©゙" doubtnut

PHYSICS

BOOKS - SARAS PUBLICATION

MODEL QUESTION PAPER 1

Exercise

1. Ionization potential of hydrogen atom is 13.6
$e V$. Hydrogen atoms in the ground state are excited by monochromatic radiation of photon
energy 12.1 eV . The spectral lines emitted by
hydrogen atoms according to Bohr's theory will be
A. two
B. three
C. four
D. one

Answer:

- Watch Video Solution

2. The temperature of inversion of a thermocouple is $620^{\circ} \mathrm{C}$ and the neutral temperature is $300^{\circ} \mathrm{C}$. What is the temperature of cold junction?
A. $20^{\circ} C$
B. $320^{\circ} \mathrm{C}$
C. $-20^{\circ} C$
D. $40^{\circ} \mathrm{C}$

Answer:

D Watch Video Solution
3. The resultant of $\vec{A} \times 0$ will be equal to:
A. zero
B. A
C. zero vector
D. unit vector

Answer:

- Watch Video Solution

4. The dimension of magnetic field in M, L, T and C (coulomb) is given as

$$
\text { A. } M L T^{-1} C^{-1}
$$

B. $M L T^{-1} C^{-1}$
C. $M T^{2} C^{-2}$
D. $M T^{-1} C^{-1}$

Answer:

5. If a wire of resistance R is stretched to double its length, then the new resistance is:
A. 4 R
B. 2 R
C. R
D. none of these

Answer:
(Watch Video Solution
6. A 600 Kg , rocket is set for a vertical firing. If
the exhaust speed is $1000 \mathrm{~m} / \mathrm{s}$, the gas ejected per sec. to supply the thrust needed to overcome the weight of rocket is ...
A. $117.6 \mathrm{~kg} / \mathrm{s}$
B. $58.8 \mathrm{~kg} / \mathrm{s}$
C. $6 \mathrm{~kg} / \mathrm{s}$
D. $76.4 \mathrm{~kg} / \mathrm{s}$

Answer:

7. If the unit of force and length each be increased by four times, then the unit of energy is increased by ...
A. 16 times
B. 2 times
C. 8 times
D. 4 times

Answer:

8. Angular velocity of minute's hand of a clock in radian / sec is

> A. $\frac{\pi}{30}$
> B. $\frac{\pi}{1800}$
> C. $\frac{2 \pi}{30}$
> D. $\frac{2 \pi}{100}$

Answer:

9. A constant torque acting on a uniform
circular wheel changes its angular momentum
from A° to $4 A^{\circ}$ in 4 sec . The value of torque will be
A. $4 A^{\circ}$
B. $12^{\circ} A$
C. $A^{\circ} A$
D. $\frac{3 A^{\circ}}{4}$

Answer:

10. What are the dimensions of gravitational constant
A. $M L^{-3} T^{2}$
B. $M^{-1} L^{-3} T^{2}$
C. $M^{-1} L^{3} T^{-2}$
D. $M L^{2} T^{-2}$

Answer:

D Watch Video Solution
11. The distance between centre of the earth
and moon is 384000 Km . If the mass of the
earth is $6 \times 10^{24} \mathrm{~kg}$ and G is 6.66 x
$10^{-11} N m^{2} / k g^{2}$. The speed of the moon is nearly
A. $11.2 \mathrm{~km} / \mathrm{sec}$
B. $4 \mathrm{~km} / \mathrm{sec}$
C. $1 \mathrm{~km} / \mathrm{sec}$
D. $8 \mathrm{~km} / \mathrm{sec}$

- Watch Video Solution

12. Length of wire is doubled, when ' $20 x^{\prime} 10^{\wedge} 8^{\prime}$
$\mathrm{N} / \mathrm{m}^{\wedge} 2$ stress is applied on it $\mathrm{N} / \mathrm{m}^{\wedge} 2^{\wedge}$ will be
A. 20×10^{8}
B. 20×10^{9}
C. 20×10^{10}
D. 10×10^{8}

Answer:

D Watch Video Solution

13. If S_{P} and S_{V} denote the specific heats of nitrogen gas per unit mass at constant pressure and constant volume respectively, then
A. $C_{P}-C_{v}=\frac{R}{28}$
B. $C_{P}-C_{v}=\frac{R}{14}$
C. $C_{P}-C_{v}=R$

$$
\text { D. } C_{P}-C_{v}=28 R
$$

Answer:

D Watch Video Solution

14. When a metallic bar is heated from $0^{\circ} C$ to
$100^{\circ} C$, its length increases by 0.05%, what is
the co-efficient of linear expansion of the metal?

$$
\text { A. } 5 \times 10^{-5 \circ} C^{-1}
$$

B. $5 \times 10^{-6 \circ} C^{-1}$
C. $5 \times 10^{-4 \circ} C^{-1}$
D. $5 \times 10^{-3 \circ} C^{-1}$

Answer:

D Watch Video Solution

15. If the temperatures of a black body increases from $7^{\circ} C$ to $287^{\circ} C$ then, the rate of energy of radiation is
A. 4 times
B. 16 times
C. 8 times
D. 2 times

Answer:

D Watch Video Solution

16. Estimate the fraction of molecular volume
to the actual volume occupied by oxygen gas
at STP. Take the diameter of an oxygen molecule to be $3 \stackrel{\circ}{A}$
A. $3.8 \times 10^{\wedge}(-4)^{\wedge}$
B. $20.19 x 10^{-3}$
C. $40.29 x 10^{-4}$
D. $30.39 X 10^{4}$

Answer:
(Watch Video Solution
17. The density of air at a pressure of $10^{-5} \mathrm{Nm}^{-2}$ is $1.2 \mathrm{kgm}^{-3}$. Under these conditions, the root mean square velocity of the air molecules in $m s^{-1}$ is
A. 500
B. 1000
C. 1500
D. 3000

Answer:
18. The shortest distance travelled by a particle
executing SHM form mean position in 2
seconds is equal to $\frac{\sqrt{3}}{2}$ times of its amplitude . Determine its time period.
A. $T=08$ second
B. $T=10$ second
C. $T=12$ second
D. $T=14$ second

Answer:

D Watch Video Solution

19. A body executing linear simple harmonic motion has a velocity of $3 \mathrm{~m} / \mathrm{s}$. When its displacement is $4-\mathrm{cm}$. and a velocity of $4 \mathrm{~m} / \mathrm{s}$. when its displacement is 3 cm . What is the amplitude of oscillation?
A. 5 cm .
B. 7.5 cm

C. 10 cm

D. 12.5 cm

Answer:

D Watch Video Solution

20. The work done in placing a charge of 8×10^{-18} coulomb on a condenser of capacity 100 microfarad is .
A. $16 \times 10^{-32} J$
B. $3.1 \times 10^{-26} J$
C. $4 \times 10^{-10} J$
D. $32 \times 10^{-32} J$

Answer:

- Watch Video Solution

21. The gravitational potential at a point due to a point mass is $V=$

$$
\text { A. } r, r^{-1}
$$

$$
\begin{aligned}
& \text { B. } r^{-1}, r^{-2} \\
& \text { C. } r^{-2}, r^{-3} \\
& \text { D. } r^{-2}, r^{-2}
\end{aligned}
$$

Answer:

D Watch Video Solution

22. What length of the wire of specific resistance $48 \times 10^{-8} \Omega m$ in needed to make a resistance of 4.2Ω (diameter of wire $=0.4 \mathrm{~mm}$)
A. 4.1 m
B. 3.1 m
C. 2.1 m
D. 1.1 m

Answer:

- Watch Video Solution

23. Kirchoff's II law is a consequence of
A. momentum
B. charge
C. energy
D. sum of mass and energy

Answer:

D Watch Video Solution

24. A current 1 ampere is passed through a straight wire of length 2.0 meters. The magnetic field at a point in air at a distance of

3 meters from either end of wire and lying on
the axis of wire will be

> A. $\frac{\mu_{0}}{2 \pi}$
> B. $\frac{\mu_{0}}{8 \pi}$
> C. $\frac{\mu_{0}}{4 \pi}$
> D. Zero

Answer:
(Watch Video Solution
25. The dimensions of magnetic field intensity

H are
A. $M^{0} L^{0} T^{-1} Q^{-1}$
B. $M L^{-2} T^{-2} Q$
C. $M L^{0} T^{-2} A^{-1}$
D. Both(1) and(3)

Answer:

D Watch Video Solution
26. A wire is situated in the eastwest direction and the current flowing through is 0.3 ampere.

The wire is held perpendicular to magnetic
field of $0.2 \times 10^{-4} N$ (amp -meter). The force acting on the wire will be
A. 1×10^{-15}
B. 4×10^{-5}
C. 1×10^{-6}
D. 0.0
27. A long solenoid 200 turns / cm and carries
a current I. The magnetic field at its centre is
$6.28 \times 10^{-2} w b m^{-2}$.Another long solenoid
has 100 turns $/ \mathrm{cm}$. and it carries a current
$I / 3$. The value of the magnetic field at is centre is
A. $1.05 \times 10^{-2} w b m^{-2}$
B. $1.05 \times 10^{-5} \mathrm{wbm}^{-2}$
C. $1.05 \times 10^{-3} \mathrm{wbm}^{-2}$
D. $1.05 \times 10^{-4} \mathrm{wbm}^{-2}$

Answer:

D Watch Video Solution

28. If $\mu_{0}=4 \pi \times 10^{-7} T m A^{-1} \quad$ and
$\varepsilon_{0}=8.85 \times 10^{-2} C^{2} N^{-1} m^{-2}$. The value of
$\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$ is......s
A. $3 \times 10^{7} \mathrm{~m} / \mathrm{s}$
B. $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
C. $4 \times 10^{8} \mathrm{~m} / \mathrm{s}$
D. $3 \times 10^{-8} \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

29. has the shortest wavelength
A. Ultra-violet
B. Microwaves
C. X-rays

D. Gamma rays

Answer:

D Watch Video Solution

30. The minimum distance between the object
and its real image for concave mirror is
A. F
B. 2 F
C. 4 F

D. zero

Answer:

D Watch Video Solution

31. The angle of incident at which reflected
light is totally polarised for reflection from air to glass (refractive index μ) is

$$
\begin{aligned}
& \text { A. } \sin ^{-1}(n) \\
& \text { B. } \sin ^{-1}\left[\frac{1}{n}\right]
\end{aligned}
$$

C. $\tan ^{-1}\left[\frac{1}{n}\right]$
D. $\tan ^{-1}\left[\frac{1}{n}\right)$

Answer:

D Watch Video Solution

32. A monochromatic source of light is placed at a distance d from a metal surface photoelectrons are ejected at n, kinetic energy being E. If the source is brought nearer to
distance $\frac{d}{2}$. The rate and kinetic energy per photo electron becomes nearly
A. 12 n and 2 E
B. 4nand 4E
C. 4 n and E
D. n and $4 E$

Answer:
(Watch Video Solution
33. The work function for the surface of aluminium is 4.2 eV . What will be the wavelength of that incident light for which the stopping potential will be zero
A. $2496 \stackrel{\circ}{A}$
B. $2496 \times 10^{-7} m$
C. $2649 \stackrel{\circ}{A}$
D. $2946 \stackrel{\circ}{A}$

Answer:

34. When a radio active isotopes ${ }_{88} R a^{228}$ decays in series by the emission of three α particles and a β-particle, the isotopes finally formed is ...

> A. $84 X^{220}$
> B. ${ }_{86} X^{222}$
> C. ${ }_{83} X^{216}$
> D. $83 X^{215}$

Answer:

D Watch Video Solution

35. A position is emitted by a radio active nucleus of at omic number 90.The product nucleus will have atomic number ...
A. 90
B. 96
C. 89
D. 98

Answer:

D Watch Video Solution

36. Complete the table

\vec{a}	\vec{b}	$\vec{a} \cdot \vec{b}$	$\vec{b} \cdot \vec{a}$	$\vec{a} \times \vec{b}$	$\vec{b} \times \vec{a}$
i. $\hat{i}+3 \hat{j}+4 \hat{k}$	$4 \hat{j}+8 \hat{k}$				
ii. $\hat{i}+\hat{j}-6 \hat{k}$	$2 \hat{i}+\hat{j}+8 \hat{k}$				
iii. $2 \hat{j}-6 \hat{k}$	$\hat{i}-6 \hat{j}+\hat{k}$				

A. NOR
B. OR
C. AND

D. NAND

Answer:

- Watch Video Solution

37. Which one of the following has more volume. Iron block or a wooden block of same mass.
A. sun
B. a hot cup of tea

C. a red hot iron

D. question is irrelevant

Answer:

D Watch Video Solution

38. Tritium has a half-life of 12.5 y undergoing
beta decay. What fraction of a sample of pure
tritium with remain undecayed after 25 y ?
A. $\frac{1}{4}$
B. $\frac{1}{8}$
C. $\frac{1}{2}$
D. $\frac{3}{4}$

Answer:

D Watch Video Solution

39. The dark lines in the solar spectrum are called ___ lines.
A. absorption of certain wavelengths, producing dark lines in the solar system
B. absence of certain elements in the sun
C. black body radiationsfrom the sun
D. Scattering of light

Answer:

- Watch Video Solution

40. In an P.N.P transistor circuit, the collector current is 10 mA . If 90% of the electrons emitted reach the collector.
A. emitter current will be 9 mA
B. emitter current will be 11.1 mA
C. base current will be 0.1 mA
D. base current will be 0.0 mA

Answer:

- Watch Video Solution

41. Focal length of an equiconvex lens is 20 cm .

If we cut it once perpendicular to principal axis
in and then along principal axis. Then, focal
length of each part will be:
A. 20 cm
B. 10 cm
C. 40 cm
D. 5 cm

Answer:

42. A black body is continously radiating energy at a temperature of 2880 k if U_{1}, U_{2} and U_{3} are the amount of radiation measured between the wavelength 599 \& $600 \mathrm{~nm}, 999$ \& $1000 \mathrm{~nm} \& 1499$ \& 1500 nm respectively then (wires constant $\mathrm{b}=2.88 \times 10^{26} \mathrm{kmk}$)
A. $U_{1}>U_{2}$
B. $U_{2}>U_{1}$
C. $U_{1}=0$

$$
\text { D. } U_{3}=0
$$

Answer:

D Watch Video Solution

43. The wavelength of the K_{a} line for the
uranium atom $(\mathrm{z}=92)$ is $\left(R=10 m^{-1}\right.$
A. $1.6 \stackrel{\circ}{A}$
B. $0.16 \stackrel{\circ}{A}$
C. $0.5 \stackrel{\circ}{A}$
D. $2.0{ }^{\circ}$

Answer:

- Watch Video Solution

