©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SARAS PUBLICATION

MODEL QUESTION PAPER 2

Exercise

1. In the circuit shown,if a conducting wire is
connected between points A and B, the
current in this wire will:

A. flow from A to B
B. flow in the direction which will be decided by the value
C. be zero
D. flow from B top A

Answer:

D Watch Video Solution

2. The velocity v of a particle at time t is given by $v=a t+\frac{b}{t+c}$ where a, b and c are constant. The dimensions of a, b and c respectively are
A. $\left[L T^{-2}\right],[$ L] and $[\mathrm{T}]$
B. $[\mathrm{L}],[\mathrm{T}]$ and $\left[L T^{2}\right]$
C. $\left[L^{2} T^{2}\right]$,[LT]and[I]

D. [L],[LT]and $\left[T^{2}\right]$

Answer:

D Watch Video Solution

3. Two batteries one of emf 18 V and internal resistance 2Ω. And the other of emf 12 V and internal resistance 1Ω, are connected as shown. The voltmeter V will velocity record a reading of:
A. 15 V
B. 30 V
C. 14 V
D. 18 V

Answer:

- Watch Video Solution

4. If $\vec{A}+\vec{B}+\vec{C}=0$ then $\vec{A} \times \vec{B}$ is:

A. $\vec{B} \times \vec{C}$
B. $\vec{C} \times \vec{B}$
C. $\vec{A} \times \vec{C}$
D. none of these

Answer:

D Watch Video Solution

5. The ratio of charge to potential of a body is
called as :
A. Resistance
B. Inductance
C. Conductance
D. Capacitance

Answer:

D Watch Video Solution

6. What is the dimensional formula for impluse
A. $\left[M L^{2} T^{-1}\right]$
B. $\left[M L T^{-1}\right]$
C. $\left[M L^{2} T^{-2}\right]$
D. $\left[M L T^{-2}\right]$
7. A person holds on a weight of 10 kg . at a height of 5 m . Above the ground for 5 minutes. Work done by him is
A. zero
B. 250J
C. 50J
D. 300J
8. A disc is rotating with angular velocity $(\vec{\omega})$.A force \vec{F} acts at a point whose position vector with respect to the axis of rotation is \vec{r}. The power associated with the torque due to the force is given by
A. $(\vec{r} \times \vec{F}) \cdot \vec{\omega}$
B. $(\vec{r} \times \vec{F}) \times \vec{\omega}$
c. $\vec{r} \cdot(\vec{F} \times \vec{\omega})$

$$
\text { D. } \vec{r} \times(\vec{F} \times \vec{\omega})
$$

Answer:

D Watch Video Solution

9. The ratio of kinetic energy of two bodies of moment of inertia $9 \mathrm{kgm}^{2}$ and $1 \mathrm{kgm}^{2}$ are
same. The ratio of their angular momentum is
A. $1: 9$
B. 1:3
C. 9:1
D. 3:1

Answer:

D Watch Video Solution

10. The gravitational potential at a point due
to a point mass is $V=$

$$
\text { A. } \frac{G M}{r}
$$

> B. $\frac{G M}{r^{2}}$
> C. $-\frac{G M}{r^{2}}$
> D. $-\frac{G M}{r}$

Answer:

D Watch Video Solution

11. The mass of the earth is $6 \times 10^{24} \mathrm{~kg}$ and that of the Moon is $7.4 \times 10^{22} \mathrm{~kg}$. The constant of gravitation G is $6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$ The potential energy of the system is -7.79×10^{28}

J The mean distance between the Earth and

Moon is.......... metre.

A. $3.37 \times 10^{6} m$
B. $7.6 \times 10^{4} m$
C. $1.9 \times 10^{2} m$
D. 3.8×10^{8}

Answer:
(Watch Video Solution
12. Two liquidsAand B are at $32^{\circ} \mathrm{C}$ and $24^{\circ} \mathrm{C}$,
when mixed in equal masses the temperature
of the mixture is found to be $28^{\circ} \mathrm{C}$. Their specific heats are in the ratio of
A. $3: 2$
B. 2:3
C. 1:1
D. 4:3

Answer:

13. The young's modulus of steel is
$2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ and its coefficient of linear expansion is 1.1×10^{-5} per day. The pressure to be applied to the ends of a steel cylinder to keep its length constant on raising its temperature by $100^{\circ} \mathrm{C}$ will be .
A. $5.5 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$
B. $1.8 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$
C. $2.2 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$

$$
\text { D. } 2.0 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}
$$

Answer:

D Watch Video Solution

14. A carnot engine operates between $227^{\circ} C$
and $127^{\circ} \mathrm{C}$. If it absorbs 60×10^{4} calorie at
higher temperature, how much work per cycle can the engine perform?

$$
\text { A. } 5.02 \times 10^{5} \mathrm{~J}
$$

B. $8 \times 10^{5} \mathrm{~J}$
C. $6 \times 10^{5} \mathrm{~J}$
D. none of these

Answer:

D Watch Video Solution

15. The speed of sound in a gas is V. The rms
speed of molecules of this gas is c. If $\gamma=\frac{C_{p}}{C_{v}}$ the ratio of V to c is .
A. $\frac{3}{\gamma}$
B. 0.33_{γ}
C. $\sqrt{\frac{3}{\gamma}}$
D. $\sqrt{\frac{\gamma}{3}}$

Answer:

D Watch Video Solution

16. A body oscillates with SHM according to
the equation, $X=(5.0 m) \cos [2 \pi t+\pi / 4]$.At
$\mathrm{t}=1.5 \mathrm{~s}$, calculate the displacement
A. $-3.835 m$
B. $-3.845 m$
C. $-3.535 m$
D. $-3.865 m$

Answer:

D Watch Video Solution

17. Calculate the velocity of sound in air:
A. 300
B. 400
C. 500
D. 600

Answer:

D Watch Video Solution
18. Intensity of an electric field E due to a dipole, depends on distance r as...
A. $E \alpha \frac{1}{r^{4}}$
B. $E \alpha \frac{1}{r^{2}}$
C. $E \alpha \frac{1}{r^{3}}$
D. $E \alpha \frac{1}{r}$

Answer:

- Watch Video Solution

19. The potential at a certain point in an electric field is 200 V . The work done in carrying an electron upto that point will be
A. $-3.2 \times 10^{-17} J$
B. $6.2 \times 10^{-17} J$
C. 200 J
D. $-200 J$

Answer:

D Watch Video Solution

20. If in the circuit, power dissipation is 150 W ,
then R is...

A. 2Ω
B. 6Ω
C. 5Ω
D. 4Ω

Answer:

- Watch Video Solution

21. A coil of inductance 300 mH and resistance
2Ω is connected to a source of voltage 2 V . The
current reaches half of its steady state value is..
A. 0.1 S
B. 0.05 S
C. 0.3 S
D. 0.15 S

Answer:

22. The direction of lines of force of magnetic
field produced by passing direct current through a conductor is determined from....
A. Lenz's
B. Right handed screw's rule
C. Fleming's left hand rule
D. Fleming's right hand rule
23. A long solenoid has 200 turns per cm. and carries a current of 2.5 amps . The magnetic field at its centre
$\left(\mu o=4 \pi \times 10^{-7} w b e r / a m p-m\right) \ldots$
A. 3.14×10^{-2} weber $/ m^{2}$
B. 9.42×10^{-2} weber $/ \mathrm{m}^{2}$
C. 6.28×10^{-2} weber $/ m^{2}$
D. 12.56×10^{-2} weber $/ m^{2}$

Answer:

D Watch Video Solution

24. In an oscillating LC circuits the maximum
charge on the capacitors is Q . The charge on
the capacitor when the energy is stored equally between the electric and magnetic field is
A. $\frac{Q}{2}$
B. $\frac{Q}{\sqrt{3}}$
c. $\frac{Q}{\sqrt{2}}$
D. Q

Answer:

D Watch Video Solution

25. A metal conductor of length 1 m rotates
vertically about one of its ends at angular velocity 5 rad. s^{-1}. If the horizontal component of earth's magnetic field is
$0.2 \times 10^{4} \mathrm{~T}$, then the emf developed between
the ends of the conductor is
A. $5 \mu v$
B. $50 \mu v$
C. $5 m v$
D. 50 mv

Answer:

D Watch Video Solution
26. In a plane electromagnetic wave, the electric field oscillates sinusoidally at a frequency of $2.0 \times 10^{10} \mathrm{~Hz}$. What is the wave length of the wave?
A. 1.0 cm
B. 1.5 cm
C. 2.0 cm
D. 3.0 cm

Answer:

27. An electromagnetic wave going through vacuum is described by which of the following equation is true?
A. $E_{0} K=B_{0} \omega$
B. $E_{0} \omega=B_{0} K$
C. $E_{0} B_{0}=\omega K$
D. None of the above

Answer:
28. The focal length of a convex mirror is 20 cm , its radius of the curvature will be
A. zero
B. infinite
C. very less
D. negative

Answer:

29. A prism of refractive index n and angle A is

placed in the minimum deviation position. If the angle of minimum deviation is A, then the value of A in terms of n is

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{n}{2}\right) \\
& \text { B. } \sin ^{-1} \sqrt{\frac{n-1}{2}} \\
& \text { C. } 2 \cos ^{-1}\left(\frac{n}{2}\right) \\
& \text { D. } \cos ^{-1}\left(\frac{n}{2}\right)
\end{aligned}
$$

30. If the velocity of the particle is increased
three times, then the percentage decrease in
its de-Broglie wavelength will be...
A. 0.333
B. 0.666
C. 0.999
D. 1.332
31. The de- Broglie wavelength of a particle of kinetic energy K is λ what would be the wavelength of the particle, if its kinetic energy were $\frac{K}{4}$?
A. 2λ
B. 3λ
C. 4λ
D. 5λ

Answer:

- Watch Video Solution

32. The AC current gain of a transistor is 120 .

What is change in the collector current in the
transistor whose base current changes by $100 \mu A$.
A. $12000 \mu A$
B. $13000 \mu A$
C. $1000 \mu A$

D. 13 mA

Answer:

D Watch Video Solution

33. In $p-n-p$ transistor circuit, the collector current is 10 mA . If 90% of the holes reach the collector. Find emitter and base currents
A. 2 mA
B. 1 mA
C. 0 mA
D. 3 mA

Answer:
(D) Watch Video Solution
34. The following truth table is for

A	B	Y
1	1	1
1	0	1
0	1	1
0	0	1

A. NAND
B. AND
C. XOR

D. NOT

Answer:

D Watch Video Solution

35. What is the order of energy gap in a semi conductor?
A. 1 eV
B. 2 eV
C. 0 eV

D. None of these

Answer:

D Watch Video Solution

36. An alternating current having peak value 14

A is used to heat a metal wire. To produce the
same heating effect, a constant current i can be used where I is
A. 14 A
B. above 20 A
C. $7 A$
D. about 10 A

Answer:

D Watch Video Solution

37. A wheel of mass 8 kg and radius of gyration

25 cm is rotating at 300 rpm what is its moment of inertia.
A. $1.57 K g-m^{2}$
B. $0.63 K g-m^{2}$
C. $4 K g-m^{2}$
D. $4.15 K g-m^{2}$

Answer:

D Watch Video Solution
38. In the horizontal projection, the range of
the projectile is
A. straight line
B. point
C. parabola
D. ellipse or circle

Answer:

D Watch Video Solution

39. A bubble in glass slab (=1.5) when viewed from one side appears at 5 cm and 2 cm from other side, then thickness of slab is:
A. 3.75 cm
B. 3 cm
C. 10.5 cm
D. 2.5 cm

Answer:

- Watch Video Solution

40. The total energy of an electron is 3.555

MeV , then its Kinetic energy is:
A. 3.545 MeV
B. 3.045 MeV
C. 3.5 MeV
D. None

Answer:

D Watch Video Solution

41. A prism of refractive index $\sqrt{2}$ has a refracting angle of 60°. At what angle a ray

minimum deviation?

A. 45°
B. 60°
C. 90°
D. 180°

Answer:

D Watch Video Solution
42. The dimensional formula for Young's modulus is:
A. $\left[M L^{-1} T^{-2}\right]$
B. $\left[M^{\circ} L T^{-2}\right]$
C. $\left[M L T^{-2}\right]$
D. $\left[M L^{2} T^{-2}\right]$

Answer:
(D) Watch Video Solution
43. A closed organ pipe and an open organ pipe are tuned to same fundamental frequency. What is the ratio of their length?
A. $1: 2$
B. 2:1
C. $3: 4$
D. $4: 3$

Answer:

D Watch Video Solution

