©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SARAS PUBLICATION

CURRENT ELECTRICITY

Example

1. A car moves from X to Y with a uniform
speed ν_{u} and returns to Y with a uniform
speed ν_{d}.The average speed for this round trip is:
A. $\frac{\nu_{u}+\nu_{d}}{2}$
B. $\frac{2 \nu_{d} \nu_{u}}{\nu_{d}+\nu_{u}}$
C. $\sqrt{\nu_{u} \nu_{d}}$
D. $\frac{\nu_{d} \nu_{u}}{\nu_{d}+\nu_{u}}$

Answer:
(Watch Video Solution
2. Two condenser,one of capacity C and the other of capacity $\frac{C}{2}$ are connected to a V-volt battery, as shown. The work done in charging fully both the condensers is :

A. $\frac{1}{2} C V^{2}$
B. $2 C V^{2}$
C. $\frac{1}{4} C V^{2}$
D. $\frac{3}{4} C V^{2}$

Answer:

- Watch Video Solution

3. The total power dissipated in watts in the circuit shown here is :

A. 4
B. 16
C. 40
D. 54

Answer:

D Watch Video Solution

4. Three resistances P, Q, R each of 2Ω and unknown resistance S form the four arms of a

Wheatstone bridge circuit. When a resistance
of 6Ω is connected in parallel to S the bridge gets balanced.What is the value of S ?
A. 1Ω
B. 2Ω
C. 3Ω
D. 6Ω

Answer:

- Watch Video Solution

5. The resistance of an ammetre is 13Ω and its

scaleis graduated for a current upto 100 amps.After and additional shunt has been connected to this ammeter it becomes possible to measure currents upto 750 amperes by this meter.The value of shunt resistance is:
A. $2 \mathrm{k} \Omega$
B. 20Ω
C. 2Ω

D. 0.2Ω

Answer:

D Watch Video Solution

6. A current of 3 amp flows through the 2Ω
resistor shown in the circuit.The power dissipated in the 5Ω resistor is:

A. 4 watt
B. 2 watt
C. 1 watt
D. 5 watt

Answer:

D Watch Video Solution

7. A wire of a certain material is stretched slowly by ten percent. Its new resistance and specific resistance become respectively:
A. 1.2 times, 1.1 times
B. 1.21 times,same
C. both remain the same
D. 1.1 times, 1.1 times

Answer:

D Watch Video Solution
8. A particle of mass 1 mg has the same wavelength as an electron moving with a
velocity of $3 \times 10^{6} \mathrm{~ms}^{-1}$. The velocity of the particle is:(Mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$)
A. $2.7 \times 10^{-18} m s^{-1}$
B. $9 \times 10^{-2} m s^{-1}$
C. $3 \times 10^{-31} \mathrm{~ms}^{-1}$
D. $2.7 \times 10^{-21} \mathrm{~ms}^{-1}$

Answer:

- Watch Video Solution

9. A cell can be balanced against 110 cm and

100 cm of potentiometer wire, resectively respectively with and without being short circuited through a resistance of 10Ω. Its internal resistance is:
A. 1.0 ohm
B. 0.5 ohm
C. 2.0 ohm
D. zero
10. A transistor is operated in common emitter configuration at $\mathrm{V}_{-} \mathrm{c}=2$ such that a change in the base current from $100 \mu \mathrm{~A}$ to 200 $\mu \mathrm{A}$ produces a change in the collector current from 5 mA to 10 mA .The current gain is:
A. 100
B. 150
C. 50
D. 75

Answer:

- Watch Video Solution

11. See the electric circuit shown in this Figure.

Which of the following equations is a correct

equation for it?

A. $\varepsilon_{2}-i_{2} r_{2} \varepsilon_{1} i_{1} r_{1}=0$

$$
\text { B. }-\varepsilon_{2}-\left(i_{2} r_{2}\right) R+i_{2} r_{2}=0
$$

C. $\varepsilon_{1}-\left(i_{1}+i_{2}\right) R+i_{1} r_{1}=0$
D. $\varepsilon_{1}-\left(i_{1}+i_{2}\right) R-i_{1} r_{1}=0$

Answer:

D Watch Video Solution

12. A wave in a string has an amplitude of

2 cm . The wave travels in the +ve direction of x axis with a speed of $128 \mathrm{~m} / \mathrm{sec}$.and it is noted
that 5 complete waves fit in 4 m length of the string. The equation describing the wave is:
A. $y=(0.02) m \sin (15.7 x-2010 t)$
B. $y=(0.02) m \sin (15.7 x+2010 t)$
C. $y=(0.02) m \sin (7.85 x-1005 t)$
D. $y=(0.02) m \sin (7.85 x+1005 t)$

Answer:

D Watch Video Solution

13. A student measurres the terminal potential
difference (V) of a cell (of emf \in and internal
resistancer) as a function of the current (I)
flowing through it.The slope, and intercept, of
the graph between V and I, then, respectively, equal:
A. $-r$ and \in
B. r and $-\epsilon$
C. $-\in$ and r
D. \in and $-r$

Answer:

D Watch Video Solution

14. Consider the following two statements: (A)

Kirchoffs junction law follows from the conversation of charge.(B) Kirchoffs loop law follows from the conversation of energy. Which of the following is correct?
A. Both (A) and (B) are wrong
B. (A) is correct and (B) is wrong

C. (A) is wrong and (B) is correct

D. Both (A) and (B) are correct

Answer:

- Watch Video Solution

15. Four charges, each of value q, are placed at
the four corners of a square of side a. What is
the potential at the centre of the square

> B. $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q}{L}(1+\sqrt{5})$
> C. $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q}{L}\left(1+\frac{1}{\sqrt{5}}\right)$
> D. $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q}{L}\left(1-\frac{1}{\sqrt{5}}\right)$

Answer:

D Watch Video Solution

16. If power dissipaited the 9Ω resistor is
shown is 36 watt,the potential difference
across the 2Ω resistor is

A. 2 Volt
B. 4 Volt
C. 8 Volt
D. 10 Volt

Answer:
17. A current of 2 A flows through a 2Ω resistor when connected across a battery .The same battery supplies a current across 0.5 A when across connected across a 9Ω resistor.The internal resistance of the battery is
A. 1Ω
B. 0.5Ω
C. $\frac{1}{3} \Omega$
D. $\frac{1}{4} \Omega$

Answer:

D Watch Video Solution

18. A uniform elecric field and a uniform magenetic field are acting along the same direction in certain region.If an electron is projected in the region such that its velocity is pointed along directions of fields, then the electron
A. Will turn towards left of direction of motion
B. Will turn towards right of direction of motion
C. Speed will decrease
D. Speed will increase

Answer:
(D) Watch Video Solution
19. A ring is made of wire having a distance
$R_{0}=12 \Omega$. Find the points A and B as shown in figure,at which a current carrying conductor should be connected so that the resistance R of the sub circuit between these points is equal to $\frac{8}{3} \Omega$

$$
\begin{aligned}
& \text { A. } \frac{I_{1}}{I_{2}}=\frac{1}{2} \\
& \text { B. } \frac{I_{1}}{I_{2}}=\frac{3}{8}
\end{aligned}
$$

C. $\frac{I_{1}}{I_{2}}=\frac{1}{3}$
D. $\frac{I_{1}}{I_{2}}=\frac{5}{8}$

Answer:

D Watch Video Solution

20. A particle has initial velocity $(2 \vec{i}+3 \vec{j})$ and acceleration $(0.3 \vec{i}+0.2 \vec{j})$. The magnitude of velocity after 10 seconds will be
A. $5 \sqrt{2}$ units
B. 5 units
C. 9 units
D. $9 \frac{X_{L}}{R}$ units

Answer:

D Watch Video Solution

21. A wire of resistance 4Ω is stretched to twice its original length.The resistance of stretched wire would be
A. 2Ω
B. 4Ω
C. 8Ω
D. 16Ω

Answer:

D Watch Video Solution

22. The internal resistance of a 2.1 v cell which gives a current of 0.2 A through a resistance of
A. 0.2Ω
B. 0.5Ω
C. 0.8Ω
D. 1.0Ω

Answer:

D Watch Video Solution

23. The resistance of the four arms P, Q, R and S
in a Wheatstone's bridge are 10 ohm, 30 ohm,

30 ohm and 90 ohm, respectively.The e.m.f. and
internal resistance of the cell are 7 volt and 5
ohm respectively.lf the galvanometer
resistance is 50 ohm, the current drawn from
the cell will be
A. 1.0 A
B. 0.2 A
C. 0.1 A
D. 2.0 A

Answer:

24. In the adjacent figure. $A C=6 \mathrm{~cm}, A B=5 \mathrm{~cm}$

and $\angle B A C=30^{\circ}$. Find the area of the triangle.

A. $3: 4: 5$
B. $9: 16: 25$
C. $27: 32: 35$
D. 21:24: 25

Answer:

D Watch Video Solution

25. Two rods are joined end to end as shown.

Both have a cross-sectional area of $0.01 \mathrm{~cm}^{2}$.

Each is 1 m long. One rod is a copper with resistivity of 1.7×10^{-6} ohm -centimetre, the other is of iron with a resistivity of $10^{\wedge}-5^{`}$ ohmcentimeter. How much voltage is required to
produce a current of 1 ampere in the rods?

A. 0.117 V
B. 0.00145 V
C. 0.0145 V
D. $1.7 \times 10^{-6} \mathrm{~V}$

Answer:

- Watch Video Solution

26. A conducting sphere of radius R is given a charge Q.The electric potential and the electric field at the centre of the sphere respectively are
A. zero and Q
$\overline{4 \pi \varepsilon_{0} R^{2}}$
B. $\frac{Q}{4 \pi \varepsilon_{0} R}$ and zero
C. $\frac{Q}{4 \pi \varepsilon_{0} R}$ and $\frac{Q}{4 \pi \varepsilon_{0} R^{2}}$
D. Both are zero

Answer:
27. The resistances in the two arms of the metre bridge are 5Ω and $\mathrm{R} \Omega$ respectively.

When resistance R is shunted with an equal
resistance, the new balance point is at $1.6 l_{1}$
.The resistance R, is:

A. 10Ω
B. 15Ω
C. 20Ω
D. 25Ω

Answer:

- Watch Video Solution

28. A potentiometer circuit has been set up for
finding the internal resistance of a given cell.The main battery, used across the potentiometer wire, has an emf of 2.0 V and a
potentiomter were itself is 4 m long. When the
resistance, R, connected across the given cell,
has values of (i) Infinity (ii) 9.5Ω the'balancing
lengths', on the potentiometerwire are found to be 3 m and 2.85 m , respectively. The value of internal resistance of cell is
A. 0.25Ω
B. 0.95Ω
C. 0.5Ω
D. 0.75Ω

- Watch Video Solution

29. A potentiometer wire of length L and a resistance r are connected in series with a battery of e.m.f. E_O is balanced at a length l of the potentiometer wire. The e.m.f. E will be given by

$$
\begin{aligned}
& \text { A. } \frac{L E_{0} r}{r+r_{1} l} \\
& \text { B. } \frac{L E_{0} r}{l r_{2}} \\
& \text { C. } \frac{E_{0} r}{r+r_{1}} \cdot \frac{l}{L}
\end{aligned}
$$

D. $\frac{E_{0} l}{L}$

Answer:

- Watch Video Solution

30. Across a metallic conductor of nonuniform cross section a constant potential difference is applied. The quantity which remains constant along the conductor is
A. current

B. drift velocity

C. electric field

D. current density

Answer:

D Watch Video Solution

31. A potentiometre wire has length $4 m$ resistance 8Ω. The resistance that must be connected in series with the wire and an
accumulator of e.m.f. $2 v$, so as to get a potential gradient 1 mV per cm on the wire is:
A. 40Ω
B. 44Ω
C. 48Ω
D. 32Ω

Answer:
(Watch Video Solution
32. A, B and C are voltmetres of resistance R, $1.5 R$ and $3 R$ as shown in the figure. When some potential difference is applied between X and Y the voltmetre readings are V_{A}, V_{B} and V_{C} respectively, Then:

A. $V_{A} \neq V_{B}=V_{C}$
B. $V_{A}=V_{B} \neq V_{C}$
C. $V_{A} \neq V_{B} \neq V_{C}$

$$
\text { D. } V_{A}=V_{B}=V_{C}
$$

Answer:

D Watch Video Solution

33. An inductor 20 mH , a capacitor $50 \mu \mathrm{~F}$ and
a resistor 40 are connected in series across a
source of emf $\mathrm{V}=10 \sin 340 \mathrm{t}$. The power loss in
A.C. circuit is
A. 0.89 W
B. 0.51 W
C. 0.67 W
D. 0.76 W

Answer:

D Watch Video Solution

34. A potentiometre wire is 100 cm long and a constant potential difference is maintained across it. Two cells are connected in series first to support one another and then in opposite
direction. The balance points are obtained at

50 cm and 10 cm from the positive end of the wire in two cases. The ration of emf's is
A. $3: 2$
B. $5: 1$
C. 5:4
D. $3: 4$

Answer:

D Watch Video Solution
35.

capacitor of $2 \mu \mathrm{~F}$ is charged as shown in the diagram. When the switch S is turned to position 2 , the percentage of its stored energy dissipated is:
A. 80%
B. 0\%
C. 20\%
D. 75%

Answer:

D Watch Video Solution

36. If the velocity of a particle is $\nu=A t+B t^{2}$
, where A and B are constants, then the distance tavelled by it between 1 s and 2 s is
A. $\frac{A}{2}+\frac{B}{3}$
B. $\frac{3}{2} A+4 B$
C. $3 A+7 B$
D. $\frac{3}{2} A+\frac{7}{3} B$

Answer:

D Watch Video Solution

37. The charge flowing through a resistance R varies with time t as $\mathrm{Q}=a t-b t^{2}$, where a and b are positive constants. The total heat produced in R is
A. $\left(a^{\wedge} 3 R\right) / b$
B. $\left(a^{\wedge} 3 R\right) / 6 b$
C. $\left(a^{\wedge} 3 R\right) / 3 b$
D. $\left(a^{\wedge} 3 R\right) / 2 b$

Answer:

D Watch Video Solution
38. A filament bulb (500W, 100V) is to be used in a 230 v main supply. When a resistance R is
connected in series, it works perfectly and the bulb consumes 500W. The value of R is
A. 26Ω
B. 13Ω
C. 230Ω
D. 24Ω

Answer:
(Watch Video Solution
39. The given circuit has two ideal diodes connected as shown in the figure below. The current flowing through the resistance R_{1} will be

A. 1.43 A
B. 3.13 A
C. 2.5 A

D. 10.0 A

Answer:

D Watch Video Solution

40. The temperature inside a refrigator is $t_{2}^{\circ} \mathrm{C}$ and the room temperature is $t_{1}^{\circ} C$. The amount of heat delivered to the room for each joule of electrical energy consumed ideally will be

$$
\text { A. } \frac{t_{2}+273}{t_{1}-t_{2}}
$$

B. $\frac{t_{1}+t_{2}}{t_{1}+273}$
C. $\frac{t_{1}}{t_{1}-t_{2}}$
D. $\frac{t_{1}+273}{t_{1}-t_{2}}$

Answer:

D Watch Video Solution

41. The resistance of a wire is ' R ' ohm. If it is melted and stretched to ' n ' times its original
length, its new resistance will be
A. $\frac{R}{n}$
B. $n^{2} R$
C. $\frac{R}{n^{2}}$
D. $n R$

Answer:

D Watch Video Solution
42. A potentiometer is an accurate and
versatile device to make electrical
measurements of E.M.F because the method involves:
A. potential gradients
B. condition of no current flow through the

galvanometer

C. a combination of cells, galvanometer
and resistances
D. cells

Answer:

\square

