©゙doubtnut

India's Number 1 Education App

MATHS

NCERT - FULL MARKS MATHS(TAMIL)

APPLICATIONS OF VECTOR ALGEBRA

Example

1. In triangle, $A B C$ the points D, E, F are the midpoints of the sides , $B C$ CA, and AB respectively. Using vector method, show that the area of $\triangle D E F$ is equal to $\frac{1}{4}$ (area of $\triangle A B C$).

- View Text Solution

2. A straight line passes through the point $(1,2,-3)$ and parallel to $4 \hat{i}+5 \hat{i}-7 \hat{k}$. Find (i) vector equation in parametric form (ii) vector
equation in non-parametric form (iii) Cartesian equation of the straight line.

- View Text Solution

3. Find the acute angle between the lines
$\vec{r}=(\hat{i}+2 \hat{j}+4 \hat{k})+t(2 \hat{i}+2 \hat{j}+\hat{k})$ and the straight line passing through the points (5,4,1) and (9,2,12).

- View Text Solution

4. Find the point of intersection of the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}=$ z.

- View Text Solution

5. Find the shortest distance between the two given straight lines
$\vec{r}=(2 \hat{i}+3 \hat{j}+4 \hat{k})+t(-2 \hat{i}+\hat{j}-2 \hat{k})$ and $\frac{x-3}{2}=\frac{y}{-1}=\frac{z+2}{2}$

D View Text Solution

6. Find the coordinates of the foot of the perpendicular drawn from the point $\quad(1,2,3)-\quad$ to the straight line
$\vec{r}=(\hat{i}-4 \hat{j}+3 \hat{k})+t(2 \hat{i}+3 \hat{j}+\hat{k})$. Also find the shortest distance from the given point to the straight line.

- View Text Solution

7. Find the direction cosines of the normal to the plane and length of the perpendicular from the origin to the plane $\vec{r} \cdot(3 \hat{i}-4 \hat{j}+12 \hat{k})=5$.

- View Text Solution

8. Find the vector and Cartesian equations of the plane passing through the point with position vectork $4 \hat{i}+2 \hat{j}-3 \hat{k}$ and normal to vector
$2 \hat{i}-\hat{j}+\hat{k}$.

- View Text Solution

9. Find the distance of the point ($5,-5,-10$) from the point of intersection of a straight line passing through the points $A(4,1,2)$ and $B(7,5,4)$ with the plane $x-y+z=5$.

- View Text Solution

10. Find the distance between the parallel planes $x+2 y-2 z+1=0$ and $2 x$ $+4 y-4 z+5=0$.

- View Text Solution

$$
\begin{aligned}
& \text { 11. Find the distance between the planes } \\
& \vec{r} \cdot(2 \hat{i}-\hat{j}-2 \hat{k})=6 \text { and } \vec{r} \cdot(6 \hat{i}-3 \hat{j}-6 \hat{k})=27
\end{aligned}
$$

Exercise 61

1. A particle acted on by constant forces $8 \hat{i}+2 \hat{j}-6 \hat{k}$ and $6 \hat{i}+2 \hat{j}-2 \hat{k}$ is displaced from the point, $(1,2,3)$ to the point $(5,4,1)$. Find the total work done by the forces.

- View Text Solution

2. Forces of magnitude $5 \sqrt{2}$ and $10 \sqrt{2}$ units acting in the directions $3 \hat{i}+4 \hat{j}+5 \hat{k}$ and $10 \hat{i}+6 \hat{j}-8 \hat{k}$, respectively, act on a particle which is displaced from the point with position vector $4 \hat{i}-3 \hat{j}-2 \hat{k}$ to the point with position vector $6 \hat{i}+\hat{j}-3 \hat{k}$. Find the work done by the forces.

- View Text Solution

3. Find the magnitude and direction cosines of the torque of a force represented by $3 \hat{i}+4 \hat{j}-5 \hat{k}$ about the point with psition vector
$2 \hat{i}-3 \hat{j}+4 \hat{k}$ acting through a point whose position vector is $4 \hat{i}+2 \hat{j}-3 \hat{k}$.

- View Text Solution

4. Find the torque of the resultant of the three forces represented by $-3 \hat{i}+6 \hat{j}-3 \hat{k}, 4 \hat{i}-10 \hat{j}+12 \hat{k}$ and $4 \hat{i}+7 \hat{j}$ acting at the point with position vector $8 \hat{i}-6 \hat{j}-4 \hat{k}$, about the point with position vector $18 \hat{i}+3 \hat{j}-9 \hat{k}$.

- View Text Solution

Exercise 62

1. If $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}+\hat{j}-2 \hat{k}, \vec{c}=3 \hat{i}+2 \hat{j}+\hat{k} \quad$ find $\vec{a} \cdot(\vec{a} \times \vec{c})$.

- View Text Solution

2. Find the volume of the parallelepiped whose coterminous edges are represented by the vectors $-6 \hat{i}+14 \hat{j}+10 \hat{k}, 14 \hat{i}-10 \hat{j}-6 \hat{k}$ and $2 \hat{i}+4 \hat{j}-2 \hat{k}$.

- View Text Solution

3. The volume of the parallelepiped whose coterminus edges are $7 \hat{i}+\lambda \hat{j}-3 \hat{k}, \hat{i}+2 \hat{j}-\hat{k}-3 \hat{i}+7 \hat{j}+5 \hat{k}$ is 90 cubic units. Find the value of λ.

- View Text Solution

4. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors represented by concurrent edges of a parallelepiped of volume 4 cubic units, find the value of $(\vec{a}+\vec{b}) \cdot(\vec{b} \times \vec{c})+(\vec{b}+\vec{c}) \cdot(\vec{c} \times \vec{a})+(\vec{c}+\vec{a}) \cdot(\vec{a} \times \vec{b}$
5. Find the altitude of a parallelepiped determined by the vectors $\vec{a}=-2 \hat{i}+5 \hat{j}+3 \hat{k}, \vec{b}=\hat{i}+3 \hat{j}-2 \hat{k}$ and $\vec{c}=-3 \hat{i}+\hat{j}+4 \hat{k} \quad$ if the base is taken as the parallelogram determined by \vec{b} and \vec{c}.

- View Text Solution

6. Determine whether the three vectors
$2 \hat{i}+3 \hat{j}+\hat{k}, \hat{i}-2 \hat{j}+2 \hat{k}$ and $3 \hat{i}+\hat{j}+3 \hat{k}$ are coplanar.

- View Text Solution

7. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$.
c_{1} and 1 and $c_{2}=2$, find c_{3} such that \vec{a}, \vec{b} and \vec{c} are coplanar.

- View Text Solution

1. If $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}+\hat{j}-2 \hat{k}, \vec{c}=3 \hat{i}+2 \hat{j}+\hat{k}$, find (i) $(\vec{a} \times \vec{b}) \times \vec{c}(i i) \vec{a}(\vec{b} \times \vec{c})$.

- View Text Solution

2. $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}, \vec{b}=-\hat{i}+2 \hat{j}-4 \hat{k}, \vec{c}=-\hat{i}-2 \hat{j}+3 \hat{k}$ the find the value of $(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{c})$.

- View Text Solution

3.

$\vec{a}=\hat{i}+2 \hat{i}+3 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}, \vec{c}=3 \hat{i}+2 \hat{j}+\hat{k}$ and $\vec{a} \times(\vec{b} \times \vec{c}$
, find the values of $\mathrm{I}, \mathrm{m}, \mathrm{n}$.

- View Text Solution

4. If $\vec{a}, \vec{b}, \vec{c}$ are three unit vectors such that \vec{b} and \vec{c} are nonparallel and $\vec{a} \times(\hat{b} \times \hat{c})=\frac{1}{2} \hat{b}$ find the angle between \widehat{a} and \vec{c}.

- View Text Solution

Exercise 64

1. Find the non-parametric form of vector equation and Cartesian of the straight line passing through the point with position vector $4 \hat{i}+3 \hat{j}-7 \hat{k}$ and parallel to the vector $2 \hat{i}-6 \hat{j}+7 \hat{k}$.

- View Text Solution

2. Find the parametric form of vector equation and Cartesian equation of the straight line passing through the point $(-2,3,4)$ and parallel to the straight line $\frac{x-1}{-4}=\frac{y+3}{5}=\frac{8-z}{6}$.
3. Find the points where the straight line passes through $(6,7,4)$ and $(8,4,9)$ cuts the $x z$ and $y z$ planes.

- View Text Solution

4. Find the direction cosines of the straight line passing through the points $(5,6,7)$ and $(7,9,13)$. Also, find the parametric form of vector equation and Cartesian equation of the straight line passing through two given points.

- View Text Solution

5. Find the acute angle between the following lines.

$$
\vec{r}=(4 \hat{i}-\hat{j})+t(\hat{i}+2 \hat{j}-2 \hat{k}), \hat{r}=(\hat{i}-2 \hat{j}+4 \hat{k})+s(-\hat{i}-2 \hat{j}+2 \hat{k}
$$

- View Text Solution

6. Find the acute angle between the following lines.
$\frac{x+4}{3}=\frac{y-7}{4}=\frac{z+5}{5}, \vec{r}=4 \hat{k}+(2 \hat{i}+\hat{j}+\hat{k})$

- View Text Solution

7. Find the acute angle between the following lines.
$2 x+3 y=-z$ and $6 x=-y=-4 z$.

- View Text Solution

8. The vertices of $\triangle A B C$ are $\mathrm{A}(7,2,1), \mathrm{B}(6,0,3)$ and $\mathrm{C}(4,2,4)$. Find $\angle A B C$.

- View Text Solution

9. If the straight line joining the points $(2,1,4)$ and $(a-1,4,-1)$ is parallel to the line joining the points $(0,2, b,-1)$ and $(5,3,-2)$ find the values of a and b.
10. If the straight lines

$$
\frac{x-5}{5 m+2}=\frac{2-y}{5}=\frac{1-z}{-1} \text { and } \frac{2 y+1}{4 m}=\frac{1-z}{-3} \text { are perpendicular }
$$ to each other, find the value of m.

- View Text Solution

Exercise 65

1. Find the parametric form of vector equation and Cartesian equations of
a straight line passing through
$(5,2,8)$ and isperpendicar \rightarrow thestraightl \in esvecr=(hati+hatjhate) $+\mathrm{s}(2$ hati-2hatj+hatk)andvecr=(2hati-hatj-3hatk) $+\mathrm{t}($ Lati +2 hatj+2hatk).

- View Text Solution

2.

Show
that
the
lines
$\vec{r}=(6 \hat{i}+\hat{j}+2 \hat{k})+s(\hat{i}+2 \hat{j}-3 \hat{k})$ and $\overrightarrow{3 \hat{i}+2 \hat{j}-2 \hat{k}}+t(2 \hat{i}+4 \hat{j}-$
are skew lines and hence find the shortest distance between them.

- View Text Solution

3. If the two lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-m}{2}=z$ intersect at a point, find the value of m.

- View Text Solution

4. $\begin{gathered}\text { Show }\end{gathered} \begin{gathered}\text { that }\end{gathered} \quad$ the
$\frac{x-3}{3}=\frac{y-3}{-1}, z-1=0$ and $\frac{x-6}{2}=\frac{z-1}{3}, y-2=0$ intersect.

Also find the point of intersection.

- View Text Solution

5. Show that the straight lines $x+1=2 y=-12 z$ and $x=y+2=6 z-6$ are skew and hence find the shortest distance between them.

- View Text Solution

6. Find the parametric form of vector equation of the straight line passing through ($-1,2,1$) and parallel to the straight line $\vec{r}=(2 \hat{i}+3 \hat{j}-\hat{k})+t(\hat{i}-2 \hat{j}+\hat{k})$ and hence find the shortest distance between the lines.

D View Text Solution

7. Find the foot of the perpendicualr drawn from the point $(5,4,2)$ to the line $\frac{x+1}{2}=\frac{y-3}{3}=\frac{z-1}{-1}$. Also, find the equation of the perpendicular.

- View Text Solution

1. Find a parametric form of vector equation of a plane which is at a distance of 7 units from the origin having $3,-4,5$ as direction ratios of a normal to it.

- View Text Solution

2. Find the direction cosines of the normal of the plane $12 x+3 y-4 z=65$.

Also. Find the non-parametric form of vector equation of a plane and the length of the perpendicular to the plane from the origin.

- View Text Solution

3. Find the vector and Cartesian equaitions, of the plane passing through the point with position vector $2 \hat{i}+6 \hat{j}+3 \hat{k}$ and normal to the vector $\hat{i}+3 \hat{j}+5 \hat{k}$.

- View Text Solution

4. A plane passes through the point $(-1,1,2)$ and the normal to the plane of magnitude $3 \sqrt{3}$ makes equal acute angles with the coordinate axes. Find the equation of the plane.

- View Text Solution

5. Find the intercepts cut off by the plane $\vec{r} \cdot(6 \hat{i}+4 \hat{j}-3 \hat{k})=12$ on the coordinate axes.

- View Text Solution

6. If a plane meets the coordinate axes at A, B, C such that the centriod of the triangle $A B C$ is the point (u, v, w), find the equation of the plane.

- View Text Solution

1. If \vec{a} and \vec{b} are parallel vectors, then $[\vec{a}, \vec{b}, \vec{c}]$ is equal to
A. 2
B. -1
C. 1
D. 0

Answer: D

- View Text Solution

2. If a vector $\vec{\alpha}$ lies in the plane of $\vec{\beta}$ and $\vec{\gamma}$, then
A. $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}]=1$
B. $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}]=1$
c. $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}]=0$
D. $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}]=2$

- View Text Solution

3. If $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$ then the value of $[\vec{a}, \vec{b}, \vec{c}]$ is
A. $|\vec{a}||\vec{b}||\vec{c}|$
B. $\frac{1}{3}|\vec{a}||\vec{b}||\vec{c}|$
C. 1
D. -1

Answer: A

- View Text Solution

4. If $\vec{a}, \vec{b}, \vec{c}$ are three unit vectors such that \vec{a} is perpendicular to \vec{b}, and is parallel to \vec{c} then $\vec{a} \times(\vec{b} \times \vec{c})$ is equal to
A. \vec{a}
B. \vec{b}
C. \vec{c}
D. $\overrightarrow{0}$

Answer: B

- View Text Solution

5. If, $[\vec{a}, \vec{b}, \vec{c}]=1$ then the value of
$\frac{\vec{a} \cdot(\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a})}+\frac{\vec{b} \cdot(\vec{c} \times \vec{a})}{(\vec{a} \times \vec{b}) \cdot \vec{c}}+\frac{\vec{c} \cdot(\vec{a} \times \rightarrow)}{(\vec{c} \times \vec{b}) \cdot \vec{a}}$ is
A. 1
B. -1
C. 2
D. 3

Answer: C

- View Text Solution

6. The volume of the parallelepiped with its edges represented by the vectors $\hat{i}+\hat{j}, \hat{i}+2 \hat{j}, \hat{i}+\hat{j}+\pi \hat{k}$ is
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. π
D. $\frac{\pi}{4}$

Answer: C

D View Text Solution

7. If \vec{a} and \vec{b} are unit vectors such that $[\vec{a}, \vec{b}, \vec{a} \times \vec{b}]=\frac{\pi}{4}$, then the angle between \vec{a} and \vec{b} is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: A

- View Text Solution

8.

$$
\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}, \vec{c}=\hat{i} \text { and }(\vec{a} \times \vec{b}) \times \vec{c}=\lambda \vec{a}=\mu \vec{b}
$$ is

A. 0
B. 1
C. 6
D. 3

D View Text Solution

9. If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar, non-zero vectors such that $\left[\vec{a}, \vec{b}, \vec{c}\left[=3\right.\right.$ then $\left\{\left[\begin{array}{llll}\vec{a} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \vec{a}\end{array}\right]\right\}^{2}$ is equal to
A. 81
B. 9
C. 27
D. 18

Answer: A

- View Text Solution

10. If \vec{a}, \vec{b}, are three non-coplanar vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}$, then the angle between $\vec{a} \vec{b}$ is
A. $\frac{\pi}{2}$
B. $\frac{3 \pi}{4}$
C. $\frac{\pi}{4}$
D. π

Answer: B

- View Text Solution

11. If the volume of the parallelepiped with $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}$ as coterminous edges is 8 cubic units then the volume of the parallelepiped
with
$(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c}),(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})$ and $(\vec{c} \times \vec{a}) \times(\vec{a}$
as coterminous edges is,
A. 8 cubic units
B. 512 cubic units
C. 64 cubic units
D. 24 cubic units

Answer: C

- View Text Solution

12. Consider the vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ such that $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$. Let p_{1} and p_{2} be the planes determined by the paris of vectors, \vec{a}, \vec{b} and \vec{c}, \vec{d} respectively. Then the angle between P_{1} and P_{2} is
A. 0°
B. $45(\circ)$
C. 60°
D. 90°

Answer: A

13. If $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \times \vec{c}$, where $\vec{a}, \vec{b}, \vec{c}$ are any three vectors such that $\vec{b} \cdot \vec{c} \neq 0$ and $\vec{a} \cdot \vec{b} \neq 0$, then \vec{a} and \vec{c} are
A. perpendicular
B. parallel
C. incilined at an angle $\frac{\pi}{3}$
D. inclined at an angle $\frac{\pi}{6}$

Answer: B

D View Text Solution

14. If $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-5 \hat{j}, \vec{c}=3 \hat{i}+5 \hat{j}-\hat{k}$, then a vector perpendicualr to \vec{a} and lines in the containing \vec{b} and \vec{c} is \backslash
A. $-17 \hat{i}+21 \hat{j}-97 \hat{k}$
B. $17 \hat{i}+21 \hat{j}-123 \hat{k}$
C. $-17 \hat{i}-21 \hat{j}+97 \hat{k}$
D. $-17 \hat{i}-21 \hat{j}-97 \hat{k}$

Answer: D

- View Text Solution

A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

- View Text Solution

16. If the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lies in the plane $x+3 y-$ $\alpha x+\beta=0$, then (α, β) is
A. $(-5,5)$
B. $(-6,7)$
C. (5,-5)
D. $(6,7)$

Answer: B

- View Text Solution

17. The angle between the line $\vec{r}=(\hat{i}+2 \hat{j}-3 \hat{k})+t(2 \hat{i}+\hat{j}-2 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}+\hat{j})+4=0$
A. 0°
B. 30°
C. 45°
D. 90°

Answer: C

- View Text Solution

18. The coordinates of the point where the line
$\vec{r}=(6 \hat{i}-\hat{j}-3 \hat{k})+t(-\hat{i}+4 \hat{k})$ meets the plane
$\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=3$ are
A. $(2,1,0)$
B. $(7,-1,-7)$
C. (1,2-6)
D. $(5,-1,1)$

Answer: D

- View Text Solution

19. Distance from the origin to the plane $3 x-6 y+2 z+7=0$ is
A. 0
B. 1
C. 2
D. 3

Answer: B

- View Text Solution

20. The distance between the planes $x+2 y+3 z+7=0$ and $2 x+4 y+6 z+$ 70 is
A. $\frac{\sqrt{7}}{2 \sqrt{2}}$
B. $\frac{7}{2}$
C. $\frac{\sqrt{7}}{2}$
D. $\frac{7}{2 \sqrt{2}}$

D View Text Solution

21. If the direction cosines of a line are $\frac{1}{c}, \frac{1}{c}, \frac{1}{c}$, then
A. $c= \pm 3$
B. $c= \pm \sqrt{3}$
C. $c>0$
D. $0 \ll 1$

Answer: B

22. The vector equation $\vec{r}=(\hat{i}-2 \hat{j}-\hat{k})+t(6 \hat{i}-\hat{k})$ represents a straight line passing through the points
A. (0,6,-1) and (1,-2,-1)
B. ($0,6,-1$) and (-1,-1,-2)
C. (1,-2,-1) and (1,4,-2)
D. (1,-2,1) and (0,-6,1)

Answer: C

- View Text Solution

23. If the distance of the point $(1,1,1)$ from the origin is half of its distance from the plane $x+y+z+k=0$, then the values of k are
A. ± 3
B. ± 6
C. $-3,9$
D. $3,-9$
24. If the planes $\vec{r}(2 \hat{i}-\lambda \hat{j}+\hat{k})=3$ and $\vec{r} \cdot(4 \hat{i}+\hat{j}-\mu \hat{k})=5$ are parallel then the value of λ and μ are
A. $\frac{1}{2},-2$
B. $-\frac{1}{2}, 2$
C. $-\frac{1}{2},-2$
D. $\frac{1}{2}, 2$

Answer: C

- View Text Solution

25. If the length of the perpendicular from the origin to the plane $2 x+3 y+\lambda z=1, \lambda>0$, is $\frac{1}{5}$, then the value of λ is
A. $2 \sqrt{3}$
B. $3 \sqrt{2}$
C. 0
D. 1

Answer: A

- View Text Solution

