©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - PSEB

CURRENT ELECTRICITY

Exercise

1. The storage battery of a car has an emf of 12
V. If the internal resistance of the battery is
0.4Ω, what is the maximum current that can be drawn from the battery?

D Watch Video Solution

2. A battery of emf 10 V and internal resistance
3Ω is connected to a resistor. If the current in
the circuit is 0.5 A , what is the resistance of the resistor? What is the terminal voltage of the battery when the circuit is closed?

D Watch Video Solution

3. Three resistors $1 \Omega, 2 \Omega$ and 3Ω are combined in series. What is the total resistance of the combination?

Watch Video Solution

4. Three resistors $1 \Omega, 2 \Omega$ and 3Ω are combined
in series and the combination is connected to
a battery of emf 12 V and negligible internal resistance, obtain the potential drop across each resistor.
5. Three resistors $2 \Omega, 4 \Omega$ and 5Ω are combined in parallel. What is the total resistance of the combination?

D Watch Video Solution

6. Three resistors 2 ohm, 4 ohm and 5 ohm are combined in parallel and the combination is connected to a battery of emf 20 V and negligible internal resistance, determine the
current through each resistor, and the total current drawn from the battery.

D Watch Video Solution

7. At room temperature $\left(27.0^{\circ} C\right)$ the resistance of a heating element is 100Ω. What
is the temperature of the element if the resistance is found to be 117Ω. given that the temperature coefficient of the material of the resistor is 1.70×10^{-4} ^ $\circ C^{-1}$.
8. A negligibly small current is passed through
a wire of length 15 m and uniform crosssection $6.0 \times 10^{-7} \mathrm{~m}^{2}$, and its resistance is measured to be 5.0Ω. What is the resistivity of the material at the temperature of the experiment?

D Watch Video Solution

9. A silver wire has a resistance of 2.1Ω at $27.5^{\circ} \mathrm{C}$, and a resistance of 2.7Ω at $100^{\circ} \mathrm{C}$.

Determine the temperature coefficient of resistivity of silver.

D Watch Video Solution

10. A heating element using nichrome connected to a 230 V supply draws an initial
current of 3.2 A which settles after a few seconds to a steady value of 2.8 A . What Is the steady temperature of the heating element if the room temperature is $27.0^{\circ} C$?

Temperature coefficient of resistance of
nichrome averaged over the temperature range involved is $1.70 \times 10^{-4} \circ C$.

D Watch Video Solution
11. Determine the current in each branch of
the network shown in Fig.

(Watch Video Solution
12. In a metre bridge [Fig. 3.27], the balance point is found to be at 39.5 cm from the end A ,
when the resistor Y is of 12.5Ω Determine the resistance of X. Why are the connections between resistors in a Wheatstone or meter bridge made of thick copper strips?:

- Watch Video Solution

13. In a metre bridge [Fig. 3.27], the balance point is found to be at 39.5 cm from the end A , when the resistor R is of 12.5Ω. Determine the balance point of the bridge above if R and S are interchanged. :

- Watch Video Solution

14. In a metre bridge [Fig. 3.27], the balance point is found to be at 39.5 cm from the end A , when the resistor R is of 12.5Ω. Determine the balance point of the bridge above if R and S are interchanged. :

D Watch Video Solution
15. A storage battery of emf 8.0 V and internal resistance 0.5Ω is being charged by a 120 V dc supply using a series resistor of 15.5Ω. What is the terminal voltage of the battery during charging? What is the purpose of having a series resistor in the charging circuit?

D Watch Video Solution

16. In a potentiometer arrangement, a cell of emf 1.25 V gives a balance point at 35.0 cm length of the wire. If the cell is replaced by
another cell and the balance point shifts to
63.0 cm , what is the emf of the second cell?

D Watch Video Solution

17. The number density of free electrons in a copper conductor estimated in Example 3.1 is
$8.5 \times 10^{28} m^{-3}$. How long does an electron take to drift from one end of a wire 3.0 m long to its other end? The area of cross-section of the wire is $2.0 \times 10^{-6} \mathrm{~m}^{2}$ and it is carrying a current of 3.0 A.
18. The earth's surface has a negative surface
charge density of $10^{-9} \mathrm{Cm}^{-2}$. The potential difference of 400 kV between the top of the atmosphere and the surface results (due to the low conductivity of the lower atmosphere)
in a current of only 1800 A over the entire globe. If there were no mechanism of sustaining atmospheric electric field, how much time (roughly) would be required to neutralise the earth's surface? (This never
happens in practice because there is a mechanism to replenish electric charges, namely the continual thunderstorms and lightning in different parts of the globe). (Radius of earth $=6.37 \times 10^{6} \mathrm{~m}$.)

D Watch Video Solution

19. Six lead-acid type of secondary cells each of emf 2.0 V and internal resistance 0.015Ω are
joined in series to provide a supply to a resistance of 8.5Ω. What are the current
drawn from the supply and its terminal voltage?

D Watch Video Solution

20. A secondary cell after long use has an emf of 1.9 V and a large internal resistance of 380Ω
. What maximum current can be drawn from the cell? Could the cell drive the starting motor of a car?

D Watch Video Solution
21. Two wires of equal length, one of aluminium and the other of copper have the same resistance. Which of the two wires is lighter? Hence explain why aluminium wires are preferred for overhead power cables. ($\rho_{A} l=2.63 \times 10^{-8} \Omega m, \rho_{C} u=1.72 \times 10^{-8} \Omega m$
. Relative density of $\mathrm{A} 1=2.7$, of $\mathrm{Cu}=8.9$.)

D Watch Video Solution

22. What conclusion can you draw from the following observations on a resistor made of
alloy manganin? :

Current \mathbf{A}	Voltage V	Current \mathbf{A}	Voltage V
$\mathbf{0 . 2}$	3.94	3.0	59.2
0.4	7.87	4.0	78.8
$\mathbf{0 . 6}$	$\mathbf{1 1 . 8}$	5.0	98.6
$\mathbf{0 . 8}$	15.7	6.0	118.5
$\mathbf{1 . 0}$	19.7	7.0	138.2
$\mathbf{2 . 0}$	39.4	8.0	158.0

- Watch Video Solution

23. Answer the following questions: A steady
current flows in a metallic conductor of non-
uniform cross-section. Which of these quantities is constant along the conductor: current, current density, electric field, drift speed?

- Watch Video Solution

24. Answer the following questions: Is Ohm's law universally applicable for all conducting elements? If not, give examples of elements which do not obey Ohm's law.

- Watch Video Solution

25. Answer the following questions: A low voltage supply from which one needs high
currents must have very low internal resistance. Why?

D Watch Video Solution

26. Answer the following questions: A high tension (HT) supply of, say, 6 kV must have a very large internal resistance. Why?

D Watch Video Solution

27. Choose the correct alternative: Alloys of metals usually have (greater $/ \leq s s$) resistivity than that of their constituent metals.

- Watch Video Solution

28. Choose the correct alternative: Alloys usually have much (lower/higher) temperature coefficients of resistance than pure metals.
29. Choose the correct alternative: The resistivity of the alloy manganin is nearly independent (of/ or increases) rapidly with increase of temperature.

D Watch Video Solution

30. Choose the correct alternative: The resistivity of a typical insulator (e.g., amber) is
greater than that of a metal by a factor of the order of $\left(10^{22} / 10^{3}\right)$.

D Watch Video Solution

31. Given n resistors each of resistance R. how
will you combine them to get the maximum effective resistance? What is the ratio of the maximum to minimum resistance?
32. Given n resistors each of resistance R. how will you combine them to get the maximum effective resistance? What is the ratio of the maximum to minimum resistance?

D Watch Video Solution

33. Given the resistances of $1 \Omega, 2 \Omega, 3 \Omega$, how
will be combine them to get an equivalent resistance of (i) $(11 / 3) \Omega$ (ii) $(11 / 5) \Omega$, (iii) 6Ω , (iv) $(6 / 11) \Omega$?
34. Determine the equivalent resistance of networks shown in Fig. 3.31.:

(Watch Video Solution
35. Determine the current drawn from a 12 V supply with internal resistance 0.5Ω by the infinite network shown in Fig. Each resistor has 1Ω resistance. :

36. Figure shows a potentiometer with a cell of
2.0 V and internal resistance 0.40Ω
maintaining a potential drop across the resistor wire $A B$. A standard cell which maintains a constant emf of 1.02 V (for very moderate currents upto a few mA) gives a balance point at 67.3 cm length of the wire. To ensure very low currents drawn from the standard cell, a very high resistance of $600 \mathrm{k} \Omega$
is put in series with it, which is shorted close to the balance point. The standard cell is then replaced by a cell of unknown emf ε and the
balance point found similarly, turns out to be at 82.3 cm length of the wire. What is the value $\varepsilon ?:$

- Watch Video Solution

37. Figure shows a potentiometer with a cell of 2.0 V and internal resistance 0.40Ω maintaining a potential drop across the resistor wire $A B$. A standard cell which maintains a constant emf of 1.02 V (for very moderate currents upto a few mA) gives a balance point at 67.3 cm length of the wire. To ensure very low currents drawn from the standard cell, a very high resistance of $600 k \Omega$
is put in series with it, which is shorted close to the balance point. The standard cell is then replaced by a cell of unknown emf ε and the
balance point found similarly, turns out to be at 82.3 cm length of the wire. What purpose does the high resistance of $600 \mathrm{k} \Omega$ have? :

(D) Watch Video Solution
38. Figure 3.33 shows a potentiometer with a cell of 2.0 V and internal resistance 0.40Ω maintaining a potential drop across the resistor wire $A B$. A standard cell which maintains a constant emf of 1.02 V (for very moderate currents upto a few mA) gives a balance point at 67.3 cm length of the wire. To ensure very low currents drawn from the standard cell, a very high resistance of $600 \mathrm{k} \Omega$
is put in series with it, which is shorted close to the balance point. The standard cell is then replaced by a cell of unknown emf ε and the
balance point found similarly, turns out to be at 82.3 cm length of the wire. Is the balance point affected by the internal resistance of the driver cell?:

- Watch Video Solution

39. Figure 3.33 shows a potentiometer with a cell of 2.0 V and internal resistance 0.40Ω maintaining a potential drop across the resistor wire $A B$. A standard cell which maintains a constant emf of 1.02 V (for very moderate currents upto a few mA) gives a balance point at 67.3 cm length of the wire. To ensure very low currents drawn from the standard cell, a very high resistance of $600 \mathrm{k} \Omega$
is put in series with it, which is shorted close to the balance point. The standard cell is then replaced by a cell of unknown emf ε and the
balance point found similarly, turns out to be at 82.3 cm length of the wire. Is the balance point affected by the internal resistance of the driver cell?:

- Watch Video Solution

40. Figure 3.33 shows a potentiometer with a cell of 2.0 V and internal resistance 0.40Ω maintaining a potential drop across the resistor wire $A B$. A standard cell which maintains a constant emf of 1.02 V (for very moderate currents upto a few mA) gives a balance point at 67.3 cm length of the wire. To ensure very low currents drawn from the standard cell, a very high resistance of $600 k \Omega$
is put in series with it, which is shorted close to the balance point. The standard cell is then replaced by a cell of unknown emfe and the
balance point found similarly, turns out to be at 82.3 cm length of the wire. Would the method work in the above situation if the driver cell of the potentiometer had an emf of 1.0 V instead of 2.0 V ? :

41. Figure 3.33 shows a potentiometer with a cell of 2.0 V and internal resistance 0.40Ω maintaining a potential drop across the resistor wire $A B$. A standard cell which maintains a constant emf of 1.02 V (for very moderate currents upto a few mA) gives a balance point at 67.3 cm length of the wire. To ensure very low currents drawn from the standard cell, a very high resistance of $600 \mathrm{k} \Omega$
is put in series with it, which is shorted close to the balance point. The standard cell is then replaced by a cell of unknownemf ε and the
balance point found similarly, turns out to be at 82.3 cm length of the wire. Would the circuit work well for determining an extremely small emf, say of the order of a few $m V$ (such as the typical emf of a thermo-couple)? If not, how will you modify the circuit?:

42. Figure 3.34 shows a potentiometer circuit for comparison of two resistances. The balance point with a standard resistor $R=10.0 \Omega$ is found to be 58.3 cm , while that with the unknown resistance X is 68.5 cm .

Determine the value of X. What might you do
if you failed to find a balance point with the
given cell of emf ε ? :

- Watch Video Solution

43. Figure 3.35 shows a 2.0 V potentiometer used for the determination of internal
resistance of a 1.5 V cell. The balance point of the cell in open circuit is 76.3 cm . When a resistor of 9.5Ω is used in the external circuit of the cell, the balance point shifts to 64.8 cm length of the potentiometer wire. Determine the internal resistance of the cell. :

\square
