©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - PSEB

THREE DIMENSIONAL GEOMETRY

Example

1. If a line makes angle $90^{\circ}, 60^{\circ}, 30^{\circ}$ with the positive direction of x, y and z-axis respectively, find its direction cosines.

D Watch Video Solution

2. If a line has direction ratios $2,-1,-2$, determine its direction cosines.

D Watch Video Solution

3. The direction cosines of the line joining the points $(-2,4,-5)$ and $(1,2,3)$ is :

D Watch Video Solution

4. Find the direction cosines of x, y and $z-a x i s$.

- Watch Video Solution

5. Show that the points
$A(2,3,-4), B(1,-2,3), C(3,8,-11)$ are collinear.

D Watch Video Solution

6. Find the vector and the Cartesian equations of
the line through the point $(5,2,-4)$ and which is
parallel to the vector $3 \hat{i}+2 \hat{j}-8 \hat{k}$

(D) Watch Video Solution

7. Find the vector equation for the line passing through the points $(-1,0,2)$ and $(3,4,6)$.

- Watch Video Solution

8. The Cartesian equation of a line is $\frac{x+3}{2}=\frac{y-5}{4}=\frac{z+6}{2}$. Find the vector equation for the line.
9. Find the angle between the pair of lines given
by $\vec{r}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k})$ and
$\vec{r}=5 \hat{i}-2 \hat{j}+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k})$

(D) Watch Video Solution

10. Find the angle between the pair of lines
$\frac{x+3}{3}=\frac{y-1}{5}=\frac{z+3}{4}$ and
$\frac{x+1}{1}=\frac{y-4}{1}=\frac{z-5}{2}$
11. 1 Find the shortest distance between the lines
l_{1} and l_{2} whose vector equations are:
$\begin{aligned} \vec{r} & =\hat{i}+\hat{j}+\lambda(2 \hat{i}-\hat{j}+\hat{k}), \\ \vec{r} & =2 \hat{i}+\hat{j}-\hat{k}+\mu(3 \hat{i}-5 \hat{j}+2 \hat{k})\end{aligned}$

D Watch Video Solution

12. Find the distance between the lines l_{1} and l_{2} given by
$\vec{r}=\hat{i}+2 \hat{j}-4 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k}) \quad$ and
$\vec{r}=3 \hat{i}+3 \hat{j}-5 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+6 \hat{k}) C \widetilde{O}$

D Watch Video Solution

13. Find the vector equation of the plane which is at a distance of $\frac{6}{\sqrt{29}}$ from the origin and its normal vector from the origin is $2 \hat{i}-3 \hat{j}+4 \hat{k}$.

Also find its cartesian form.

- Watch Video Solution

14. Find the direction cosines of the unit vector perpendicular to the plane
$\vec{r} \cdot(6 \hat{i}-3 \hat{j}-2 \hat{k})+1=0$ passing through the origin.

D Watch Video Solution

15. Find the distance of the plane $2 x-3 y+4 z-6=0$ from the origin.

D Watch Video Solution

16. Find the coordinates of the foot of the perpendicular drawn from the origin to the
plane $2 x-3 y+4 z-6=0$

- Watch Video Solution

17. Find the vector and cartesian equations of the plane which passes through the point (5, 2, -
4) and perpendicular to the line with direction ratios $2,3,-1$.

D Watch Video Solution
18. Find the vector equations of the plane passing through the points
$R(2,5,-3), S(-2,-3,5), T(5,3,-3)$

D Watch Video Solution

19. Find the equation of the plane with intercepts 2,3 and 4 on the x, y and z-axis respectively.
20. Find the vector equation of the plane passing through the intersection of the planes
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=6$
and
$\vec{r} \cdot(2 \hat{i}+3 \hat{j}+4 \hat{k})=-5$, and the point $(1,1$,
1).

D Watch Video Solution

21. Show that the lines
$\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5}$
and
$\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$ are coplanar.
22. Find the angle between the two planes
$2 x+y-2 z=5$ and $3 x-6 y-2 z=7$ using
vector method.

D Watch Video Solution

23. Find the angle between the two planes
$3 x-6 y+2 z=7$ and $2 x+2 y-2 z=5$

D Watch Video Solution

24. Find the distance of a point $(2,5,-3)$ from
the plane $\vec{r} \cdot(6 \hat{i}-3 \hat{j}+2 \hat{k})=4$

(D) Watch Video Solution

25. Find the angle between the line $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6} \quad$ and the plane $10 x+2 y-11 z=3$
26. If a line marks angles α, β and γ with the coordinates axes, prove that $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$.

D Watch Video Solution

27. Find the equation of the plane passing through the point ($1,-1,2$) and perpendicular to the planes $2 x+3 y-2 z=5$ and $x+2 y-3 z=8$.

D Watch Video Solution

28. Find the distance between the point $P(6,5,9)$ and the plane determined by the points
$A(3,-1,2), B(5,2,4), C(-1,-1,6)$

D Watch Video Solution

29. Show that the lines
$\frac{x-a+d}{\alpha-\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta}$
and
$\frac{x-b+c}{\beta-\gamma}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+\gamma}$ are coplanar.

Watch Video Solution

30. Find the coordinates of the point where the line through the points $A(3,4,1)$ and $B(5,1,6)$ crosses the XY-plane.

- Watch Video Solution

Exercise

1. A line makes $90^{\circ}, 135^{\circ}, 45^{\circ}$ with x , y and z axes respectively than its direction cosines are
2. Find the direction cosines of a line which makes equal angles with the coordinate axes.

(Watch Video Solution

3. If a line has the direction ratios $-18,12,-4$, then what are its direction cosines ?

D Watch Video Solution

4. Show that the points $(2,3,4),(-1,-2,1),(5,8$,
7) are collinear.

- Watch Video Solution

5. Find the direction cosines of the sides of the triangle whose vertices are (3, 5, - 4), (-1, 1, 2) and (-5, -5, - 2).

D Watch Video Solution

6. Show that the three lines with direction
cosines
$\frac{12}{13},-\frac{3}{13},-\frac{4}{13}, \frac{4}{13}, \frac{12}{13}, \frac{3}{13}, \frac{3}{13},-\frac{4}{13}, \frac{12}{13}$ are mutually perpendicular.

(D) Watch Video Solution

7. Show that the line through the points $(1,-1$,
$2),(3,4,-2)$ is perpendicular to the line through the points $(0,3,2)$ and $(3,5,6)$.

- Watch Video Solution

8. Show that the line through the points $(4,7,8)$,
$(2,3,4)$ is parallel to the line through the points
$(-1,-2,1),(1,2,5)$.
9. Find the equation of the line which passes through the point $(1,2,3)$ and is parallel to the vector $3 \hat{i}+2 \hat{j}-2 \hat{k}$

D Watch Video Solution

10. Find the equation of the line in vector and in cartesian form that passes through the point with position vector $2 \hat{i}-\hat{j}+4 \hat{k}$ and is in the direction $\hat{i}+2 \hat{j}-\hat{k}$
11. Find the cartesian equation of the line which passes through the point (- 2, 4, -5) and parallel to the line given by
$\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$

Watch Video Solution

12. The cartesian equation of a line is $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$. Write its vector form.
13. Find the vector and the cartesian equations of the lines that passes through the origin and $(5,-2,3)$.

Watch Video Solution

14. Find the vector and the cartesian equations of the line that passes through the points $(3,-2$,
$-5),(3,-2,6)$.
15. Find the angle between the following pair of lines: $\quad \vec{r}=2 \hat{i}-5 \hat{j}+\hat{k}+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k})$
and $\vec{r}=7 \hat{i}-6 \hat{j}+\mu(\hat{i}+2 \hat{j}+2 \hat{k})$

(D) Watch Video Solution

16. Find the angle between the following pair of
lines: $\vec{r}=3 \hat{i}+\hat{j}-2 \hat{k}+\lambda(\hat{i}-\hat{j}-2 \hat{k})$ and
$\vec{r}=2 \hat{i}-\hat{j}-56 \hat{k}+\mu(3 \hat{i}-5 \hat{j}-4 \hat{k})$
17. Find the angle between the lines
$\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3}$
and
$\frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$

D Watch Video Solution

18. Find the angle between the lines

$$
\frac{x}{2}=\frac{y}{2}=\frac{z}{1} \text { and } \frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}
$$

D Watch Video Solution
19. Find the values of p so that the lines
$\frac{1-x}{3}=\frac{7 y-14}{2} p=\frac{z-3}{2}$
and
$\frac{7-7 x}{3} p=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles.

D Watch Video Solution

20. Show that the lines $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular to each other
21. Find the shortest distance between the lines

$$
\begin{aligned}
\vec{r} & =(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k}) \\
\vec{r} & =2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k})
\end{aligned}
$$

(Watch Video Solution

22. Find the shortest distance between the lines

$$
\begin{aligned}
& \frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} \\
& \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}
\end{aligned}
$$

D Watch Video Solution

23. Find the shortest distance between the lines whose vector equations are
$\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-3 \hat{j}+2 \hat{k}) \quad$ and
$\vec{r}=4 \hat{i}+5 \hat{j}+6 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+\hat{k})$

- Watch Video Solution

24. Find the shortest distance between the lines
whose vector equations are
$\vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k} \quad$ and
$\vec{r}=(s+1) \hat{i}+(2 s-1) \hat{j}-(2 s+1) \hat{k}$
25. In the following case, determine the direction cosines of the normal to the plane and the distance from the origin: $z=2$

(D) Watch Video Solution

26. In the following case, determine the direction cosines of the normal to the plane and the distance from the origin: $x+y+z=1$
27. In the following case, determine the direction cosines of the normal to the plane and the distance from the origin: $2 x+3 y-z=5$

- Watch Video Solution

28. In the following case, determine the direction cosines of the normal to the plane and the distance from the origin: $5 y+8=0$
29. Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector $3 \hat{i}+5 \hat{j}-6 \hat{k}$.

D Watch Video Solution

30. Find the Cartesian equation of the following
plane: $\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=2$
31. Find the Cartesian equation of the following plane: $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-4 \hat{k})=1$

(D) Watch Video Solution

32. Find the Cartesian equation of the following
plane:
$\vec{r} \cdot[(s-2 t) \hat{i}+(3-t) \hat{j}+(2 s+t) \hat{k}]=15$
33. In the following case, find the coordinates of the foot of the perpendicular drawn from the origin: $2 x+3 y+4 z-12=0$

D Watch Video Solution

34. In the following case, find the coordinates of the foot of the perpendicular drawn from the origin: $3 y+4 z-6=0$
35. In the following case, find the coordinates of the foot of the perpendicular drawn from the origin: $x+y+z=1$

(D) Watch Video Solution

36. In the following case, find the coordinates of the foot of the perpendicular drawn from the origin: $5 y+8=0$
37. Find the vector and cartesian equations of the plane that passes through the point (1, $0,-$ 2) and the normal to the plane is $\hat{i}+\hat{j}-\hat{k}$

D Watch Video Solution

38. Find the vector and cartesian equations of the plane that passes through the point $(1,4,6)$ and the normal vector to the plane is $\hat{i}-2 \hat{j}+\hat{k}$
39. Find the equations of the plane that passes through three points: $(1,1,-1),(6,4,-5),(-4,-2,3)$

D Watch Video Solution

40. Find the equations of the plane that passes through three points : (1,1,0), (1,2,1), (-2,2,-1)

D Watch Video Solution

41. Find the intercepts cut off by the plane
$2 x+y-z=5$

(D) Watch Video Solution

42. Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane.

- Watch Video Solution

43. Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y+z-2=0$ and the point (2,2,1).I
44. Find the vector equation of the plane passing through the intersection of the planes $\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=7, \vec{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})=9$ and through the point $(2,1,3)$

D Watch Video Solution

45. Find the equation of the plane through the line of intersection of the planes given by the equations $x+y+z=1$ and $2 x+3 y+4 z=5$ which is perpendicular to the plane given by the equation $\mathrm{x}-\mathrm{y}+\mathrm{z}=0$.

- Watch Video Solution

46. Find the angle between the planes whose vector equations are $\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}-3 \hat{j}+5 \hat{k})=3$

D Watch Video Solution

47. In the following case, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between
them: $7 x+5 y+6 z+30=0$ and
$3 x-y-10 z+4=0$

D Watch Video Solution

48. In the following case, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them:

$$
2 x+y+3 z-2=0
$$

and
$x-2 y+5=0$
49. In the following case, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them: $2 x-2 y+4 z+5=0 \quad$ and
$3 x-3 y+6 z-1=0$

D Watch Video Solution

50. UIn the following case, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them: $\quad 2 x-y+3 z-1=0 \quad$ and $2 x-y+3 z+3=0$

- Watch Video Solution

51. In the following case, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them: $4 x+8 y+z-8=0$ and $y+z-4=0$

D Watch Video Solution

52. In the following case, find the distance of each of the given point from the corresponding

$$
3 x-4 y+12 z=3
$$

D Watch Video Solution

53. In the following case, find the distance of each of the given point from the corresponding

$$
\begin{aligned}
& \text { given plane: Point } \quad(3,-2,1) \quad \text { Plane } \\
& 2 x-y+2 z+3=0
\end{aligned}
$$

- Watch Video Solution

54. In the following case, find the distance of each of the given point from the corresponding given plane:Point $(2,3,-5)$ Plane $x+2 y-2 z=9$

D Watch Video Solution

55. In the following case, find the distance of each of the given point from the corresponding

> given plane: Point $\quad(-6,0,0) \quad$ Plane $2 x-3 y+6 z-2=0$
56. Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points $(3,5,-1),(4,3,-1)$.

- Watch Video Solution

57. If l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are

$$
m_{1} n_{2}-m_{2} n_{1}, n_{1} l_{2}-n_{2} l_{1}, l_{1} m_{2}-l_{2}-m_{1}
$$

58. Find the angle between the lines whose direction ratios are a, b, c and $b-c, c-a, a-b$

- Watch Video Solution

59. Find the equation of a line parallel to x-axis and passing through the origin.
(D) Watch Video Solution
60. If the coordinates of the points A, B, C, D be
$(1,2,3),(4,5,7),(-4,3,-6)$ and $(2,9,2)$ respectively, then find the angle between the lines $A B$ and $C D$.

(D) Watch Video Solution

61. If the lines $\frac{x-1}{-3}=\frac{y-2}{2} k=\frac{z-3}{2}$ and $\frac{x-1}{3} k=\frac{y-1}{1}=\frac{z-6}{-5}$ are perpendicular, find the value of k
62. Find the vector equation of the line passing
through (1, 2, 3) and perpendicular to the plane
$\vec{r} \cdot(\hat{i}+2 \hat{j}-5 \hat{k})+9=0$

- Watch Video Solution

63. Find the equation of the plane passing through (a, b, c) and parallel to the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$
64. Find the shortest distance between the lines

$$
\begin{aligned}
& \text { given by the line } \\
& \vec{r}=6 \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k}) \text { and } \\
& \vec{r}=4 \hat{i}+\hat{k}+\mu(3 \hat{i}-2 \hat{j}-2 \hat{k})
\end{aligned}
$$

(D) Watch Video Solution

65. Find the coordinates of that point when the
line passing through two points $(5,1,6)$ and (3,
4, 1) crosses YZ plane.
66. Find the coordinates of the point where the
line through $(3,-4,-5)$ and $(2,-3,1)$ crosses the plane $2 x+y+z=7$

(Watch Video Solution

67. Find the equation of the plane passing through the point $(-1,3,2)$ and perpendicular to each of the planes : $x+2 y+3 z=5$ and $3 x+3 y+z=0$.
68. If the points $(1,1, p)$ and $(-3,0,1)$ be equidistant from the plane
$\vec{r} \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0$ then find the value of p.

- Watch Video Solution

69. Find the equation of the plane passing
through the line of intersection of the planes
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=1$
and
$\vec{r} \cdot(2 \hat{i}+3 \hat{j}-\hat{k})+4=0$ and parallel to $\mathrm{x}-$ axis.

- Watch Video Solution

70. If O be the origin and the coordinates of P be
$(1,2,-3)$, then find the equation of the plane passing through P and perpendicular to $O P$.

- Watch Video Solution

71. Find the equation of the plane which contains the line of intersection of the planes

$$
\begin{aligned}
& \vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})-4=0 \\
& \vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})+5=0 \quad \text { and } \quad \text { which } \quad \text { is }
\end{aligned}
$$

perpendicular
$\vec{r} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$

D Watch Video Solution

72. Find the distance of the point ($-1,-5,-10$)
from the point of intersection of the line $\vec{r}=2 \hat{i}-\hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$.
73. Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes
$\vec{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6$.

D Watch Video Solution

74. Find the equations of the straight line passing through the point $(1,2,-4)$ and is perpendicular to the lines
$\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$
and
$\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$.
75. Prove that if a plane has the intercepts a, b, c and is at a distance of p units from the origin,
then $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$

D Watch Video Solution

76. Distance between the two planes:
$2 x+3 y+4 z=4$ and $4 x+6 y+8 z=12$ is:
A. 2 units
B. 4 units

C. 8 units

D. $\frac{2}{\sqrt{29}}$ units

Answer:

D Watch Video Solution

> 77. The planes $2 x-y+4 z=5$ and $5 x-2.5 y+10 z=6$ are :
A. Perpendicular
B. Parallel
C. ntersect y-axis
D. passes through $\left(0,0, \frac{5}{4}\right)$

Answer:

- Watch Video Solution

