©゙’ doubtnut

PHYSICS

BOOKS - SARAS PUBLICATION

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENTS

Example

1. A charged paticle (charge q) is moving in a
circle of radius R with uniform speed V. The

A. $q \vee R$

B. $q v R / 2$
C. $q v R^{2}$
D. $q v R^{2} / 2$

Answer:
2. A beam of electron posses undeflected
through mutually perpendicular electric and magnetic fields. If the electric field is switched off and the same magnetic field is maintained, the electrons move,
A. along a straight line
B. in an elliptical orbit
C. in a circular orbit
D. \along a parabolic path
3. In an a.c circuit the e.m.f(e) and the current
(i) at any instant are given respectively by :

$$
\begin{aligned}
& \text { A. } \frac{E_{0} I_{0}}{2} \\
& \text { B. } \frac{E_{0} I_{0}}{2} \sin \phi \\
& \text { C. } \frac{E_{0} I_{0}}{2} \cos \phi \\
& \text { D. } E_{0} I_{0}
\end{aligned}
$$

Answer:
4. Power dissipated in an LCR series circuit connected to an ac source of emf ε is :

$$
\frac{\varepsilon^{2} \sqrt{R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{-}}}{R}
$$

$$
\frac{\varepsilon^{2} \sqrt{R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}}}{R}
$$

C. $\frac{\varepsilon^{2} R}{\left(\sqrt{R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}}\right)}$
D. $\frac{\varepsilon^{2} R}{R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}}$

Answer:

D Watch Video Solution

5. A thin-ring of radius R metre has charge q
coulomb uniformly spread on it . The ring
rotates about its axis with a constant
frequency of frevolution /s.The value of magnetic induction in $\omega b m^{-2}$ at the centre of the ring is :
A. $\frac{\mu_{0} q f}{2 \pi R}$
B. $\frac{\mu_{0} q}{2 \pi f R}$
C. $\frac{\mu_{0} q}{2 f R}$
D. $\frac{\mu_{0} q f}{2 R}$

Answer:

- Watch Video Solution

6. In the given circuit he reading of voltmeter
V_{1} and V_{2} are 300 volts each The reading to
the voltmeter V_{3} and ammeter A are
respectively

A. $150 \mathrm{~V}, 2.2 \mathrm{~A}$
B. $220 \mathrm{~V}, 2.2 \mathrm{~A}$
C. $220 \mathrm{~V}, 2.0 \mathrm{~A}$
D. $100 \mathrm{~V}, 2.0 \mathrm{~A}$

Answer:

D Watch Video Solution
7. In an ac circuit an alternating voltage $\mathrm{e}=200$
$\sqrt{2} \sin 100 \mathrm{t}$ volts is connected to capacitor of capacity $1 \mu F$ The r.m.s.value of the current in the circuit is :
A. 20 mA
B. 10 mA
C. 100 mA
D. 200 mA

- Watch Video Solution

8. An ac voltage is applied to a resistance R and inductor L in series If R and the inductive reactance are both equal to 3Ω the phase difference between the applied voltage and the current in the circuit is :
A. Zero
B. $\pi / 6$
C. $\pi / 4$

D. $\pi / 2$

Answer:

D Watch Video Solution

9. A transistor is operated in common emitter
configuration at $V_{e}=2 \mathrm{~V}$ such that a change in
the base current from $100 \mu A$ to $300 \mu A$ produces change in the collector current from 10 mA to 20 mA .The current gain is :
A. 25
B. 50
C. 75
D. 100

Answer:

D Watch Video Solution

10. If voltage across a bulb rated $220 \mathrm{Volt}-100$

Watt drops by 2.5% of its rated value, the percentage of the rated value by which the power would decrease is :
A. 2.5%
B. 5%
C. 10%
D. 20%

Answer:

D Watch Video Solution

11. The current (I) in the inductance is varying
with time according to the plot shown in
figureWhich one of the following is the correct
variation of voltage with time in the coil?

A.

B.

C.

D.

Answer:

- Watch Video Solution

12. Transfer characteristics output voltage
$\left(V_{0}\right)$ vs input voltgae $\left(V_{1}\right)$ for a base biased transistor in CE configuration is as shown in the figure.For using transistor as a switch,it is used

A. both in region (I) and (III)
B. in region I
C. In region I
D. In region III

Answer:

D Watch Video Solution

13. In an electrical circuit, R, I, C and AC voltage source are all connected in series. When L is removed from the circuit, the phase difference between the voltage and current in the circuit,
is $\frac{\pi}{3}$. Instead, if C is removed from the circuit,
the phase difference is again $\frac{\pi}{3}$. The power factor of the circuit is
A. $1 / \sqrt{2}$
B. 1
C. $\sqrt{3} / 2$
D. $1 / 2$

Answer:

- Watch Video Solution

14. A coil of self-inductance L is connected in
series with a bulb B and an $A C$
source.Brightness of the bulb decreases when
A. Frequency of the AC source is decreased
B. Number of turns in the coil is reduced
C. A capacitance of reactance $\mathrm{Xc}-\mathrm{XI}$ is
included in the same circuit
D. An iron rod is inserted in the coil

Answer:

15. Ten identical cells connected in series are needed to heat a wire of length one meter and radius 'r' by $10^{\circ} \mathrm{C}$ in time 't' How many cells will be required to heat the wire of lengths two meter of the same eadius bt the same temperature in time 't'?
A. 10
B. 20
C. 30
D. 40

Answer:

D Watch Video Solution

16. A current of 2.5 A flows through a coil of
inductance 5 H The magnetic flux linked with
the coil is
A. 2 Wb
B. 0.5 Wb

C. 12.5 Wb

D. Zero

Answer:

D Watch Video Solution

17. The primary of a transformer when connected to dc battery of 10 volt draws a current of 1 mA .The number of turns of the primary and secondary windings are the
current drawn by the circuit in the secondary are respectively
A. 20 V and 0.5 mA
B. 20 V and 2.0 mA
C. 10 V and 0.5 mA
D. Zero volt and therefore no current

Answer:
(Watch Video Solution
18. Two cities are 150 km apart Electric power is
sent from one city to another city through
copper wire.The fall of potential per Km is 8
volt and the average resistance per Km is 0.5Ω
. The power loss in the wire is
A. 19.2 W
B. 19.2 kW
C. 19.2 J
D. 12.2 kW

Answer:

- Watch Video Solution

19. A transformer having efficiency of 90% is working on 200 V and 3 kW power supply.If the current in the secondary coil is 6 A , the voltage across the secondary coil and the current in the primary coil respectively are
A. $300 \mathrm{~V}, 15 \mathrm{~A}$
B. $450 \mathrm{~V}, 15 \mathrm{~A}$
C. $450 \mathrm{~V}, 13.5 \mathrm{~A}$

D. $600 \mathrm{~V}, 15 \mathrm{~A}$

Answer:

D Watch Video Solution

20. A resistane ' R ' draws power ' P ' when connected to an AC source.lf an inductance is now placed in series with the resistance, such that the impendance of the circuit becomes ' Z ' the power drawm will be :

$$
\text { A. } P\left(\frac{R}{Z}\right)
$$

B. $P \sqrt{\frac{R}{Z}}$
C. P
D. $P\left(\frac{R}{Z}\right)^{2}$

Answer:

D Watch Video Solution

21. A conducting square frame of side 'a' and a
long straight wire carrying current I are located in the same plane as shown in the
figure. The frame moves to the right with a
constant velocity ' V '. The emf induced in the
frame will be proportional to :

A. $\frac{1}{(2 x-a)^{2}}$
B. $\frac{1}{(2 x+a)^{2}}$
C. $\frac{1}{(2 x-a)(2 x+a)}$
D. $\frac{1}{x^{2}}$

Answer:

D Watch Video Solution

22. An electron moves on a straight line path

XY as shown in the figure. The coil abed is
adjacent to the path of the electron. What will be the direction of current, if any, induced in
the coil?

Electron
A. No current induced
B. abcd
C. adcd
D. The current will reverse its direction as
the electron goes part the coil

Answer:

D Watch Video Solution

23. In the given figure, a diod D is connected to
an external resistance $R=100 \Omega$ and e.m.f.of 3.5

V If the barrier potential developed across the
diode is 0.5 V ,the current in the circuit will be

A. 35 mA
B. 30 mA
C. 40 mA
D. 20 mA

Answer:

- Watch Video Solution

24. Two metal wires of identical dimensions are connected in series if σ_{1} and σ_{2} are the conductivity of the metal wire respectively the effiective conductivity of the combination is
A. $\frac{\sigma_{1} \sigma_{2}}{\sigma_{1}+\sigma_{2}}$
B. $\frac{2 \sigma_{1} \sigma_{2}}{\sigma_{1}+\sigma_{2}}$
c. $\frac{\sigma_{1}+\sigma_{2}}{2 \sigma_{1} \sigma_{2}}$
D. $\frac{\sigma_{1}+\sigma_{2}}{}$ (sigma_1sigma_2)

Answer:

D Watch Video Solution

25. A circuit contains an ammeter, a battery of

30 V and a resistance 40.8 ohm all connected
in series. If the ammeter has coil of 480 ohm
and a shunt of 20 ohm, the reading in the
ammeter will be
A. $1 A$
B. 0.5 A
C. 0.25 A
D. $2 A$

Answer:

D Watch Video Solution

26. Which of the following combinations should be selected for better tuning of an L-CR circuit used for communication?

$$
\text { A. } R=15 \Omega, L=3.5 H, C=30 \mu F
$$

$$
\text { B. } R=25 \Omega, L=1.5 H, C=45 \mu F
$$

C. $R=20 \Omega, L=1.5 H, C=35 \mu F$

$$
\text { D. } R=25 \Omega, L=2.5 H, C=45 \mu F
$$

Answer:

D Watch Video Solution

27. The potential differnces across the resistance capacitance and inductance are 80
$\mathrm{V}, 40 \mathrm{~V}$ and 100 V respectively in an L-C-R circuit.The power factor of this circuit is
A. 0.8
B. 1.0
C. 0.4
D. 0.5

Answer:

D Watch Video Solution

28. In a common emitter transistor amplifier
the audio signal voltage across the collector is
$3 K \Omega$.If current gain is 100 and the base
resistance is $2 K \Omega$, the voltage and power gain of the amplifies is :
A. 15 and 200
B. 150 and 15000
C. 20 and 2000
D. 200 and 1000

Answer:
(D) Watch Video Solution
29. Figure shows a circuit that contains three identical resistor with resistance $R=9.0 \Omega$ each,two identical inductors with inductance $\mathrm{L}=2.0 \mathrm{mH}$ each,and an ideal battery with $\mathrm{emf}=$ 18V.The current ' I' through the battery just after the switch closed is,.....

A. 0.2 A
B. $2 A$
C. 0 ampere
D. 2 mA

Answer:

- Watch Video Solution

