

PHYSICS

BOOKS - SARAS PUBLICATION

MODEL QUESTION PAPER 2

Exercise

1. In the circuit shown, if a conducting wire is connected between points A and B, the

current in this wire will:

A. flow from A to B

B. flow in the direction which will be decided by the value

C. be zero

D. flow from B top A

Watch Video Solution

2. The velocity v of a particle at time t is given by $v=at+\dfrac{b}{t+c}$ where a, b and c are constant. The dimensions of a, b and c respectively are

- A. $\left\lceil LT^{\,-2} \right
 ceil$,[L]and [T]
- B. [L],[T] and $\left[LT^2
 ight]$
- C. $\left[L^2T^2\right]$,[LT]and[l]

D. [L],[LT]and $\left[T^2\right]$

Answer:

Watch Video Solution

3. Two batteries one of emf 18 V and internal resistance 2Ω . And the other of emf 12 V and internal resistance 1Ω , are connected as shown. The voltmeter V will velocity record a reading of:

A. 15 V

- B. 30 V
- C. 14 V
- D. 18 V

Watch Video Solution

4. If $\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C}$ =0 then $\overrightarrow{A} \times \overrightarrow{B}$ is :

A.
$$\overrightarrow{B} imes \overrightarrow{C}$$

$$\operatorname{B.} \overset{\longrightarrow}{C} \times \overset{\longrightarrow}{B}$$

$$\mathsf{C.} \, \overset{\longrightarrow}{A} \times \overset{\longrightarrow}{C}$$

D. none of these

Watch Video Solution

5. The ratio of charge to potential of a body is called as :

- A. Resistance
- B. Inductance
- C. Conductance
- D. Capacitance

Watch Video Solution

6. What is the dimensional formula for impluse

A.
$$\left[ML^2T^{\,-1}
ight]$$

B.
$$\left[MLT^{\,-1}
ight]$$

C.
$$\left\lceil ML^2T^{\,-\,2} \right
ceil$$

D.
$$\lceil MLT^{-2} \rceil$$

7. A person holds on a weight of 10 kg. at a height of 5m. Above the ground for 5 minutes. Work done by him is

- A. zero
- B. 250J
- C. 50J
- D. 300J

8. A disc is rotating with angular velocity $(\overrightarrow{\omega})$

.A force \overrightarrow{F} acts at a point whose position vector with respect to the axis of rotation is \overrightarrow{r} . The power associated with the torque due to the force is given by

A.
$$\left(\overrightarrow{r} imes\overrightarrow{F}
ight)$$
. $\overrightarrow{\omega}$

B.
$$\left(\overrightarrow{r} imes\overrightarrow{F}
ight) imes\overrightarrow{\omega}$$

C.
$$\overrightarrow{r}$$
 . $\left(\overrightarrow{F} imes\overrightarrow{\omega}
ight)$

D.
$$\overrightarrow{r} imes \left(\overrightarrow{F} imes\overrightarrow{\omega}
ight)$$

Watch Video Solution

9. The ratio of kinetic energy of two bodies of moment of inertia $9kgm^2$ and $1kgm^2$ are same. The ratio of their angular momentum is.....

A. 1:9

B.1:3

C.9:1

D. 3:1

Answer:

Watch Video Solution

10. The gravitational potential at a point dueto a point mass is V=

A.
$$\frac{GM}{r}$$

B.
$$\frac{GM}{r^2}$$

$$\mathsf{C.} - rac{GM}{r^2}$$

$D.-\frac{r}{r}$

Answer:

Watch Video Solution

11. The mass of the earth is 6×10^{24} kg and that of the Moon is 7.4×10^{22} kg. The constant of gravitation G is $6.67\times10^{-11}{
m Nm^2kg^{-2}}$ The potential energy of the system is -7.79×10^{28}

J The mean distance between the Earth and

Moon is..... metre.

A.
$$3.37 imes 10^6 m$$

B.
$$7.6 imes 10^4 m$$

C.
$$1.9 imes 10^2 m$$

D.
$$3.8 imes 10^8$$

Answer:

Watch Video Solution

12. Two liquidsAand B are at $32^{\circ}C$ and $24^{\circ}C$, when mixed in equal masses the temperature of the mixture is found to be $28^{\circ}C$. Their specific heats are in the ratio of

- A. 3:2
- B. 2:3
- C. 1:1
- D. 4:3

Watch video Solution

13. The young's modulus of steel is $2 imes 10^{11} N/m^2$ and its coefficient of linear expansion is $1.1 imes 10^{-5}$ per day. The pressure to be applied to the ends of a steel cylinder to keep its length constant on raising its temperature by 100° C will be .

A.
$$5.5 imes10^4N/m^2$$

B.
$$1.8 imes10^6N/m^2$$

C.
$$2.2 imes 10^8 N/m^2$$

D.
$$2.0 imes10^{11}N/m^2$$

Watch Video Solution

14. A carnot engine operates between $227^{\circ}C$ and $127^{\circ}C$. If it absorbs 60×10^4 calorie at higher temperature, how much work per cycle can the engine perform?

A. $5.02 imes 10^5 J$

B.
$$8 imes 10^5 J$$

C.
$$6 imes10^5 J$$

D. none of these

Answer:

Watch Video Solution

15. The speed of sound in a gas is V. The rms speed of molecules of this gas is c. If $\gamma=\frac{C_p}{C_v}$ the ratio of V to c is .

A.
$$\frac{3}{2}$$

B. 0.33_{γ}

$$\mathsf{C.}\,\sqrt{\frac{3}{\gamma}}$$

D.
$$\sqrt{\frac{\gamma}{3}}$$

Answer:

Watch Video Solution

the equation, $X=(5.0m){
m cos}[2\pi t+\pi/4]$.At

16. A body oscillates with SHM according to

t=1.5s, calculate the displacement

A. - 3.835m

B.-3.845m

C. -3.535m

D. -3.865m

Answer:

Watch Video Solution

17. Calculate the velocity of sound in air:

- A. 300
- B. 400
- C. 500
- D. 600

Watch Video Solution

18. Intensity of an electric field E due to a dipole, depends on distance r as...

A.
$$Elpharac{1}{r^4}$$

B.
$$E lpha rac{1}{r^2}$$

C.
$$E \alpha \frac{1}{r^3}$$

D. $E \alpha \frac{1}{r}$

Watch Video Solution

19. The potential at a certain point in an electric field is 200 V. The work done in carrying an electron upto that point will be

A.
$$-3.2 imes10^{-17}J$$

B.
$$6.2 imes10^{-17}J$$

$$\mathsf{D.}-200J$$

Watch Video Solution

20. If in the circuit, power dissipation is 150 W, then R is...

- A. 2Ω
- B. 6Ω
- $\mathsf{C.}\ 5\Omega$
- D. 4Ω

Watch Video Solution

21. A coil of inductance 300 mH and resistance 2Ω is connected to a source of voltage 2V. The current reaches half of its steady state value is...

- A. 0.1 S
- B. 0.05 S
- C. 0.3 S
- D. 0.15 S

Answer:

Watch Video Solution

22. The direction of lines of force of magnetic field produced by passing direct current through a conductor is determined from....

- A. Lenz's
- B. Right handed screw's rule
- C. Fleming's left hand rule
- D. Fleming's right hand rule

23. A long solenoid has 200 turns per cm. and carries a current of 2.5 amps. The magnetic

field at its centre is

$$ig(\mu o = 4\pi imes 10^{-7} wber/amp-mig)$$
...

A.
$$3.14 imes10^{-2} weber/m^2$$

B.
$$9.42 imes 10^{-2} weber/m^2$$

C.
$$6.28 imes 10^{-2} weber/m^2$$

D.
$$12.56 imes10^{-2} weber/m^2$$

Watch Video Solution

24. In an oscillating LC circuits the maximum charge on the capacitors is Q. The charge on the capacitor when the energy is stored equally between the electric and magnetic field is

A.
$$\frac{Q}{2}$$
B. $\frac{Q}{\sqrt{2}}$

B.
$$\frac{4}{\sqrt{3}}$$

c.
$$\frac{Q}{\sqrt{2}}$$

D. Q

Answer:

Watch Video Solution

25. A metal conductor of length 1 m rotates vertically about one of its ends at angular velocity 5 rad. s^{-1} . If the horizontal component of earth's magnetic field is

 $0.2 imes 10^4$ T, then the emf developed between

the ends of the conductor is

- A. $5\mu v$
- B. $50\mu v$
- $\mathsf{C}.\,5mv$
- D. 50 mv

Answer:

Watch Video Solution

26. In a plane electromagnetic wave, the electric field oscillates sinusoidally at a frequency of $2.0 \times 10^{10} Hz$. What is the wave length of the wave?

- A. 1.0 cm
- B. 1.5 cm
- C. 2.0 cm
- D. 3.0 cm

atti video solution

27. An electromagnetic wave going through vacuum is described by which of the following equation is true?

A.
$$E_0K=B_0\omega$$

B.
$$E_0\omega=B_0K$$

$$\mathsf{C}.\,E_0B_0=\omega K$$

D. None of the above

28. The focal length of a convex mirror is 20 cm, its radius of the curvature will be

A. zero

B. infinite

C. very less

D. negative

Answer:

Watch Video Solution

29. A prism of refractive index n and angle A is placed in the minimum deviation position. If the angle of minimum deviation is A, then the value of A in terms of n is

A.
$$\sin^{-1}\left(\frac{n}{2}\right)$$

$$\mathsf{B.}\sin^{-1}\sqrt{\frac{n-1}{2}}$$

C.
$$2\cos^{-1}\left(\frac{n}{2}\right)$$

D.
$$\cos^{-1}\left(\frac{n}{2}\right)$$

30. If the velocity of the particle is increased three times, then the percentage decrease in its de-Broglie wavelength will be...

- A. 0.333
- B. 0.666
- C. 0.999
- D. 1.332

31. The de-Broglie wavelength of a particle of kinetic energy K is λ what would be the wavelength of the particle, if its kinetic energy were $\frac{K}{4}$?

A.
$$2\lambda$$

B.
$$3\lambda$$

C.
$$4\lambda$$

D.
$$5\lambda$$

Watch Video Solution

32. The AC current gain of a transistor is 120. What is change in the collector current in the transistor whose base current changes by $100\mu A$.

A. $12000 \mu A$

B. $13000 \mu A$

C. $1000\mu A$

D. 13 mA

Answer:

Watch Video Solution

33. In p-n-p transistor circuit, the collector current is 10 mA. If 90 % of the holes reach the collector. Find emitter and base currents

A. 2 mA

B. 1 mA

C. 0 mA

D. 3 mA

Answer:

34. The following truth table is for

A	В	Y
1	1	1
1	0	1
0	1	1
0	0	1

A. NAND

B. AND

C. XOR

D. NOT

Answer:

Watch Video Solution

35. What is the order of energy gap in a semi conductor?

A. 1 eV

B. 2 eV

C. 0 eV

D. None of these

Answer:

Watch Video Solution

36. An alternating current having peak value 14 A is used to heat a metal wire. To produce the same heating effect, a constant current i can be used where I is

A. 14A

B. above 20 A

 $\mathsf{C}.\,7A$

D. about 10 A

Answer:

Watch Video Solution

37. A wheel of mass 8 kg and radius of gyration 25 cm is rotating at 300 rpm what is its moment of inertia.

A.
$$1.57Kg-m^2$$

B.
$$0.63Kg-m^2$$

C.
$$4Kg-m^2$$

D.
$$4.15Kg-m^2$$

Watch Video Solution

38. In the horizontal projection, the range of the projectile is

- A. straight line
- B. point
- C. parabola
- D. ellipse or circle

Watch Video Solution

39. A bubble in glass slab (=1.5) when viewed from one side appears at 5 cm and 2 cm from other side, then thickness of slab is:

- A. 3.75 cm
- B. 3 cm
- C. 10.5 cm
- D. 2.5 cm

Watch Video Solution

40. The total energy of an electron is 3.555

MeV, then its Kinetic energy is:

- A. 3.545 MeV
- B. 3.045 MeV
- C. 3.5 MeV
- D. None

Watch Video Solution

41. A prism of refractive index $\sqrt{2}$ has a refracting angle of 60° . At what angle a ray

must incident on it so that when suffers a minimum deviation?

- A. $45^{\,\circ}$
- B. 60°
- C. 90°
- D. 180°

Answer:

42. The dimensional formula for Young's modulus is:

A.
$$\left\lceil ML^{-1}T^{-2}
ight
ceil$$

B.
$$\left[M^{\,\circ}LT^{\,-2}
ight]$$

C.
$$\left\lceil MLT^{\,-\,2} \right\rceil$$

D.
$$\left\lceil ML^2T^{\,-\,2} \right
ceil$$

Answer:

43. A closed organ pipe and an open organ pipe are tuned to same fundamental frequency. What is the ratio of their length?

- A. 1:2
- B. 2:1
- C. 3: 4
- D.4:3

Answer:

