R=\{x: x \in Z, 0 \leq x \leq 12\}, \text { givenby }: \mathrm{R}=\{(\mathrm{a}, \mathrm{~b}):|\mathrm{a}-\mathrm{b}| ` \text { is a }
$$ multiple of 4$\}$ is an equivalence relation.

- Watch Video Solution

18. Show that each of the relation R in the set $A=\{x \in Z: 0 \leq x \leq 12\}$, given by: $R=\{(a, b): a=b\}$, is an equivalence relation. Find the set of all elements related to 1 in each case.

- Watch Video Solution

19. Give an example of a relation. Which is: Symmetric but neither reflexive nor transitive.
20. Give an example of a relation. Which is: Transitive but neither reflexive nor symmetric.

- Watch Video Solution

21. Give an example of a relation. Which is: Reflexive and symmetric but not transitive.

- Watch Video Solution

22. Give an example of a relation which is reflexive and transitive but not symmetric.
23. Give an example of a relation which is symmetric and transitive but not reflexive.

(D) Watch Video Solution

24. Show that the relation R in the set A of points in a plane given by $R=\{(P, Q)$: distance of the point P from the origin is same as the distance of the point Q from the origin\}, is an equivalence relation. Further, show that the set of all points related to a point $P \neq(0,0)$ is the circle passing through P with origin as centre.
25. Show that the relation R, defined by the set A of all triangles as : $R=\left\{\left(T_{1}, T_{2}\right)=T_{1}\right.$ is similar to $\left.T_{-} 2\right\}$ is an equivalence relation. Consider three right-angled triangles T_1 with sides 3, 4, 5, T_2 with sides $5,12,13$ and T_ 3 with sides $6,8,10$.

- Watch Video Solution

26. Show that the relation R defined in the set A of all polygons as $R=\{(P 1, P 2): P 1$ and $P 2$ have same number of sides $\}$, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3,4 and 5 ?

- Watch Video Solution

27. Let T be the set of all triangles in a plane with R a relation in

T given by : $R=\left\{\left(T_{1}, T_{2}\right): T_{1}\right.$ is congruent to $\left.T_{-} 2\right\}$. Show that R is an equivalence relation.

(D) Watch Video Solution

28. Let R be the relation in the set $\{1,2,3,4\}$ given by $R=\{(1,2)$,
$(2,2),(1,1),(4,4),(1,3),(3,3),(3,2)\}$. Choose the correct answer.
A. R is reflexive and symmetric but not transitive.
B. R is reflexive and transitive but not symmetric.
C. R is symmetric and transitive but not reflexive.
D. R is an equivalence relation.

Answer:

29. Let R be the relation in the set N given by $R=\{(a, b): a=b-2, b>6\}$. Choose the correct answer:
A. $(2,4) \in R$
B. $(3,8) \in R$
C. $(6,8) \in R$
D. $(8,7) \in R$

Answer:

- Watch Video Solution

30. Show that the function $f: R . \rightarrow R$. defined by $f(x)=\frac{1}{x}$ is one-one and onto, where R. is the set of all non-zero real
numbers. Is the result true, if the domain R. is replaced by N with co-domain being same as R.?

(D) Watch Video Solution

31. Check the injectivity and surjectivity of the following function: $f: N \rightarrow N$ given by $f(x)=x^{2}$

- Watch Video Solution

32. Check the injectivity and surjectivity of the following function: $f: Z \rightarrow Z$ given by $f(x)=x^{2}$
33. Check the injectivity and surjectivity of the following function: $f: R \rightarrow R$ given by $f(x)=x^{2}$

- Watch Video Solution

34. Check the injectivity and surjectivity of the following function: $f: N \rightarrow N$ given by $f(x)=x^{3}$

- Watch Video Solution

35. Check the injectivity and surjectivity of the following function: $f: Z \rightarrow Z$ given by $f(x)=x^{3}$
36. Check the injectivity and surjectivity of the following function: $f: R \rightarrow R$ given by $f(x)=x^{3}$

- Watch Video Solution

37. Prove that greatest integer function $f: R \rightarrow R$, given by
$f(x)=[x]$, is neither one-one nor onto where $[\mathrm{x}]$ denotes the greatest integer less than or equal to x .

- Watch Video Solution

38. Prove that Modulus Function $f: R \rightarrow R$ given by :
$f(x)=|x|$ is neither one-one nor onto, where $|x|$ is x , if x is positive and $|x|$ is -x , if x is negative.
39.

$f: R \rightarrow$ Rgivenby $f(x)=\left\{\begin{array}{ll}1 & \text { if } x>0 \\ 0 & \text { if } x=0 \\ -1 & \text { if } x<0\end{array}\right.$, is neither one-one nor onto.

D Watch Video Solution

40. Let $A=\{1,2,3\}, B=\{4,5,6,7\} \quad$ and
$f=\{(1,4),(2,5),(3,6)\}$ be a function from A to B. Show that
f is one-one.

- Watch Video Solution

41. In the following case, state whether the function is one-one, onto or bijective. Justify your answer: $f: R \rightarrow R$ defined by

$$
f(x)=3-4 x
$$

A.
B.
C.
D.

Answer:

D Watch Video Solution

42. In the following case, state whether the function is one-one, onto or bijective. Justify your answer: $f: R \rightarrow R$ defined by $f(x)=1+x^{2}$
43. Let $\quad f: N \rightarrow N$ be defined by, $f(n)=\left\{\begin{array}{ll}\frac{n+1}{2} & \text { if nisodd } \\ \frac{n}{2} & \text { if niseven }\end{array} \quad\right.$ for all $n \in N$. State
whether the function f is bijective. Justify your answer.

- Watch Video Solution

44. Let $A=R-\{3\}$ and $B=R-\{1\}$. Consider the function $f: A->B$. defined by $f(x)=\frac{x-2}{x-3}$ Is f one one or Onto? Justify your answer

- Watch Video Solution

45. Let $f: R \rightarrow R$ be defined as $f(x)=3 x$ Choose the correct answer.
A. f is one-one onto
B. f is many-one onto
C. f is one-one but not onto
D. f is neither one-one nor onto.

Answer:

- Watch Video Solution

46. Let $f:(2,3,4,5\} \rightarrow(3,4,5,9\}$
and
$g=(3,4,5,9\} \rightarrow(7,11,15\}$ be functions defined as:
$f(2)=3, f(3)=4, f(4)=f(5)=5$ and $g(3)=g(4)=7$,
and $g(5)=g(11)=11$. Find gof
47. Let f, g and h be functions from R to R. Show that $(f+g) o h=f o h+g o h(f \cdot g) o h=(f o h) \cdot(g o h)$

(D) Watch Video Solution

48. Find gof and fog, if $f(x)=|x|$ and $g(x)=|5 x-2|$

D Watch Video Solution

49. Find gof and fog, if $f(x)=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$

- Watch Video Solution

50. If $f(x)=\frac{4 x-3}{6 x-4}, x \neq \frac{2}{3}$ show that $f \circ f(x)=x$ for all $x \neq \frac{2}{3}$. what is inverse of f ?
51. State with reason whether following functions have inverse:
$f:\{1,2,3,4\} \rightarrow\{10\}$ with
$f=\{(1,10),(2,10),(3,10),(4,10)\}$

- Watch Video Solution

52. State with reason whether following functions have inverse:

$$
\begin{aligned}
& g:\{5,6,7,8\} \rightarrow\{1,2,3,4\} \\
& g=\{(5,4),(6,3),(7,4),(8,2)\}
\end{aligned}
$$

with
53. State with reason whether following functions have inverse:
$h:\{2,3,4,5\} \rightarrow\{7,9,11,13\}$ with
$f=\{(2,7),(3,9),(4,11),(5,13)\}$

- Watch Video Solution

54. Consider $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ given by $f(x)=4 x+3$. Show that f is invertible. Find the inverse of f.

D Watch Video Solution

55. Consider $f: R_{+} \rightarrow[4, \infty)$ given by $f(x)=x^{2}+4$ Show that f is invertible with the inverse
$f^{-} 1$, offgivenby ${ }^{-} 1(y)=\sqrt{y-4}$, where R_{+}is the set of all non-negative real numbers.
56.

Consider
$f:\{1,2,3\} \rightarrow\{a, b, c\}$, givenby $f(1)=a, f(2)=b$ and $f(3)=c$
. Find $f^{-} 1$ and show that $\left(f^{-} 1\right)^{-} 1=f$

D Watch Video Solution

57. Let $f: X \rightarrow Y$ be an invertible function. Show that the inverse of $f^{-} 1$ is f , i.e. $\left(f^{-} 1\right)^{-} 1=f$

- Watch Video Solution

58. If $f: R \rightarrow R$, begivenby $f(x)=\left(3-x^{3}\right)^{\frac{1}{3}}$, then $f o f(x)$ is :
A. $\frac{x^{1}}{3}$
B. x^{3}
C. x
D. $\left(3-x^{3}\right)$

Answer:

- Watch Video Solution

59. Let $f: R-\left\{\frac{4}{3}\right\} \rightarrow R$ be a function defined as $f(x)=4 \frac{x}{3 x+4}$ The inverse of f is the (Map) g : Range $f \rightarrow R-\left\{\frac{4}{3}\right\}$, given by :
A. $g(y)=3 \frac{y}{3+4 y}$
B. $g(y)=4 \frac{y}{4-3 y}$
C. $g(y)=4 \frac{y}{3-4 y}$
D. $g(y)=3 \frac{y}{4-3 y}$

Answer:

(D) Watch Video Solution

60. Determine whether or not each of the definition of '*1 given below gives a binary operation. In the event that '*1 is not a binary operation, give justification for this:
$O n Z^{+}, d e f \in e \cdot b y a \cdot b=a-b$

- Watch Video Solution

61. Determine whether or not each of the definition of '*' given below gives a binary operation. In the event that '*' is not a
binary operation, give justification for this:
$O n Z^{+}, d e f \in e^{\prime} \cdot ' b y a * b=a b$

- Watch Video Solution

62. Determine whether or not each of the definition of '*' given below gives a binary operation. In the event that '*' is not a binary operation, give justification for this:
$O n Z^{+}, d e f \in e^{\prime} . \quad$ 'by $a * b=a b^{2}$

- Watch Video Solution

63. Determine whether or not each of the definition of '*' given below gives a binary operation. In the event that '*1 is not a binary operation, give justification for this:
$O n Z^{+}, d e f \in e^{\prime} \cdot ' b y a * b=|a-b|$

(Watch Video Solution

64. Determine whether or not each of the definition of '*1 given below gives a binary operation. In the event that '*1 is not a binary operation, give justification for this: $O n Z^{+}, d e f \in e^{\prime} \cdot ' b y a * b=a$

- Watch Video Solution

65. For operation $*$ defined below, determine whether $*$ is binary, commutative or associative: On Z, define $a \cdot b=a-b$

- Watch Video Solution

66. For operation $*$ defined below, determine whether $*$ is binary, commutative or associative: On Q, define $a \cdot b=a b+1$

- Watch Video Solution

67. For operation $*$ defined below, determine whether $*$ is
binary, commutative or associative: On Q, define $a \cdot b=a \frac{b}{2}$

- Watch Video Solution

68. For operation $*$ defined below, determine whether $*$ is binary, commutative or associative: On Z^{+}, define $a \cdot b=2^{a b}$
69. For operation $*$ defined below, determine whether $*$ is binary, commutative or associative: On Z^{+}, define $a \cdot b=a^{b}$

- Watch Video Solution

70. For operation $*$ defined below, determine whether $*$ is binary, commutative or associative: On $R-\{-1\}$, define $a \cdot b=\frac{a}{b+1}$

D Watch Video Solution

71. Consider the binary operation \wedge on the set $\{1,2,3,4,5\}$ defined by $a \wedge b=\min \{a, b\}$ Write the operation table of the operation \wedge.
72. Consider a binary operation $*$ on the set $\{1,2,3,4,5\}$ given by the following multiplication table

$*$	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1
3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	1	5

: IS *
commutative?

(D) Watch Video Solution

73. Consider a binary operation $*$ on the set $\{1,2,3,4,5\}$ given by the following multiplication table

\section*{| $*$ | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 1 | 2 | 1 | 2 | 1 |
| 3 | 1 | 1 | 3 | 1 | 1 |
| 4 | 1 | 2 | 1 | 4 | 1 |
| 5 | 1 | 1 | 1 | 1 | 5 |}

Compute (2*3)*(4*5)

D Watch Video Solution

74. Let $*$ be the binary operation on N given by
$\cdot a \cdot b=L . C . M$. of a and b. Find $: 5 \cdot 7,20 \cdot 16$
75. Let $*$ be the binary operation on N given by $\cdot a \cdot b=L . C . M$. of a and b. Find: Is * commutative?

- Watch Video Solution

76. Let $*$ be the binary operation on N given by
$\cdot a \cdot b=L . C . M$. of a and b. Find: Is $*$ associative?

(D) Watch Video Solution

77. Let $*$ be the binary operation on N given by
$\cdot a \cdot b=L . C . M$. of a and b. Find : Find the identity of $*$ in
78. Let $*$ be the binary operation on N given by $\cdot a \cdot b=L . C . M$. of a and b. Find : Which elements of N are invertible for the operation *?

- Watch Video Solution

79. Is $*$ defined on the set $\{1,2,3,4,5\}$ by $a \cdot b=L . C . M$. of a and b a binary operation? Justify your answer.

(D) Watch Video Solution

80. Let $*$ be the binary operation on N defined by $a \cdot b=H . C . F$. ofa and b. Is $*$ commutative?
81. Let $*$ be the binary operation on N defined by $a \cdot b=H . C . F$. of a and b. Is $*$ associative?

- Watch Video Solution

82. Let $*$ be the binary operation on N defined by $a \cdot b=H . C . F$. ofa and b. Does there exist identity for this binary operation on N ?

D Watch Video Solution

83. Let $*$ be a binary operation on the set Q of rational numbers as follows: $a \cdot b=a-b$ find is it commutative?
84. Let $*$ be a binary operation on the set Q of rational numbers as follows: $a \cdot b=a-b$ find is it associative?

- Watch Video Solution

85. Let $*$ be a binary operation on the set Q of rational numbers as follows: $a \cdot b=a 2-b 2$ find is it commutative?

(Watch Video Solution

86. Let $*$ be a binary operation on the set Q of rational numbers as follows: $a \cdot b=a 2-b 2$ find is it associative?
87. Let $*$ be a binary operation on the set Q of rational numbers as follows: $a \cdot b=a+a b$ find is it commutative?

- Watch Video Solution

88. Let $*$ be a binary operation on the set Q of rational numbers as follows: $a \cdot b=a+a b$ find is it associative?

(D) Watch Video Solution

89. Let $*$ be a binary operation on the set Q of rational numbers as follows: $a \cdot b=(a-b)^{2}$ find is it commutative?

- Watch Video Solution

90. Let $*$ be a binary operation on the set Q of rational numbers as follows: $a \cdot b=(a-b)^{2}$ find is it associative?

- Watch Video Solution

91. Let $*$ be a binary operation on the set Q of rational numbers as follows: $a \cdot b=\frac{a^{b}}{4}$ find is it commutative?

- Watch Video Solution

92. Let $*$ be a binary operation on the set Q of rational numbers as follows: $a \cdot b=\frac{a^{b}}{4}$ find is it associative?
93. Let $*$ be a binary operation on the set Q of rational numbers as follows: $a \cdot b=(a b)^{2}$ find is it commutative?

- Watch Video Solution

94. Let $*$ be a binary operation on the set Q of rational numbers as follows: $a \cdot b=(a b)^{2}$ find is it associative?

- Watch Video Solution

95. Let $A=N \times N$ and $*$ be the binary operation on A defined by $(a, b) \cdot(c, d)=(a+c, b+d)$ Show that $*$ is commutative and associative. Find the identity element for * on A, if any.
96. State whether the following statement is true or false. Justify:For an arbitrary binary operation \cdot on a set N, $a \cdot a=a, f$ or alla $\in N$

- Watch Video Solution

97. State whether the following statement is true or false. Justify: If $*$ is a commutative binary operation on N , then $a \cdot(b \cdot c)=(c \cdot b) \cdot a$

(D) Watch Video Solution

98. Consider a binary operation $*$ on N defined as $a \cdot b=a^{3}+b^{3}$ Choose the correct answer: Is $*$ neither
commutative nor associative?

- Watch Video Solution

99. Consider a binary operation $*$ on N defined as $a \cdot b=a^{3}+b^{3}$ Choose the correct answer:Is $*$ commutative but not associative?

- Watch Video Solution

100. Consider a binary operation $*$ on N defined as $a \cdot b=a^{3}+b^{3}$ Choose the correct answer: Is $*$ neither commutative nor associative?
101. Let $f: R \rightarrow R$, be defined as $f(x)=10 x+7$. Find the function $g: R \rightarrow R$ such that $g o f=f o g=1_{R}$

(D) Watch Video Solution

102. Let $f: W \rightarrow W$, be defined as $f(n)=n-1$, if n is odd and $f(n)=n+1$, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers.

D Watch Video Solution

103. If $f: R \rightarrow R$ is defined by $f(x)=x^{2}-3 x+2$, find $f(f(x))$
104. Show that the function $f: R \rightarrow\{x \in R:-1<x<1\}$ defined by $f(x)=\frac{x}{1+|x|}, x \in R$ is one one and onto function.

D Watch Video Solution

105. Show that the function $f: R \rightarrow R$ given by $f(x)=x^{3}$ is injective.

- Watch Video Solution

106. Give examples of two functions $f: N \rightarrow Z$ and $g: Z \rightarrow Z$ such that $g o f$ is injective but g is not injective.
107. Give examples of two functions $f: N \rightarrow N$ and $g: N \rightarrow N$ such that $g o f$ is onto but f is not onto.

- Watch Video Solution

108. Given a non empty set X , consider $P(X)$ which is the set of all subsets of X . Define the relation R in $P(X)$ as follows: For subsets A, B in $\mathrm{P}(\mathrm{X})$, ARB if and only if $A \subset B$. Is R an equivalence relation on $P(X)$? Justify your answer.

- Watch Video Solution

109. Find the number of all one-one functions from set
$A=\{1,2,3\}$ to itself.
110. Let $S=\{a, b, c\}$ and $T=\{1,2,3\}$. Find $F^{-} 1$ of the following functions F from S to T, if it exists:

$$
F=\{(a, 3),(b, 2),(c, 1)\}
$$

- Watch Video Solution

111. Let $S=\{a, b, c\}$ and $T=\{1,2,3\}$. Find $F^{-} 1$ of the following functions F from S to T, if it exists:
$F=\{(a, 2),(b, 1),(c, 1)\}$

D Watch Video Solution

112. Consider the binary operations $\cdot: R \times R \rightarrow R$ and $o: R \times R \rightarrow R \quad$ defined \quad as $\quad a \cdot b=|a-b| \quad$ and
$a o b=a, \forall a, b \in R$ Show that $*$ is commutative but not associative, o is associative but not commutative. Further, show that $\forall a, b, c \in R, a \cdot(b o c)=(a \cdot b) o(a \cdot c)$. [If it is so, we say that the operation $*$ distributes over the operation o]. Does o distribute over $*$? Justify your answer.

- Watch Video Solution

113. Given a non-empty set X , let $\cdot: P(X) \times P(X) \rightarrow P(X)$,
be defined as $A \cdot B=(A-B) \cup(B-A), \forall A, B \in P(X)$
.Show that the empty set ϕ is the identity for the operation * and all the elements A of $\mathrm{P}(\mathrm{X})$ are invertible with $A^{-} 1=A$.

- Watch Video Solution

114. Define a binary operation * on the set $\{0,1,2,3,4,5\}$ as $a \cdot b=\{a+b, \quad$ if $a+b<6 a+b-6, \quad$ if $a+b \geq 6$.

Show that zero is the identity for this operation and each element 'a' of the set is invertible with (6-a) being the inverse of a.

- Watch Video Solution

115. Let $A=\{-1,0,1,2\}, \quad B=\{-4,-2,0,2\} \quad$ and $f, g: A \rightarrow B$, be functions defined by $f(x)=x^{2}-x, x \in A$ and $g(x)=2|x-(1 / 2)|-1, x$ in A^{\prime}. Are f and g equal? Justify your answer.
116. Let $A=\{1,2,3\}$ Then number of relations containing (1, $2)$ and (1,3) which are reflexive and symmetric but not transitive is :
A. 1
B. 2
C. 3
D. 4

Answer:

D Watch Video Solution

117. Let $A=\{1,2,3\}$ Then number of equivalence relations containing $(1,2)$ is:
A. 1
B. 2
C. 3
D. 4

Answer:

- Watch Video Solution

118. Number of binary operations on the set $\{a, b\}$ is:
A. 10
B. 16
C. 20
D. 8

- Watch Video Solution

