びdoubtnut

MATHS

NCERT - FULL MARKS MATHS(TAMIL)

APPLICATIONS OF MATRICES AND DETERMINANTS

Exercise 11

1. Find the adjoint of the
$\left[\begin{array}{cc}-3 & 4 \\ 6 & 2\end{array}\right]$

- View Text Solution

2. Find the adjoint of the
$\left[\begin{array}{lll}2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2\end{array}\right]$

- View Text Solution

3. Find the adjoint of the
$\frac{1}{3}\left[\begin{array}{ccc}2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2\end{array}\right]$

- View Text Solution

4. Find the inverse (if it exists) of the
$\left[\begin{array}{cc}-2 & 4 \\ 1 & -3\end{array}\right]$
D View Text Solution
5. Find the inverse (if it exists) of the
$\left[\begin{array}{lll}5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5\end{array}\right]$

- View Text Solution

6. Find the inverse (if it exists) of the
$\left[\begin{array}{lll}2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2\end{array}\right]$

D View Text Solution

7. If $\operatorname{adj}(A)=\left[\begin{array}{ccc}2 & -4 & 2 \\ -3 & 12 & -7 \\ -2 & 0 & 2\end{array}\right]$ find A.
8. If $\operatorname{adj}(A)=\left[\begin{array}{ccc}0 & -2 & 0 \\ 6 & 2 & -6 \\ -3 & 0 & 6\end{array}\right]$ find A^{-1}.

D View Text Solution

9. Find $\operatorname{adj}(\operatorname{adj}(A))$ if $\operatorname{adj} A=\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 1\end{array}\right]$.

D View Text Solution

10. Find the matrix A for which $A\left[\begin{array}{cc}5 & 3 \\ -1 & -2\end{array}\right]=\left[\begin{array}{cc}14 & 7 \\ 7 & 7\end{array}\right]$.

D View Text Solution

11. Given $A=\left[\begin{array}{cc}1 & -1 \\ 2 & 0\end{array}\right], B=\left[\begin{array}{cc}3 & -2 \\ 1 & 1\end{array}\right]$ and $C=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$ find a matrix X such that $A X B=C$.

D View Text Solution

12. If $\mathrm{A}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ show that $A^{-1}=\frac{1}{2}\left(A^{2}=3 I\right)$.

D View Text Solution

Exercise 12

1. Find the rank of the matrices by minor method:
$\left[\begin{array}{cc}2 & -4 \\ -1 & 2\end{array}\right]$

- View Text Solution

2. Find the rank of the matrices by minor method:
$\left[\begin{array}{cc}-1 & 3 \\ 4 & -7 \\ 3 & -4\end{array}\right]$

D View Text Solution

3. Find the rank of the matrices by minor method:
$\left[\begin{array}{cccc}1 & -2 & -1 & 0 \\ 3 & -6 & -3 & 1\end{array}\right]$

D View Text Solution

4. Find the rank of the matrices by minor method:

$$
\left[\begin{array}{ccc}
1 & -2 & 3 \\
2 & 4 & -6 \\
5 & 1 & -1
\end{array}\right]
$$

5. Find the rank of the matrices by minor method:
$\left[\begin{array}{llll}0 & 1 & 2 & 1 \\ 0 & 2 & 4 & 3 \\ 8 & 1 & 0 & 2\end{array}\right]$

D View Text Solution

6. Find the rank of the matrices by row reduction method:
$\left[\begin{array}{cccc}1 & 1 & 1 & 3 \\ 2 & -1 & 3 & 4 \\ 5 & -1 & 7 & 11\end{array}\right]$

D View Text Solution

7. Find the rank of the matrices by row reduction method:
$\left[\begin{array}{ccc}1 & 2 & -1 \\ 3 & -1 & 2 \\ 1 & -2 & 3 \\ 1 & -2 & 3 \\ 1 & -1 & 1\end{array}\right]$
8. Find the rank of the matrices by row reduction method:

$$
\left[\begin{array}{cccc}
3 & -8 & 5 & 2 \\
2 & -5 & 1 & 4 \\
-1 & 2 & 3 & -2
\end{array}\right]
$$

D View Text Solution

9. Find the inverse of each of the by Gauss-Jordan method:
$\left[\begin{array}{rr}2 & -1 \\ 5 & -2\end{array}\right]$

D View Text Solution

10. Find the inverse of each of the by Gauss-Jordan method:
$\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 0 & -1 \\ 6 & -2 & -3\end{array}\right]$
11. Find the inverse of each of the by Gauss-Jordan method:
$\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8\end{array}\right]$

D View Text Solution

Exercise 13

1. Solve the system of linear equations by matrix inversion method:
$2 x+5 y=-2, x+2 y=-3$

- View Text Solution

2. Solve the system of linear equations by matrix inversion method:
$2 x-y=8,3 x+2 y=-2$

D View Text Solution

3. Solve the system of linear equations by matrix inversion method:
$2 x+3 y-z=9, x+y+z=9,3 x-y-z=-1$

- View Text Solution

4. Solve the system of linear equations by matrix inversion method:

$$
x+y+z-2=0,6 x-4 y+5 z-31=0,5 x+2 y+2 z=13
$$

5. If $A=\left[\begin{array}{ccc}-5 & 1 & 3 \\ 7 & 1 & -5 \\ 1 & -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 1 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 3\end{array}\right]$ find the products $A B$ and BAand hence solve the system of equations $x+y+2 z=1,3 x+2 y+z$ $=7,2 x+y+3 z=2$.

D View Text Solution

6. A man is appointed in a job with a monthly salary of certain amount and a fixed amount of annual increment. If his salary was

रु19,800 per month at the end of the first month after 3 years of service and रु 23,400 per month at the end of the first month after 9 years of service, find his starting salary and his annual increment. (Use matrix inversion method to solve the problem.)
7. Four men and 4 women can finish a piece of work jointly in 3 days while 2 men and 5 women can finish the same work jointly in 4 days. Find the time taken by one man alone and that of one woman alone to finish the same work by using matrix inversion method.

D View Text Solution

8. The prices of three commodities $A B$, and C are रु x, y, and z per units respectively. A person P purchases 4 units of B and sells two units of A and 5 units of C. Person Q purchases 2 units of C and sells 3 units of A and one unit of B. Person R purchases one unit of A and sells 3 unit of B and one unit of C. In the process, $P Q$, and R earn रु 15,000 , रु 1,000 and रु 4,000 respectively. Find the prices per unit of $A B$, and C. (Use matrix inversion method to solve the problem.)

Exercise 14

1. Solve the systems of linear equations by Cramer's rule:
$5 x-2 y+16=0, x+3 y-7=0$

D View Text Solution

2. Solve the systems of linear equations by Cramer's rule:
$\frac{3}{x}+2 y=12, \frac{2}{x}+3 y=13$

D View Text Solution

3. Solve the systems of linear equations by Cramer's rule:
$3 x+3 y-z=11,2 x-y+2 z=9,4 x+3 y+2 z=25$
4. Solve the systems of linear equations by Cramer's rule:

$$
\frac{3}{x}-\frac{4}{x}-\frac{2}{z}-1=0, \frac{1}{x}+\frac{2}{y}+\frac{1}{z}-2=0, \frac{2}{x}-\frac{5}{y}-\frac{4}{z}+1=0
$$

- View Text Solution

5. In a competitive examination, one mark is awarded for every correct answer while $\frac{1}{3}$ mark is deducted for every wrong answer.

A student answered 100 questions and got 80 marks. How many questions did he answer correctly ? (Use Cramer's rule to solve the problem).

D View Text Solution

6. A chemist has one solution which is 50% acid and another solution which is 25% acid. How much each should be mixed to make 10 litres of a 40% acid solution ? (Use Cramer's rule to solve the problem).

D View Text Solution

7. A fish tank can be filled in 10 minutes using both pumps A and B simultaneously. However, pump B can pump water in or out at the same rate. If pump B is inadvertently run in reverse, then the tank will be filled in 30 minutes. How long would it take each pump to fill the tank by itself ? (Use Cramer's rule to solve the problem).

D View Text Solution

8. A family of 3 people went out for dinner in a restaurant. The cost of two dosai, three idlies and two vadais is रु 150 . The cost of the two dosai, two idlies and four vadais is रु 200. The cost of five dosai, four idlies and two vadais is रु 250 . The family has रु 350 in hand and they ate 3 dosai and six idlies and six vadais. Will they be able to manage to pay the bill within the amount they had ?

D View Text Solution

Exercise 15

1. Solve the systems of linear equations by Gaussian elimination method:
$2 x-2 y+3 z=2, x+2 y-z=3,3 x-y+2 z=1$
2. Solve the systems of linear equations by Gaussian elimination method:
$2 x+4 y+6 z=22,3 x+8 y+5 z=27,-x+y+2 z=2$

D View Text Solution

3. If $a x^{2}+b x+c$ is divided by $\mathrm{x}+3, \mathrm{x}-5$ and $\mathrm{x}-1$ the remainders are 21,61 and 9 respectively. Find a,b and c. (Use Gaussian elimination method.)

D View Text Solution

4. An amount of रु 65,000 is invested in three bonds at the rates of $6 \%, 8 \%$ and 10% per annum respectively. The total annual income is रु 4,800 . The income from the third bond is रु 600 more
than that from the second bond. Determine the price of each bond. (Use Gaussian elimination method.)

- View Text Solution

5. A boy is walking along the path $y=a x^{2}+b x+c$ through the points $(-6,8)(-2,-12)$ and $(3,8)$. He wants to meet his friend at $P($, 7,60) . Will he meet his friend? (Use Gaussian elimination method.)

D View Text Solution

Exercise 16

1. Test for consistency and if possible, solve the following systems of equations by rank method.
$x-y+2 z+2,2 x+y+4 z=7,4 x-y+z=4$
2. Test for consistency and if possible, solve the following systems of equations by rank method.
$3 x+y+z=2, x-3 y+2 z=1,7 x-y+4 z=5$

- View Text Solution

3. Test for consistency and if possible, solve the following systems of equations by rank method.
$2 x+2 y+z=5, x-y+z=1,3 x+y+2 z=4$

D View Text Solution

4. Test for consistency and if possible, solve the following systems of equations by rank method.
$2 x-y+z=2,6 x-3 y+3 z=6,6 x-3 y+3 z=6,4 x-2 y+2 z=4$

- View Text Solution

5. Find the value of k for which the equations $k x-2 y+z=1, x-2 k y+z=$ $-2, x-2 y+k z=1$ have
(i) no solution (ii) unique solution (iii) infinitely many solution

D View Text Solution

6. Investigate the values of λ and μ the system of linear equations $2 \mathrm{x}+3 \mathrm{y}+5 \mathrm{z}=9,7 \mathrm{x}+3 \mathrm{y}-5 \mathrm{z}=8,2 \mathrm{x}+3 \mathrm{y}+\lambda z=\mu$ have
(i) no solution (ii) a unique solution (iii) an infinite number of solutions.

D View Text Solution

Exercise 17

1. Solve the system of homogenous equations.
$3 x+2 y+7 z=0,4 x-3 y-2 z=0,5 x+9 y+23 z=0$

D View Text Solution

2. Solve the system of homogenous equations.
$2 x+3 y-z=0, x-y-2 z=0,3 x+y+3 z=0$

D View Text Solution

3. Determine the values of λ for which the following system of equations
$\mathrm{x}+\mathrm{y}+3 \mathrm{z}=0,4 \mathrm{x}+3 \mathrm{y}+\lambda z=0,2 \mathrm{x}+\mathrm{y}+2 \mathrm{z}=0$ has
(i) a unique solution (ii) a non-trivial solution.

- View Text Solution

4. By using Gaussian elimination method, balance the chemical reaction equation:
$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

D View Text Solution

Exercise 18

1. If $|\operatorname{adj}(\operatorname{adj} \mathrm{A})|=|A|^{9}$ then the order of the square matrix A is
A. 3
B. 4
C. 2
D. 5

Answer: B

D View Text Solution

2. If A is a 3×3 non -singular matrix such that $\forall^{T}=A^{T} A$ and $B=\mathrm{A}^{\wedge}(-1) \mathrm{A}^{\wedge}(\mathrm{T})$ then $\mathrm{BB}^{\wedge}(\mathrm{T})^{\wedge}=$
A. A
B. B
C. I_{3}
D. B^{T}

Answer: C

D View Text Solution

3. If $A=\left[\begin{array}{ll}3 & 5 \\ 1 & 2\end{array}\right], \mathrm{B}=\operatorname{adj} \mathrm{A}$ and $\mathrm{C}=3 \mathrm{~A}$ then $\frac{|a d j B|}{|C|}=$
A. $\frac{1}{3}$
B. $\frac{1}{9}$
C. $\frac{1}{4}$
D. 1

Answer: B

D View Text Solution

4. If $\mathrm{A}\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]=\left[\begin{array}{ll}6 & 0 \\ 0 & 6\end{array}\right]$ then $\mathrm{A}=$
A. $\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]$
B. $\left[\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right]$
C. $\left[\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right]$
D. $\left[\begin{array}{cc}4 & -1 \\ 2 & 1\end{array}\right]$

Answer: C

D View Text Solution

5. If $A=\left[\begin{array}{ll}7 & 3 \\ 4 & 2\end{array}\right]$ then $9 I_{2}-A=$
A. A^{-1}
B. $\frac{A^{-1}}{2}$
C. $3 A^{-1}$
D. $2 A^{-1}$

Answer: D
6. If $\mathrm{A}=\left[\begin{array}{ll}2 & 0 \\ 1 & 5\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ll}1 & 4 \\ 2 & 0\end{array}\right]$ then $|\operatorname{adj}(\mathrm{AB})|^{\prime}=$
A. -40
B. -80
C. -60
D. -20

Answer: B

D View Text Solution

7. If $\mathrm{P}=\left[\begin{array}{ccc}1 & x & 0 \\ 1 & 3 & 0 \\ 2 & 4 & -2\end{array}\right]$ is the adjoint of 3×3 matrix A and $|\mathrm{A}|=4$ then x is
A. 15
B. 12
C. 14
D. 11

Answer: D

D View Text Solution

8. If $A=[(3,1,-1),(2,-2,0),(1,2-1)] \quad$ and
$A^{-1}=\left[\begin{array}{ccc}a_{1} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$
A. 0
B. -2
C. -3
D. -1

D View Text Solution

9. If $A B$, and C are invertible matrices of some order, then which one of the following is not true?
A. $\operatorname{adj} \mathrm{A}=|\mathrm{A}| A^{-1}$
B. $\operatorname{adj}(A B)=(\operatorname{adj} A)(\operatorname{adj} B)$
C. $\operatorname{det} A^{-1}=(\operatorname{det} A)^{-1}$
D. $(A B C)^{-1}=C^{-1} B^{-1} A^{-1}$

Answer: B

D View Text Solution

10. If $(A B)^{-1}=\left[\begin{array}{cc}12 & -17 \\ -19 & 27\end{array}\right]$ and $A^{-1}=\left[\begin{array}{cc}1 & -1 \\ -2 & 3\end{array}\right]$ then $B^{-1}=$
A. $[(2,-5),(-, 3,8)]$
B. $\left[\begin{array}{ll}8 & 5 \\ 3 & 2\end{array}\right]$
C. $\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right]$
D. $\left[\begin{array}{cc}8 & -5 \\ -3 & 2\end{array}\right]$

Answer: A

D View Text Solution
11. If $A^{T} A^{1}$ is symmetric then $A^{2}=$
A. A^{-1}
B. $\left(A^{T}\right)^{2}$
C. A^{T}
D. $\left(A^{-1}\right)^{2}$

Answer: B

D View Text Solution

12. If A is a non-singular matrix such that $A^{-1}=\left[\begin{array}{cc}5 & 3 \\ -2 & -1\end{array}\right]$ then $\left(A^{-T}\right)^{-1}=$
A. $\left[\begin{array}{cc}-5 & 3 \\ 2 & 1\end{array}\right]$
B. $\left[\begin{array}{cc}5 & 3 \\ -2 & -1\end{array}\right]$
C. $\left[\begin{array}{cc}-1 & -3 \\ 2 & 5\end{array}\right]$
D. $\left[\begin{array}{ll}5 & -2 \\ 3 & -1\end{array}\right]$

Answer: D

D View Text Solution
13. If $\mathrm{A}=\left[\begin{array}{cc}\frac{3}{5} & \frac{4}{5} \\ x & \frac{3}{5}\end{array}\right]$ and $A^{T}=A^{-1}$ then the value of x is
A. $\frac{-4}{5}$
B. $\frac{-3}{5}$
C. $\frac{3}{5}$
D. $\frac{4}{5}$

Answer: A

- View Text Solution

14. If $\mathrm{A}=\left[\begin{array}{cc}1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1\end{array}\right]$ and $\mathrm{AB}=I_{2}$ then $\mathrm{B}=$
A. $\left(\cos ^{2} \frac{\theta}{2}\right) A$
B. $\left(\cos ^{2} \frac{\theta}{2}\right) A^{T}$
C. $\left(\cos ^{2} \theta\right) I$
D. $\left(\sin ^{2} \frac{\theta}{2}\right) A$

Answer: B

D View Text Solution

15. If $\mathrm{A}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ and $\mathrm{A}(\operatorname{adj} \mathrm{A})=\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right]$ then $\mathrm{k}=$
A. 0
B. $\sin \theta$
C. $\cos \theta$
D. 1

Answer: D

16. If $\mathrm{A}=\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]$ be such that $\lambda A^{-1}=A$ then λ is
A. 17
B. 14
C. 19
D. 21

Answer: C

D View Text Solution

17. If $\operatorname{adj} A=\left[\begin{array}{cc}2 & 3 \\ 4 & -1\end{array}\right]$ and $\operatorname{adj} B=\left[\begin{array}{cc}1 & -2 \\ -3 & 1\end{array}\right]$ then $\operatorname{adj}(A B)$ is
A. $\left[\begin{array}{cc}-7 & -1 \\ 7 & -9\end{array}\right]$
B. $\left[\begin{array}{cc}-6 & 5 \\ -2 & -10\end{array}\right]$
C. $[(-7,7),,(-1,-9)]$
D. $\left[\begin{array}{cc}-6 & -2 \\ 5 & -10\end{array}\right]$

Answer: B

D View Text Solution
18. The rank of the matrix $\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ -1 & -2 & -3 & -4\end{array}\right]$ is
A. 1
B. 2
C. 4
D. 3

Answer: A

D View Text Solution
$x^{a} y^{b}=e^{m}, x^{c} y^{d}=e^{n}, \Delta_{1}=\left|\begin{array}{ll}m & b \\ n & d\end{array}\right|, \Delta_{2}=\left|\begin{array}{ll}a & m \\ c & n\end{array}\right|, \Delta_{3}=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$ then the values of x and y are respectively
A. $e^{\left(\Delta_{2} / \Delta_{1}\right)}, e^{\left(\Delta_{3} / \Delta_{1}\right)}$
B. $\log \left(\Delta_{1 / \Delta_{3}}, \log \left(\Delta_{2} / \Delta_{3}\right)\right.$
C. $\log \left(\Delta_{2} / \Delta_{1}\right), \log \left(\Delta_{3} / \Delta_{1}\right)$
D. $e^{\left(\Delta_{1} / \Delta_{3}\right)}, e^{\left(\Delta_{2} / \Delta_{3}\right)}$

Answer: D

D View Text Solution

20. Which of the following is/are correct?
(i) Adjoint of a symmetric matrix is also a symmetric matrix
(ii) Adjoint of a diagonal matrix is also a diagonal matrix.
(iii) If A is a square matrix of order n and λ is a scalar, then adj
$(\lambda A)=\lambda^{n} \operatorname{adj}(\mathrm{~A})$.
(iv) $\mathrm{A}(\operatorname{adj} \mathrm{A})=(\operatorname{adj} \mathrm{A})=\mathrm{A}|\mathrm{A}| \mathrm{I}$
A. Only (i)
B. (ii) and (iii)
C. (iii) and (iv)
D. (i), (ii) and (iv)

Answer: D

D View Text Solution
21. If $\rho(A)=\rho([A \mid B])$ then the system $\mathrm{AX}=\mathrm{B}$ of linear equations is
A. consistent and has a unique solution
B. consistent
C. consistent and has infinitely many solution
D. inconsistent

Answer: B

- View Text Solution

22. If $0 \leq \theta \leq \pi$ and the system of equations $x+(\sin \theta) y-(\cos \theta)$
$\mathrm{z}=0(\cos \theta) \mathrm{x}-\mathrm{y}+\mathrm{z}=0(\sin \theta) \mathrm{x}+\mathrm{y}-\mathrm{z}=0$ has a non - trivial solution then θ is
A. $\frac{2 \pi}{3}$
B. $\frac{3 \pi}{4}$
C. $\frac{5 \pi}{6}$
D. $\frac{\pi}{4}$

D View Text Solution

23. The augmented matrix of a system of linear equations is
$\left[\begin{array}{cccc}1 & 2 & 7 & 3 \\ 0 & 1 & 4 & 6 \\ 0 & 0 & \lambda-7 & \mu+5\end{array}\right]$. The system has infinitely many solutions
if
A. $\lambda=7, \mu \neq-5$
B. $\lambda=-7, \mu=5$
C. $\lambda \neq 7, \mu \neq-5$
D. $\lambda=7, \mu=-5$

Answer: D

24. Let $A \quad\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$
$4 B=[(3,1-1),(1,3, x),(-1,1,3)]$. If B is the iverse of A, then the value of x is
A. 2
B. 4
C. 3
D. 1

Answer: D

D View Text Solution
25. If $A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$ then $\operatorname{adj}(\operatorname{adj} A)$ is

Answer: A

- View Text Solution

