# ©゙"doubtnut 

India's Number 1 Education App

## CHEMISTRY

## NCERT - FULL MARKS CHEMISTRY(TAMIL)

## IONIC EQUILIBRIUM

## Example

1. Calculate the concentration of $\mathrm{OH}^{-}$in a fruit juice which
contains $2 \times 10^{-3} \mathrm{M}, \mathrm{H}_{3} \mathrm{O}^{+}$ion. Identify the nature of the solution.

- View Text Solution

2. Calculate the pH of 0.001 M HCl solution

## View Text Solution

## 3. Calculate pH of $10^{-7} \mathrm{M} \mathrm{HCl}$

## - View Text Solution

4. A solution of 0.10 M of a weak electrolyte is found to be dissociated to the extent of $1.20 \%$ at $25^{\circ} C$. Find the dissociation constant of the acid

# 5. Calculate the pH of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution. 

 Dissociation constant of acetic acid is $1.8 \times 10^{-5}$
## D View Text Solution

6. Fine the pH of a buffer solution containing 0.20 mole per litre sodium acetate and 0.18 mole per litre acetic acid. $K_{a}$ for acetic acid is $1.8 \times 10^{-5}$

## D View Text Solution

7. What is the pH of an aqueous solution obtained by mixing

6 gram of acetic acid and 8.2 gram of sodium acetate and
making the volume equal to 500 ml . (Given: $K_{a}$ for acetic acid is $1.8 \times 10^{-5}$ )

## - View Text Solution

8. Calculate i) the hydrolysis constant, ii) degree of hydrolysis and iii) pH of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$ solution ( $p K_{a}$ for $\mathrm{CH}_{3} \mathrm{COOH} 3$ is 4.74).

## (D) View Text Solution

9. Establish a relationship between the solubility product and molar solubility for the following
a) $\mathrm{BaSO}_{4}$ b) $\mathrm{Ag}_{2}\left(\mathrm{CrO}_{4}\right)$

## Evaluate Yourself

1. Write a balanced equation for the dissociation of the following in water and identify the conjugate acid - base pairs.
(i) $\mathrm{NH}_{4}^{+}$
(ii) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(iii) $\mathrm{CH}_{3} \mathrm{COOH}$

## - View Text Solution

2. Indentify the Lewis acid and the Lewis base in the following reactions.
$\mathrm{CaO}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3}$
3. Indentify the Lewis acid and the Lewis base in the following reactions.

$$
\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}+\mathrm{AlCl}_{3} \longrightarrow
$$



## - View Text Solution

4. $\mathrm{H}_{3} \mathrm{BO}_{3}$ accepts hydroxide ion from water as shown below $\mathrm{H}_{3} \mathrm{BO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{B}(\mathrm{OH})_{4}^{-}+\mathrm{H}^{+} \quad$ Predict the nature of $\mathrm{H}_{3} \mathrm{BO}_{3}$ using Lewis concept
5. At a particular temperature, the $K_{w}$ of a neutral solution was equal to $4 \times 10^{-14}$ Calculate the concentration of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$

## - View Text Solution

6. Calculate pH of $10^{-8} \mathrm{MH}_{2} \mathrm{SO}_{4}$

## - View Text Solution

7. Calculate the concentration of hydrogen ion in moles per
litre of a solution whose pH is 5.4

## - View Text Solution

8. Calculate the pH of an aqueous solution obtained by mixing 50 ml of 0.2 M HCl with 50 ml 0.1 M NaOH

## D View Text Solution

9. $\mathrm{K}_{b}$ for $\mathrm{NH}_{4} \mathrm{OH}$ is $1.8 \times 10^{-5}$. Calculate the percentage of ionisation of 0.06 M ammonium hydroxide solution.

## - View Text Solution

10. Explain the buffer action in a basic buffer containing equimolar ammonium hydroxide and ammonium chloride.
11. Calculate the pH of a buffer solution consisting of 0.4 M $\mathrm{CH}_{3} \mathrm{COOH}$ and $0.4 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$ What is the change in the pH after adding 0.01 mol of HCl to 500 ml of the above buffer solution. Assume that the addition of HCl causes negligible change in the volume. Given: $\left(K_{a}=1.8 \times 10^{-5}\right)$

## - View Text Solution

12. How can you prepare a buffer solution of pH 9 . You are provided with $0.1 \mathrm{MNH}_{4} \mathrm{OH}$ solution and ammonium chloride crystals. (Given: $p K_{b}$ for $\mathrm{NH}_{4} \mathrm{OH} 4$ is 4.7 at $25^{\circ} \mathrm{C}$ )
13. What volume of 0.6 M sodium formate solution is required to prepare a buffer solution of pH 4.0 by mixing it with 100 ml of 0.8 M formic acid. (Given: $p K_{a}$ a for formic acid is 3.75 .)

## - View Text Solution

14. Calculate the i) hydrolysis constant, ii) degree of hydrolysis and iii) pH of 0.05 M sodium carbonate solution $p K_{a}$ for $\mathrm{HCO}_{3}^{-}$is 10.26.

## - View Text Solution

1. Concentration of the $A g^{+}$ions in a saturated solution of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is $2.24 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$ solubility product of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is
A. $2.42 \times 10^{-8} \mathrm{~mol}^{3} L^{-3}$
B. $2.66 \times 10^{-12} \mathrm{~mol}^{3} L^{-3}$
C. $4.5 \times 10^{-11} \mathrm{~mol}^{3} L^{-3}$
D. $5.619 \times 10^{-12} \mathrm{~mol}^{3} L^{-3}$

Answer:

## - View Text Solution

2. Following solutions were prepared by mixing different volumes of NAOH of HCL different concentrations.
i.
$60 m L \frac{M}{10} \mathrm{HCl}+40 \mathrm{~mol} \frac{M}{10} \mathrm{NaOH}$
$55 m L \frac{M}{10} \mathrm{HCl}+45 \mathrm{~mol} \frac{M}{10} \mathrm{NaOH}$
iii. $\quad 75 m L \frac{M}{5} \mathrm{HCl}+25 \mathrm{~mol} \frac{M}{5} \mathrm{NaOH}$
$100 \mathrm{~mL} \frac{M}{10} \mathrm{HCl}+100 \mathrm{~mol} \frac{M}{10} \mathrm{NaOH}$
pH of which one of them will be equal to 1 ?
A. iv
B. i
C. ii
D. iii

Answer:
3. The solubility of $\mathrm{BaSO}_{4}$ in water is $2.42 \times 10^{-3} g L^{-1}$ at 298K. The value of its solubility product $\left(K_{s p}\right)$ will be (Given molar mass of $\mathrm{BaSO}_{4}=233 \mathrm{gmol}^{-1}$ )
A. $1.08 \times 10^{-14} \mathrm{~mol}^{2} L^{-2}$
B. $1.08 \times 10^{-12} \mathrm{~mol}^{2} L^{-2}$
C. $1.08 \times 10^{-10} \mathrm{~mol}^{2} L^{-2}$
D. $1.08 \times 10^{-8} \mathrm{~mol}^{2} L^{-2}$

## Answer:

## - View Text Solution

4. pH of a saturated solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ is 9 . The Solubility product $\left(K_{s p}\right)$ of $\mathrm{Ca}(\mathrm{OH})_{2}$.
A. $0.5 \times 10^{-15}$
B. $0.25 \times 10^{-10}$
C. $0.125 \times 10^{-15}$
D. $0.5 \times 10^{-10}$

## Answer:

## - View Text Solution

5. Conjugate base for bronsted acids $\mathrm{H}_{2} \mathrm{O}$ and HF are
A. $\mathrm{OH}^{-}$and $\mathrm{H}_{2} \mathrm{FH}^{+}$respectively
B. $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{F}^{-}$respectively
C. $O H^{-}$and $F^{-}$respectively
D. $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{H}_{2} \mathrm{~F}^{+}$respectively

## - View Text Solution

6. Which will make basic buffe ?
A.

50 mL of $0.1 \mathrm{MNaOH}+25 \mathrm{~mL}$ of $\quad 0.1 \mathrm{MCH}_{3} \mathrm{COOH}$

B.

100 mL of $0.1 \mathrm{MCH}_{3} \mathrm{COOH}+100 \mathrm{~mL}$ of $0.1 \mathrm{MNH}_{4} \mathrm{OH}$
C. 100 mL of $\quad 0.1 \mathrm{MHCl}+200 \mathrm{~mL}$ of $\quad 0.1 \mathrm{MNH}_{4} \mathrm{OH}$
D. 100 mL of $0.1 \mathrm{MHCl}+100 \mathrm{~mL}$ of 0.1 MNaOH

Answer:
7. Which of the following fluro - compounds is most likely to behave as a Lewis base?
A. $B F_{3}$
B. $P F_{3}$
C. $C F_{4}$
D. $\mathrm{SiF}_{4}$

## Answer:

## D View Text Solution

8. Which of these is not likely to act as lewis base?
A. $B F_{3}$
B. $P F_{3}$
C. CO
D. $F^{-}$

## Answer:

## D View Text Solution

9. What is the decreasing order of strength of bases?
$\mathrm{OH}^{-}, \mathrm{NH}_{2}^{-}, \mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{-}$and $\mathrm{CH}_{3}-\mathrm{CH}_{2}^{-}$
A. $\mathrm{OH}^{-}>\mathrm{NH}_{2}^{-}>\mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{-}>\mathrm{CH}_{3}-\mathrm{CH}_{2}^{-}$
B. $\mathrm{NH}_{2}^{-}>\mathrm{OH}^{-}>\mathrm{CH}_{3}^{-}-\mathrm{CH}_{2}^{-}>\mathrm{H}-\mathrm{C} \equiv \mathrm{C}$
C. $\mathrm{CH}_{3}-\mathrm{CH}_{2}^{-}>\mathrm{NH}_{2}^{-}>\mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{-}>\mathrm{OH}^{-}$
D. $\mathrm{OH}^{-}>\mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{-}>\mathrm{CH}_{3}-\mathrm{CH}_{2}^{-}>\mathrm{NH}_{2}$

## Answer:

## - View Text Solution

10. The aqueous solutions of sodium formate, anilinium chloride and potassium cyanide are respectively
A. acidic, acidic, basic
B. basic, acidic, basic
C. basic, neutral, basic
D. none of these

## Answer:

11. The percentage of pyridine $\left(C_{5} H_{5} N\right)$ that forms pyridinium ion $\left(C_{5} H_{5} \mathrm{NH}\right)$ in a 0.10 M aqueous pyridine solution ( $K_{b}$ for $C_{5} H_{5} N=1.7 \times 10^{-9}$ ) is
A. $0.006 \%$
B. $0.013 \%$
C. $0.77 \%$
D. $1.6 \%$

Answer:
12. Equal volumes of three acid solutions of $\mathrm{pH} 1,2$ and 3 are mixed in a vessel. What will bethe $H^{+}$ion concentration in the mixture?
A. $3.7 \times 10^{-2}$
B. $10^{-6}$
C. 0.111
D. none of these

## Answer:

## - View Text Solution

13. The solubility of $\mathrm{AgCl}(\mathrm{s})$ with solubility product $1.6 \times 10^{-10}$ in 0.1 M NaCl solution would be
A. $1.26 \times 10^{-5} M$
B. $1.6 \times 10^{-9} M$
C. $1.26 \times 10^{-11} M$
D. Zero

## Answer:

## - View Text Solution

14. If the solubility product of lead iodide is $3.2 \times 10^{-8}$, its solubility will be
A. $2 \times 10^{-3} M$
B. $4 \times 10^{-4} M$
C. $1.6 \times 10^{-5} \mathrm{M}$
D. $1.8 \times 10^{-5} M$

## Answer:

## - View Text Solution

15. Using Gibb's free energy change, $\Delta G^{\circ}=57.34 \mathrm{~kJ} \mathrm{~mol}^{-1}$ , for the reaction, $X_{2} Y_{(s)} \Leftrightarrow 2 X^{+}+Y^{2}(a q)$ calculate the solubility product of $X_{2} Y_{2}$ in water at 300 K $\left(R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{Mol}^{-1}\right)$
A. $10^{-10}$
B. $10^{-12}$
C. $10^{-14}$
D. can not be calculated from the given data

## Answer:

## - View Text Solution

16. MY and $N Y_{3}$, are insoluble salts and have the same $K_{s p}$ values of $6.2 \times 10^{-13}$ at room temperature. Which statement would be true with regard to MY and $\mathrm{NY}_{3}$ ?
A. The salts MY and $N Y_{3}$ are more soluble in 0.5 M KY than in pure water
B. The addition of the salt of KY to the suspension of MY and $N Y_{3}$ will have no effect on their solubility's
C. The molar solubilities of $M Y$ and $N Y_{3}$ in water are identical
D. The molar solubility of MY in water is less than that of

$$
N Y_{3}
$$

## Answer:

## - View Text Solution

17. What is the pH of the resulting solution when equal volumes of 0.1 M NaOH and 0.01 M HCl are mixed?
A. 2.0
B. 3
C. 7.0
D. 12.65

## Answer:

## - View Text Solution

18. The dissociation constant of a weak acid is $1 \times 10^{-3}$. In order to prepare a buffer solution with a $\mathrm{pH}=4$, the [Acid] $/[$ Salt $]$ ratio should be
A. $4: 3$
B. 3: 4
C. 10: 1
D. 1: 10

## Answer:

19. The pH of $10^{-5} \mathrm{MKOH}$ solution will be
A. 9
B. 5
C. 19
D. none of these

## Answer:

## - View Text Solution

20. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$the conjugate base of
A. $\mathrm{PO}_{4}^{3-}$
B. $\mathrm{P}_{2} \mathrm{O}_{5}$
C. $\mathrm{H}_{3} \mathrm{PO}_{4}$
D. $H P O_{4}^{2-}$

## Answer:

## - View Text Solution

21. Which of the following can act as lowery - Bronsted acid well as base?
A. HCl
B. $\mathrm{SO}_{4}^{2-}$
C. $H P O_{4}^{2-}$
D. $B r^{-}$

## Answer:

## - View Text Solution

22. The pH of an aqueous solution is Zero. The solution is
A. slightly acidic
B. strongly acidic
C. neutral
D. basic

## Answer:

- View Text Solution

23. The hydrogen ion concentration of a buffer solution consisting of a weak acid and its salts is given by
A. $\left[H^{+}\right]=\frac{K_{a}[\text { acid }]}{[\text { salt }]}$
B. $\left[H^{+}\right]=K_{a}[$ salt $]$
C. $\left[H^{+}\right]=K_{a}[\operatorname{acid}]$
D. $\left[H^{+}\right]=\frac{K_{a}[\text { salt }]}{[\text { acid }]}$

## Answer:

## D View Text Solution

24. Which of the following relation is correct for degree of hydrolysis of ammonium acetate?
A. $h=\sqrt{\frac{K_{h}}{C}}$
B. $h=\sqrt{\frac{K_{a}}{K_{b}}}$
c. $h=\sqrt{\frac{K_{h}}{K_{a} . K_{b}}}$
D. $h=\sqrt{\frac{K_{a} \cdot K_{b}}{K_{h}}}$

Answer:

## - View Text Solution

25. Dissociation constant of $\mathrm{NH}_{4} \mathrm{OH} 4$ is $1.8 \times 10^{-5}$ the hydrolysis constant of $\mathrm{NH}_{4} \mathrm{Cl}$ would be
A. $1.8 \times 10^{-19}$
B. $5.55 \times 10^{-10}$
C. $5.55 \times 10^{-5}$
D. $1.80 \times 10^{-5}$

## Answer:

## D View Text Solution

Evaluation Answer The Following Questions

1. Calculate the pH of 0.04 M HNO Solution.

- View Text Solution

2. Calculate the pH of $1.5 \times 10^{-3}$ Msolution of $\mathrm{Ba}(\mathrm{OH})_{2}$
3. 50 ml of $0.05 \mathrm{M} \mathrm{HNO}_{3}$ is added to 50 ml of 0.025 M KOH .

Calculate the pH of the resultant solution.

## - View Text Solution

4. The $K_{a}$ value for HCN is $10^{-9}$. What is the pH of 0.4 M HCN solution?

## D View Text Solution

5. Calculate the extent of hydrolysis and the pH of 0.1 M ammonium acetate Given that $K_{a}=K_{b}=1.8 \times 10^{5}$
6. Solubility product of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is $1 \times 10^{-12}$. What is the solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in 0.01M $\mathrm{AgNO}_{3}$ solution?

## - View Text Solution

7. Write the expression for the solubility product of $C a_{3}\left(\mathrm{PO}_{4}\right)_{2}$

## - View Text Solution

8. A saturated solution, prepared by dissolving $C a F_{2}(s)$ in water, has $\left[\mathrm{Ca}^{2+}\right]=3.3 \times 10^{-4} M$ What is the $K_{s p}$ of $C a F_{2}$ ?
9. $K_{s p}$ of AgCl is $1.8 \times 10^{-10}$. Calculate molar solubility in 1 M $\mathrm{AgNO}_{3}$

## D View Text Solution

10. A particular saturated solution of silver chromate $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ has
$\left[\mathrm{Ag}^{+}\right]=5 \times 10^{-5}$ and $\left[\mathrm{CrO}_{4}\right]^{2-}=4.4 \times 10^{-4} M$. What is the value of $K_{s p}$ for $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ ?

## - View Text Solution

11. Write the expression for the solubility product of $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$

## - View Text Solution

12. $K_{s p}$ of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is $1.1 \times 10^{-12}$ what is solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in 0.1M $\mathrm{K}_{2} \mathrm{CrO}_{4}$.

## D View Text Solution

13. Will a precipitate be formed when 0.150 L of 0.1 M $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and 0.100 L of 0.2 M NaCl are mixed? $K_{s p}\left(\mathrm{PbCl}_{2}\right)=1.2 \times 10^{-5}$

- View Text Solution

14. $K_{s p}$ of $\mathrm{Al}(\mathrm{OH})_{3}$ is $1 \times 10^{-15} \mathrm{M}$. At what pH does $1.0 \times 10^{-3} M A l^{3+}$ precipitate on the addition of buffer of $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$ solution?

- View Text Solution

