©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - PSEB

NUCLEI

Exercise

1. Two stable isotopes of lithium ${ }_{3}^{6} L i$ and ${ }_{3}^{7} L i$
have respective abundances of 7.5% and
92.5%. These isotopes have masses 6.01512 u
and 7.01600 u, respectively. Find the atomic mass of lithium.

D Watch Video Solution

2. Boron has two stable isotopes, ${ }_{5}^{10} B$ and ${ }_{5}^{11} B$.

Their respective masses are 10.01294 u and
11.00931 u , and the atomic mass of boron is
10.811 u . Find the abundances of ${ }_{5}^{10} B$ and ${ }_{5}^{11} B$.
3. The three stable isotopes of neon: ${ }_{10}^{20} N e$,
${ }_{10}^{21} \mathrm{Ne}$ and ${ }_{10}^{22} \mathrm{Ne}$ have respective abundances of $90.51 \%, 0.27 \%$ and 9.22%. The atomic masses of the three isotopes are $19.99 \mathrm{u}, 20.99 \mathrm{u}$ and 21.99 u,respectively. Obtain the average atomic mass of neon.

- Watch Video Solution

4. Obtain the binding energy (in MeV) of a nitrogen nucleus $\left({ }_{7}^{14} N\right)$, given $\mathrm{m}\left({ }_{7}^{14} N\right)$
$=14.00307 \mathrm{u}$

D Watch Video Solution

5. Obtain the binding energy of the nuclei ${ }_{26}^{56} \mathrm{Fe}$ and ${ }_{83}^{209} \mathrm{Bi}$ in units ofMeV from the following data: $m\left({ }_{26}^{56} F e\right)=55.934939$ u m
$\left({ }_{83}^{209} B i\right)=208.980388 \mathrm{u}$

D Watch Video Solution
6. A given coin has a mass of 3.0 g .Calculate
the nuclear energy that would be required to
separate all the neutrons and protons from each other. For simplicity assume that the coin
is entirely made of ${ }_{29}^{63} \mathrm{Cu}$ atoms (of mass 62.92960 u).

D Watch Video Solution

7. Write nuclear reaction equations for-$\alpha-$ decayo $f_{88}^{226} R a$
8. Write nuclear reaction equations for-$\alpha-$ decayo $f_{94}^{242} P u$

D Watch Video Solution

9. Write nuclear reaction equations for-
$\beta-\operatorname{decayof} f_{15}^{32} P$

- Watch Video Solution

10. Write nuclear reaction equations for-
$\beta-$ decayof $f_{83}^{210} B i$

- Watch Video Solution

11. Write nuclear reaction equations for- $\beta^{+}{ }_{-}$ decay of ${ }_{6}^{11} C$

D Watch Video Solution

12. Write nuclear reaction equations for$\beta^{ \pm} \operatorname{decayof}_{43}^{97} T c$
13. Write nuclear reaction equations forelectron capture of ${ }_{54}^{120} \mathrm{Xe}$

- Watch Video Solution

14. A radioactive isotope has a half-life of T years. How long will it take the activity to reduce to- 3.125%

- Watch Video Solution

15. A radioactive isotope has a half-life of T years. How long will it take the activity to reduce to -1% of its original value?

- Watch Video Solution

16. The normal activity of living carboncontaining matter is found to be about 15 decays per minute for every gram of carbon.

This activity arises from the small proportion of radioactive ${ }_{6}^{14} C$ present with the stable
carbon isotope ${ }_{6}^{12} C$. When the organism is dead, its interaction with the atmosphere
(which maintains the above equilibrium activity) ceases and its activity begins to drop.

From the known half-life (5730 years) of ${ }_{6}^{14} C$, and the measured activity, the age of the specimen can be approximately estimated.

This is the principle of ${ }_{6}^{14} C$ dating used in archaeology. Suppose a specimen from

Mohenjodaro gives an activity of 9 decays per minute per gram of carbon. Estimate the approximate age of the Indus-Valley civilisation.

- Watch Video Solution

17. Obtain the amount of ${ }_{27}^{60} \mathrm{Co}$ necessary to provide a radioactive source of 8.0 mCi strength. The half-life of ${ }_{27}^{60} \mathrm{Co}$ is 5.3 years.

- Watch Video Solution

18. The half-life of ${ }_{38}^{90} S r$ is 28 years. What is the disintegration rate of 15 mg of this isotope.
19. Obtain approximately the ratio of the nuclear radii of the gold isotope ${ }_{79}^{197} A u$ and the silver isotope ${ }_{47}^{107} \mathrm{Ag}$.

D Watch Video Solution

20. Find the Q-value and the kinetic energy of
the emitted a-particle in the $\alpha-$ decay of -
${ }_{88}^{226} R a$.Given $\mathrm{m}\left({ }_{88}^{226} R a\right)=226.02540 \mathrm{u}$ and $\mathrm{m}($
$\left.{ }_{86}^{222} R n\right)=222.01750 u$.
21. Find the Q-value and the kinetic energy of
the emitted a-particle in the a-decay of $-{ }_{86}^{220} R n$
.Given $\mathrm{m}\left({ }_{86}^{220} R n\right)=220.01137 \mathrm{u}, \mathrm{m}\left({ }_{84}^{216} \mathrm{Po}\right)=$ 216.00189 u.

D Watch Video Solution

22. The radionuclide ${ }^{11} C$ decays according to
${ }_{6}^{11} C \rightarrow{ }_{5}^{11} B+e^{+}+v: T_{\frac{1}{2}}=20.3 \mathrm{~min}$.The maximum energy of the emitted positron is
0.960 MeV. Given the mass values: $\mathrm{m}\left({ }_{6}^{11} C\right)=$
11.011434 u and $\mathrm{m}\left({ }_{6}^{11} B\right)=11.009305 \mathrm{u}$, calculate Q and compare it with the maximum energy of the positron emitted.

- Watch Video Solution

23. The nucleus ${ }_{10}^{23} N e$ decays by β^{-}emission.

Write down the β-decay equation and determine the maximum kinetic energy of the electrons emitted. Given that: m $\left({ }_{10}^{23} N e\right)=$ 22.994466 u m ($\left.{ }_{11}^{23} N a\right)=22.989770$ u.
24. The Q value of a nuclear reaction
$A+b \rightarrow C+d$
is defined
$Q=\left[m_{A}+m_{b}-m_{C}-m_{d}\right] c^{2}$ where the masses refer to the respective nuclei.

Determine from the given data the Q-value of
the following reaction and state whether the reaction is exothermic or endothermic. ${ }_{1}^{1} H^{+}$ ${ }_{1}^{3} H \rightarrow{ }_{1}^{2} H+{ }_{1}^{2} H$ Atomic masses are given to be $\mathrm{m}\left({ }_{1}^{2} H\right)=2.014102 \mathrm{um}\left({ }_{1}^{3} H\right)=3.016049 \mathrm{u}$
25. The Q value of a nuclear reaction
$A+b \rightarrow C+d$
is defined
by
$Q=\left[m_{A}+m_{b}-m_{C}-m_{d}\right] c^{2}$ where the masses refer to the respective nuclei.

Determine from the given data the Q-value of the following reaction and state whether the reaction is exothermic or endothermic. ${ }_{6}^{12} C+$ ${ }_{6}^{12} \mathrm{C} \rightarrow{ }_{10}^{20} \mathrm{Ne}+{ }_{2}^{4} \mathrm{He}$ Atomic masses are given to be $\mathrm{m}\left({ }_{6}^{12} C\right)=12.000000 \mathrm{u} \mathrm{m}\left({ }_{10}^{20} N e\right)=$ 19.992439 u
26. Suppose, we think of fission of a ${ }_{26}^{56} \mathrm{Fe}$ nucleus into two equal fragments, ${ }_{13}^{28} A l$. Is the fission energetically possible? Argue by working out Q of the process. Given m ($\left.{ }^{"}{ }^{-} 26^{\wedge} 56 \mathrm{Fe}\right)=55.93494 u$ and $m\left({ }_{13}^{28} A l\right) \quad=$ 27.98191 u.

Watch Video Solution

27. The fission properties of ${ }_{94}^{239} \mathrm{Pu}$ are very similar to those of ${ }_{92}^{235} \mathrm{U}$. The average energy released per fission is 180 MeV . How much energy, in MeV , is released if all the atoms in 1 kg of pure ${ }_{94}^{239} \mathrm{Pu}$ undergo fission?

D Watch Video Solution

28. A 1000 MW fission reactor consumes half
of its fuel in 5.00 y. Howmuch ${ }_{92}^{235} U$ did it contain initially? Assume that the reactor
operates 80% of the time, that all the energy
generated arises from the fission of 23592 U and that this nuclide is consumed only by the fission process.

- Watch Video Solution

29. How long can an electric lamp of 100 W be kept glowing by fusion of 2.0 kg of deuterium?

Take the fusion reaction as $\left({ }_{1}^{2} H\right)+\left({ }_{1}^{2} H\right) \rightarrow$

$$
\left({ }_{2}^{3} \mathrm{He}\right)+n+3.27 \mathrm{MeV}
$$

- Watch Video Solution

30. Calculate the height of the potential barrier for a head on collision of two deuterons. (Hint: The height of the potential barrier is given by the Coulomb repulsion between the two deuterons when they just touch each other. Assume that they can be taken as hard spheres of radius 2.0 fm .)

D Watch Video Solution

31. From the relation $R=R_{0} A^{\frac{1}{3}}$, where R_{0} is
a constant and A is the mass number of a nucleus, show that the nuclear matter density is nearly constant (i.e. independent of A).

D Watch Video Solution

32. For the β^{+}(positron) emission from a nucleus, there is another competing process known as electron capture (electron from an inner orbit, say, the K emitted). $e^{+}+{ }_{Z}^{A} X \rightarrow$
${ }_{Z-1}^{A} Y+v$. Show that if β^{+}emission is energetically allowed, electron capture is necessarily allowed but not vice-versa

D Watch Video Solution

33. In a periodic table the average atomic mass
of magnesium is given as 24.312 u . The average
value is based on their relative natural
abundance on earth. The three isotopes and
their masses are ${ }_{12}^{24} \mathrm{Mg}$ (23.98504u), ${ }_{12}^{25} \mathrm{Mg}$
(24.98584u) and ${ }_{12}^{26} M g$ (25.98259u). The natural
abundance of ${ }_{12}^{24} \mathrm{Mg}$ is 78.99% by mass.
Calculate the abundances of other two isotopes.

D Watch Video Solution

34. The neutron separation energy is defined as the energy required to remove a neutron
from the nucleus. Obtain the neutron
separation energies of the nuclei ${ }_{20}^{41} C a$ and ${ }_{13}^{27} A l$ from the following data: $\mathrm{m}\left({ }_{20}^{40} C a\right)=$
39.962591 u $\mathrm{m}\left({ }_{20}^{41} C a\right)=40.962278$ u m$\left({ }_{13}^{26} A l\right)=$ $25.986895 \mathrm{u} \mathrm{m}\left({ }_{13}^{27} A l\right)=26.981541 \mathrm{u}$

D Watch Video Solution

35. A source contains two phosphorous radio nuclides ${ }_{15}^{32} P \quad\left(T_{\frac{1}{2}}=14.3 d\right) \quad$ and $\quad{ }_{15}^{33} P$ $\left(T_{\frac{1}{2}}=25.3 d\right)$. Initially, 10% of the decays come from ${ }_{15}^{33} P$. How long one must wait until 90\% do so?

D Watch Video Solution

36. Under certain circumstances, a nucleus can decay by emitting a particle more massive than an α-particle. Consider the following decay processes: ${ }_{88}^{223} \mathrm{Ra} \rightarrow{ }_{82}^{209} \mathrm{~Pb}+{ }_{6}^{14} \mathrm{C}$, ${ }_{88}^{223} \mathrm{Ra} \rightarrow{ }_{86}^{219} \mathrm{Rn}+{ }_{2}^{4} \mathrm{He}$.Calculate the Q-values for these decays and determine that both are energetically allowed.

D Watch Video Solution

37. Consider the fission of ${ }_{92}^{238} U$ by fast neutrons. In one fission event, no neutrons are
emitted and the final end products, after the
beta decay of the primary fragments, are ${ }_{58}^{140} C e$ and ${ }_{44}^{99} R u$. Calculate Q for this fission process. The relevant atomic and particle masses are $\mathrm{m}\left({ }_{92}^{238} U\right)=238.05079 \mathrm{u} \mathrm{m}\left({ }_{58}^{140} C e\right)$
$=139.90543 \mathrm{u} \mathrm{m}\left({ }_{44}^{99} R u\right)=98.90594 \mathrm{u}$

D Watch Video Solution

38. Consider the $\mathrm{D}-\mathrm{T}$ reaction (deuteriumtritium fusion) ${ }_{1}^{2} H+{ }_{1}^{3} H \rightarrow{ }_{2}^{4} H e \quad+n$.

Calculate the energy released in MeV in this
reaction from the data: $\mathrm{m}\left({ }_{1}^{2} H\right)=2.014102 \mathrm{u} \mathrm{m}($ $\left.{ }_{1}^{3} H\right)=3.016049 \mathrm{u}$

D Watch Video Solution

39. Consider the D $_1^{\wedge} 2 \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+n^{-}$

Consider the radius of both deuterium and tritium to be approximately 2.0 fm . What is the kinetic energy needed to overcome the coulomb repulsion between the two nuclei? To what temperature must the gas be heated to initiate the reaction?

Watch Video Solution

40. Obtain the maximum kinetic energy of β particles, and the radiation frequencies of γ decays in the decay scheme shown in Fig. 13.6.

You are given that $\mathrm{m}\left({ }^{198} A u\right)=197.968233 \mathrm{u} \mathrm{m}($
$\left.{ }^{198} \mathrm{Hg}\right)=197.966760 \mathrm{u}:$

D Watch Video Solution
41. Calculate and compare the energy released by fusion of 1.0 kg of hydrogen deep within

Sun.

- Watch Video Solution

42. Calculate the energy released by the fission of 1.0 kg of ${ }^{235} \mathrm{U}$ in a fission reactor.

- Watch Video Solution

43. Suppose India had a target of producing by

2020 AD, 200,000 MW of electric power, ten percent of which was to be obtained from nuclear power plants. Suppose we are given
that, on an average, the efficiency of utilization
(i.e. conversion to electric energy) of thermal energy produced in a reactor was 25%. How much amount of fissionable uranium would our country need per year by 2020? Take the heat energy per fission of ${ }^{235} U$ to be about 200 MeV .

