© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - PSEB

VECTOR ALGEBRA

Example

1. Represent graphically a displacement of $40 \mathrm{~km}, 30^{\circ}$ west of south.

0
Watch Video Solution
2. Classify the following measures as scalars and vectors: $5 s$
3. Classify the following measures as scalars and vectors: $1000 \mathrm{~cm}^{3}$

D Watch Video Solution

4. Classify the following measures as scalars and vectors: 10 N

Watch Video Solution

5. Classify the following measures as scalars and vectors: $30 k \frac{m}{h}$

D Watch Video Solution

6. Classify the following measures as scalars and vectors: $10 \frac{g}{c} m^{3}$

- Watch Video Solution

7. Classify the following measures as scalars and vectors: $20 \frac{\mathrm{~m}}{\mathrm{~s}}$

D Watch Video Solution

8. Classify the following measure as scalar and vector:40watt

- Watch Video Solution

9. Classify the following measure as scalar and vector: 10^(-19)coulomb

- Watch Video Solution

10. Find the values of x, y and z so that the vectors $\vec{a}=x \hat{i}+2 \hat{j}+z \hat{k}$ and $\hat{b}=2 \hat{i}+y \hat{j}+\hat{k}$ are equal.
11. Let $\vec{a}=\hat{i}+2 \hat{j}$ and $\vec{b}=2 \hat{i}+\hat{j}$. Is $|\vec{a}|=|\vec{b}|$? Are the vectors \vec{a} and \vec{b} equal?

- Watch Video Solution

12. Find the unit vector in the direction of the vector $\vec{a}=\hat{i}+\hat{j}+\hat{k}$

© Watch Video Solution

13. Find the vector in the direction of the vector $\hat{i}-2 \hat{j}$ that has magnitude 7 units.
14. Write unit vector in the direction of the sum of vectors
$\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}+3 \hat{k}$

(Watch Video Solution

15. Write the direction ratio's of the vector $\vec{a}=\hat{i}+\hat{j}-2 \hat{k}$ and hence calculate its direction cosines.

D Watch Video Solution

16. Find the vector joining the points $P(2,3,0)$ and $Q(-1,-2,-4)$ directed from P to Q .

D Watch Video Solution
17. Consider two points P and Q with position vectors $\overrightarrow{O P}=3 \vec{a}-2 \vec{b}$ and $\overrightarrow{O Q}=\vec{a}+\vec{b}$. Find the position vector of a point R which divides the line joining P and Q in the ratio 2:1, internally.

D Watch Video Solution

18. Consider two points P and Q with position vectors $\overrightarrow{O P}=3 \vec{a}-2 \vec{b}$ and $\overrightarrow{O Q}=\vec{a}+\vec{b}$. Find the position vector of a point R which divides the line joining P and Q in the ratio 2:1, externally.

(D) Watch Video Solution

19. Show that the points :
$A(2 \hat{i}-\hat{j}+\hat{k}), B(\hat{i}-3 \hat{j}-\hat{k}), C(3 \hat{i}-4 \hat{j}-4 \hat{k})$ are the
vertices of a right-angled triangle.

- Watch Video Solution

20. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes 1 and 2 respectively and when $\vec{a} \cdot \vec{b}=1$.

- Watch Video Solution

21. Find angle ' Θ ' between the vectors $\vec{a}=\vec{i}+\vec{j}-\vec{k}$ and $\vec{b}=\vec{i}-\vec{j}+\vec{k}$.

D Watch Video Solution

22. If $\vec{a}=5 \vec{i}-\vec{j}-3 \vec{k}$ and $\vec{b}=\vec{i}+3 \vec{j}-5 \vec{k}$, then show that the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular.
23. Find the projection of the vector $\vec{a}=2 \vec{i}+3 \vec{j}+2 \vec{k}$ on the vector $\vec{b}=\vec{i}+2 \vec{j}+\vec{k}$

D Watch Video Solution

24. Find $|\vec{a}-\vec{b}|$, if two vectors \vec{a} and \vec{b} are such that $|\vec{a}|=2,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=4$.

- Watch Video Solution

25. If \vec{a} is a unit vector and $(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=8$, then find $|\vec{x}|$
26. For any two vectors \vec{a} and \vec{b}, prove that $|\vec{a} \cdot \vec{b}| \leq|\vec{a}||\vec{b}|$

Also write the name of this inequality.

D Watch Video Solution

27. For any two vectors \vec{a} and \vec{b}, prove that: $|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$. Also, write the name of this inequality

D Watch Video Solution

28. Show that the three points with position vectors $-2 \hat{i}+3 \hat{j}+5 \hat{k}$,$\hat{i}+2 \hat{j}+3 \hat{k}$ and $7 \hat{i}-\hat{k}$ are collinear.

- Watch Video Solution

29. Find $\quad|\vec{a} \times \vec{b}| \quad$ if $\quad \vec{a}=2 \vec{i}+\vec{j}+3 \vec{k} \quad$ and $\vec{b}=3 \vec{i}+5 \vec{j}-2 \vec{k}$

- Watch Video Solution

30. Find a unit vector perpendicular to each of the vectors $(\vec{a}+\vec{b}) \quad$ and $\quad(\vec{a}-\vec{b}), \quad$ where $\vec{a}=\vec{i}+\vec{j}+\vec{k}, \vec{b}=\vec{i}+2 \vec{j}+3 \vec{k}$

D Watch Video Solution

31. Using vectors, find the area of the triangle having vertices $A(1,1$, 1), $B(1,2,3)$ and $C(2,3,1)$.

- Watch Video Solution

32. Find the area of parallelogram whose adjacent sides are given by the vectors: $\vec{a}=3 \hat{i}+\hat{j}+4 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$.

D Watch Video Solution

33. Write all the unit vectors in XY-plane.

D Watch Video Solution

34. If $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+5 \hat{j}, 3 \hat{i}+2 \hat{j}-3 \hat{k}$ and $\hat{i}-6 \hat{j}-\hat{k}$ are the position vectors of points A, B, C and D respectively, then find the angle between $A B$ and $C D$. Deduce that $A B$ and $C D$ are collinear.

- Watch Video Solution

35. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=5$ and each one of them being perpendicular to the sum of the other two, find $|\vec{a}+\vec{b}+\vec{c}|$

D Watch Video Solution

36. Three vectors $\vec{a}, \vec{b}, \vec{c}$ satisfy the condition
$\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ Evaluate the
quantity
$\mu=\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ if $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=2$

D Watch Video Solution

37. If with reference to the right handed system of mutually perpendicular unit vectors $\hat{i}, \hat{j}, \hat{k}, \vec{\alpha}=3 \hat{i}-\hat{j}, \vec{\beta}=2 \hat{i}+\hat{j}-3 \hat{k}$, then express $\vec{\beta}$ in the form $\vec{\beta}=\vec{\beta}_{1}+\vec{\beta}_{2}$ where $\vec{\beta}_{1}$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_{2}$ is perpendicular to $\vec{\alpha}$.
38. Represent graphically a displacement of $40 \mathrm{~km}, 30^{\circ}$ east of north.

D Watch Video Solution

2. Classify the following measure as scalar and vector: 10 Kg

- Watch Video Solution

3. Classify the following measure as scalar and vector: 2 meters north-west
4. Classify the following measure as scalar and vector: 40°

- Watch Video Solution

5. Classify the following measure as scalar and vector: $20 \frac{m}{s^{2}}$

D Watch Video Solution

6. Classify the following as scalar and vector quantities: timeperiod

- Watch Video Solution

7. Classify the following as scalar and vector quantities: dis $\tan c e$

- Watch Video Solution

8. Classify the following as scalar and vector quantities: force

- Watch Video Solution

9. Classify the following as scalar and vector quantities: velocity

- Watch Video Solution

10. Classify the following as scalar and vector quantities:work done

- Watch Video Solution

11. Compute the magnitude of the following vectors:
$\vec{a}=\hat{i}+\hat{j}+\hat{k}$
12. Compute the magnitude of the following vectors:
$\vec{b}=2 \vec{i}-7 \vec{j}-3 \vec{k}$ ।

- Watch Video Solution

13. Compute the magnitude of the following vectors:
$\vec{c}=\left(\frac{1}{\sqrt{3}}\right) \vec{i}+\left(\frac{1}{\sqrt{3}}\right) \vec{j}-\left(\frac{1}{\sqrt{3}}\right) \vec{k}$

- Watch Video Solution

14. Write two different vectors having same magnitude.

D Watch Video Solution

15. Write two different vectors having same direction.
16. Find the values of x and y so that the vectors $2 \vec{i}+3 \vec{j}$ and $x \vec{i}+y \vec{j}$ are equal.

D Watch Video Solution

17. Find the scalar and vector components of the vector with initial point $(2,1)$ and terminal point $(-5,7)$.

- Watch Video Solution

$$
\begin{aligned}
& \text { 18. Find the sum of the vectors } \\
& \vec{a}=\vec{i}-2 \vec{j}+\vec{k}, \vec{b}=-2 \vec{i}+4 \vec{j}+5 \vec{k}, \vec{c}=\vec{i}-6 \vec{j}-7 \vec{k}
\end{aligned}
$$

19. Find the unit vector in the direction of the vector $\vec{a}=\vec{i}+\vec{j}+2 \vec{k}$

- Watch Video Solution

20. Find the unit vector in the direction of vector $\overrightarrow{P Q}$, where P and
Q are the points $(1,2,3)$ and $(4,5,6)$, respectively.

D Watch Video Solution

21. For given vectors, $\vec{a}=2 \vec{i}-\vec{j}+2 \vec{k}, \vec{b}=-\vec{i}+\vec{j}-\vec{k}$ find the unit vector in the direction of the vector $\vec{a}+\vec{b}$

- Watch Video Solution

22. Find a vector in the direction of vector $5 \vec{i}-\vec{j}+2 \vec{k}$ which has magnitude 8 units.

Watch Video Solution

23. Show that the vectors $2 \vec{i}-3 \vec{j}+4 \vec{k},-4 \vec{i}+6 \vec{j}-8 \vec{k}$ are collinear.

D Watch Video Solution

24. Find the direction cosines of the vector $\vec{i}+2 \vec{j}+3 \vec{k}$ ।

(D) Watch Video Solution

25. Find the direction cosines of the vector joining the points
$A(1,2,-3)$ and $B(-1,-2,1)$, directed from A to B .
26. Show that the vector $\vec{i}+\vec{j}+\vec{k}$ is equally inclined to the axes $O X, O Y$ and $O Z$.

(Watch Video Solution

27. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $P(\vec{i}+2 \vec{j}-\vec{k})$ and $Q(-\vec{i}+\vec{j}+\vec{k})$ respectively, in the ratio 2 : 1, internally.

D Watch Video Solution

28. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $P(\vec{i}+2 \vec{j}-\vec{k})$ and $Q(-\vec{i}+\vec{j}+\vec{k})$ respectively, in the ratio 2 : 1, externally.
29. Find the position vector of the mid point of the vector joining the points $P(2,3,4), Q(4,1,-2)$

D Watch Video Solution

30. Show that the points A, B and C with position vectors, $\vec{a}=3 \vec{i}-4 \vec{j}-4 \vec{k}, \vec{b}=2 \vec{i}-\vec{j}+\vec{k}, \vec{c}=\vec{i}-3 \vec{j}-5 \vec{k}$, respectively form the vertices of a right angled triangle.

- Watch Video Solution

31. If \vec{a} and \vec{b} are two collinear vectors then which of the following are incorrect :
A. $\vec{b}=\lambda \vec{a}, f$ or somescalar λ
B. $\vec{a}= \pm \vec{b}$
C. the respective components of \vec{a} and \vec{b} are proportional.
D. both the vectors \vec{a} and \vec{b} have same direction, but different magnitudes.

Answer:

D Watch Video Solution

32. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2,respectively having $\vec{a} \cdot \vec{b}=\sqrt{6}$

D Watch Video Solution

33. Find the angle between the vectors
$\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}-\hat{k}$
34. Find the projection of the vector $\hat{i}+\hat{j}$ on the vector $\hat{i}-\hat{j}$

- Watch Video Solution

35. Find the projection of the vector $\vec{i}+3 \vec{j}+7 \vec{k}$ on the vector $7 \vec{i}-\vec{j}+8 \vec{k}$

- Watch Video Solution

36. Show that the given vector is a unit vector:
$\left(\frac{1}{7}\right)(2 \hat{i}+3 \hat{j}+6 \hat{k})$

- Watch Video Solution

37. Show that the given vector is a unit vector: $\left(\frac{1}{7}\right)(3 \hat{i}-6 \hat{j}+2 \hat{k})$

- Watch Video Solution

38. Show that the given vector is a unit vector:
$\left(\frac{1}{7}\right)(6 \vec{i}+2 \vec{j}-3 \vec{k})$

- Watch Video Solution

39. Find $|\vec{a}|$ and $|\vec{b}|$, if $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=8$ and $|\vec{a}|=8|\vec{b}|$.

(D) Watch Video Solution

40. Evaluate the product $(3 \widehat{a}-5 \hat{b}) \cdot(2 \widehat{a}+7 \hat{b})$

- Watch Video Solution

41. Find the magnitude of two vectors \vec{a} and \vec{b}, having the same magnitude and such that the angle between them is 60° and their scalar product is $\frac{1}{2}$.

D Watch Video Solution

42. Find $|\vec{x}|$, if for a unit vector $\vec{a},(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=12$

- Watch Video Solution

43. If $\vec{a}=2 \vec{i}+2 \vec{j}+3 \vec{k}, \vec{b}=-\vec{i}+2 \vec{j}+\vec{k} \quad$ and $\vec{c}=3 \vec{i}+\vec{j}$ are such that $\vec{a}+\lambda \vec{b}$ is perpendicular to \vec{c}, then find the value of λ
44. Show that $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ is perpendicular to $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$ for any two non zero vectors \vec{a} and \vec{b}

- Watch Video Solution

45. If $\vec{a} \cdot \vec{a}=0$ and $\vec{a} \cdot \vec{a} b=0$, then what can be concluded about the vector \vec{b} ?

- Watch Video Solution

46. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$, find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$

D Watch Video Solution

47. If either vector $\vec{a}=0$ or $\vec{b}=0$, then $\vec{a} \cdot \vec{b}=0$. But the converse need not be true. Justify your answer with an example.

D Watch Video Solution

48. If the vertices A, B, C of a triangle $A B C$ are (1,2,3), ($-1,0,0$), ($0,1,2$) respectively, then find $\angle A B C$ [$\angle A B C$ is the angle between the vectors $\overrightarrow{B A}$ and $\overrightarrow{B C}$]

- Watch Video Solution

49. Show that the points $A(1,2,7), B(2,6,3)$ भडे $C(3,10,-1)$ are collinear.

- Watch Video Solution

50.

Show
that the
points
$A(2 \vec{i}-\vec{j}+\vec{k}), B(\vec{i}-3 \vec{j}-5 \vec{k}), C(3 \vec{i}-4 \vec{j}-4 \vec{k})$
are the vertices of a right angled triangle.

- Watch Video Solution

51. If \vec{a} is a nonzero vector of magnitude ' a ' and λ a nonzero scalar, then $\lambda \vec{a}$ is unit vector if:
A. $\lambda=1$
B. $\lambda=-1$
C. $a=|\lambda|$
D. $a=\frac{1}{|\lambda|}$

Answer:

52. Find $\quad|\vec{a} \times \vec{b}|$, if $\quad \vec{a}=\vec{i}-7 \vec{j}+7 \vec{k} \quad$ and
$\vec{b}=3 \vec{i}-2 \vec{j}+2 \vec{k}$

(Watch Video Solution

53. Find a unit vector perpendicular to each of the vector $\vec{a}+\vec{b}$ and $\quad \vec{a}-\vec{b}$ where $\vec{a}=3 \vec{i}+2 \vec{j}+2 \vec{k} \quad$ and $\vec{b}=\vec{i}+2 \vec{j}-2 \vec{k}$

Watch Video Solution

54. If a unit vector \vec{a}, makes angles $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ wih \hat{j} and an acute angle θ with \hat{k}, then find θ and hence, the components of \vec{a}.

- Watch Video Solution

55. Show that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$

(Watch Video Solution

$$
\begin{aligned}
& \text { 56. } \begin{array}{c}
\lambda
\end{array} \begin{array}{c}
\mu \\
(2 \vec{i}+6 \vec{j}+27 \vec{k}) \times(\vec{i}+\lambda \vec{j}+\mu \vec{k})=\overrightarrow{0}
\end{array}
\end{aligned}
$$

D Watch Video Solution

57. Given that $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$. What can you conclude about the vectors \vec{a} and \vec{b} ?

- Watch Video Solution

58. Let the vectors $\vec{a}, \vec{b}, \vec{c}$ be given as
$\vec{a}_{1} \hat{i}+\vec{a}_{2} \hat{j}+\vec{a}_{3} \hat{k}, \vec{b}_{1} \hat{i}+\vec{b}_{2} \hat{j}+\vec{b}_{3} \hat{k}, \vec{c}_{1} \hat{i}+\vec{c}_{2} \hat{j}+\vec{c}_{3} \hat{k}$

Then show that $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$

D Watch Video Solution

59. If either $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$ then $\vec{a} \times \vec{b}=\overrightarrow{0}$. Is the converse true? Justify your answer with an example.

- Watch Video Solution

60. Find the area of the triangle with vertices
$A(1,12), B(2,3,5), C(1,5,5)$

- Watch Video Solution

61. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a}=\vec{i}-\vec{j}+3 \vec{k}$ and $\vec{b}=2 \vec{i}-7 \vec{j}+\vec{k}$

- Watch Video Solution

62. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angle between \vec{a} and \vec{b} is:
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer:

D Watch Video Solution

63. Area of a rectangle having vertices A, B, C and D with position vectors $: \quad-\hat{i}+\left(\frac{1}{2}\right) \hat{j}+4 \hat{k}, \hat{i}+\left(\frac{1}{2}\right) \hat{j}+4 \hat{k}, \hat{i}-\left(\frac{1}{2}\right) \hat{j}+4 \hat{k}$
and $-\hat{i}-\left(\frac{1}{2}\right) \hat{j}+4 \hat{k}$, respectively is:
A. $\frac{1}{2}$
B. 1
C. 2
D. 4

Answer:

- Watch Video Solution

64. Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of x-axis.

- Watch Video Solution

65. Find the scalar components and magnitude of the vector joining the points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$

- Watch Video Solution

66. A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. Determine the girl's displacement from her initial point of departure.

- Watch Video Solution

67. If $\vec{a}=\vec{b}+\vec{c}$, then is it true that $|\vec{a}|=|\vec{b}|+|\vec{c}|$? Justify your answer.
68. Find the value of x for which $x(\hat{i}+\hat{j}+\hat{k})$ is a unit vector.

- Watch Video Solution

69. Find a vector of magnitude 5 units, and parallel to the resultant of the vectors $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

70. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$, find a unit vector parallel to the vector $2 \vec{a}-\vec{b}+3 \vec{c}$

- Watch Video Solution

71. Show that the points $A(1,-2,-8), B(5,0,-2)$ and $C(11,3,7)$ are collinear.

(Watch Video Solution

72. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $P(2 \vec{a}+\vec{b})$ and $Q(\vec{a}-3 \vec{b})$ externally in the ratio $1: 2$. Also, show that P is the mid point of the line segment $R Q$.

D Watch Video Solution

73. The two adjacent sides of a parallelogram are given by the vectors $2 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\hat{i}-2 \hat{j}-3 \hat{k}$ Find a unit vector parallel to its diagonal (longer). Also find the area of parallelogram.

(D) Watch Video Solution

74. Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ are $\left(\frac{1}{\sqrt{3}}\right),\left(\frac{1}{\sqrt{3}}\right),\left(\frac{1}{\sqrt{3}}\right)$

- Watch Video Solution

75. If $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$ then find a vector \vec{d} (which is \perp ar to both \vec{a} and \vec{b}) and $\vec{c} \cdot \vec{d}$ $=15$.

D Watch Video Solution

76. The scalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of vectors $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to one. Find the value of λ.

D Watch Video Solution

77. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to \vec{a}, \vec{b} and \vec{c}.

D Watch Video Solution

78. Prove that $(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=|\vec{a}|^{2}+|\vec{b}|^{2}$, if and only if \vec{a}, \vec{b} are perpendicular, given $\vec{a} \neq \overrightarrow{0}, \vec{b} \neq \overrightarrow{0}$.

- Watch Video Solution

79. If θ is the angle between two vectors \vec{a} and \vec{b}, then $\vec{a} \cdot \vec{b} \geq 0$ only when:
A. $0<\theta<\frac{\pi}{2}$
B. $0 \leq \theta \leq \frac{\pi}{2}$
C. $0<\theta<\pi$
D. $0 \leq \theta \leq \pi$

Answer:

D Watch Video Solution

80. Let \vec{a} and \vec{b} be two unit vectors and θ is the angle between them. Then $\vec{a}+\vec{b}$ is a unit vector if:
A. $\theta=\frac{\pi}{4}$
B. $\theta=\frac{\pi}{3}$
C. $\theta=\frac{\pi}{2}$
D. $\theta=2 \frac{\pi}{3}$

Answer:

81. The value of : $\hat{i} \cdot(\hat{j} \times \hat{k})+\hat{j} \cdot(\hat{i} \times \hat{k})+\hat{k} \cdot(\hat{i} \times \hat{j})$ is :
A. 0
B. -1
C. 1
D. 3

Answer:

- Watch Video Solution

82. If θ is the angle between two vectors \vec{a} and \vec{b}, then $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$ when θ is equal to :
A. 0
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. π

Answer:

- Watch Video Solution

