

MATHS

NCERT - FULL MARKS MATHS(TAMIL)

COMPLEX NUMBERS

1. Simplify the following

 i^7

2. Simplify the following

 i^{1729}

5. Write $\frac{3+4i}{5-12i}$ in the x + iy form, hence find its real and

imaginary parts.

View Text Solution

6. Simplify
$$\left(\frac{1+i}{1-i}
ight)^3 - \left(\frac{1-i}{1+i}
ight)^3$$
 into rectangular form

View Text Solution

7. If
$$\frac{z+3}{z-5i} = \frac{1+4i}{2}$$
, find the complex number z in the

rectangular form

8. If
$$z_1 = 3 - 2i$$
 and $z_2 = 6 + 4i$, find $\frac{z_1}{z_2}$ in the

rectangular form

View Text Solution
9. Find
$$z^{-1}$$
, if $z = (2+3i)(1-i)$
View Text Solution
10. Show that $(2 + I\sqrt{3})^{10} + (2 - I\sqrt{3})^{10}$ is real
View Text Solution

11.
$$\left(rac{19+9i}{5-3i}
ight)^{15}-\left(rac{8+i}{1+2i}
ight)^{15}$$
 is purely imaginary.

View Text Solution

13. Find the following

$$\frac{2+i}{-1+2i}$$

View Text Solution

14. Find the following

$$\overline{(1+i)}(2+3i)(4i-3)$$

15. Find the following

$$\left|\frac{i(2+i)^3}{\left(1+i\right)^2}\right|$$

View Text Solution

16. Which one of the points i, - +2 i , and 3 is farthest from

the origin?

View Text Solution

17. If z_1, z_2 , and z_3 are complex numbers such that $|z_1| = |z_2| = |z_3| = z_1 + z_2 + z_3| = 1$. Find the value of $\left|\frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3}\right|$ 18. If |z|=2 show that $3\leq |z+3+4i|\leq 7$

View Text Solution

19. Show that the points
$$1, \frac{-1}{2} + i\frac{\sqrt{3}}{2}$$
, and $\frac{-1}{2} - i\frac{\sqrt{3}}{2}$

are the vertices of an equilateral triangle.

View Text Solution

20. Let z_1, z_2 , and z_3 be complex numbers such that $|z_1| = |z_2| = |z_3| = r > 0$ and $z_1 + z_2 + z_3 \neq 0$ Prove that $\left|\frac{z_1z_2 + z_2z_3 + z_3z_1}{z_1 + z_2 + z_3}\right| = r$

23. Given the complex number z = 3 + 2i represent the complex numbers z, iz, and and z + iz in one Argand diagram. Show that these complex numbers form the vertices of an isosceles right triangle.

24. Show that |3z - 5 + i| = 4 represents a circle, and, find its centre and radius.

View Text Solution

25. Show that |z+2-i| < 2 represents interior points of a

circle. Find its centre and radius.

D View Text Solution

26. Obtain the Cartesian form of the locus of z in each of the

following cases.

$$|z|=|z-i|$$

27. Obtain the Cartesian form of the locus of z in each of the

following cases.

|2z-3-i|=3

28. Find the modulus and principal argument of the following

complex numbers.

$$\sqrt{3}+i$$

29. Find the modulus and principal argument of the following

complex numbers.

$$-\sqrt{3}+i$$

View Text Solution

30. Find the modulus and principal argument of the following complex numbers.

$$-\sqrt{3}-i$$

View Text Solution

31. Find the modulus and principal argument of the following complex numbers.

$$\sqrt{3}-i$$

34. Find the product
$$\frac{3}{2}\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) \cdot 6\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$$
 in rectangular

form.

35. Find the quotient

$$rac{2 \left(\cos rac{9 \pi}{4} + i \sin rac{9 \pi}{4}
ight)}{4 \left(\cos \left(rac{-3 \pi}{2}
ight) + i \sin \left(rac{-3 \pi}{2}
ight)
ight)}$$
 in

rectangular form.

View Text Solution

36. If z=x +iy and arg
$$\left(rac{z-1}{z+1}
ight)=rac{\pi}{2}$$
 , show that $x^2+y^2=1.$

View Text Solution

37. If
$$z = (\cos \theta + I \sin \theta)$$
, show that $z^n + \frac{1}{z^n} = 2\cos n\theta$ and $z^n - \frac{1}{z^n} = 2I\sin n\theta$

38. Simplify
$$\left(\sinrac{\pi}{6}+i\cosrac{\pi}{6}
ight)^{18}$$

View Text Solution

39.
$$\left(rac{1+\cos 2 heta+i\sin 2 heta}{1+\cos 2 heta-i\sin 2 heta}
ight)^{30}$$

View Text Solution

40. Simplify

$$\left(1+i
ight)^{18}$$

45. Find all cube roots of $\sqrt{3} + i$

View Text Solution

46. Suppose z_1, z_2 , and z_3 are the vertices of an equilateral triangle inscribed in the circle |z| = 2. If $z_{1_{\square}} = 1 + i\sqrt{3}$, then find z_2 and z_3 .

View Text Solution

Exercise 21

1. Simplify the following:

2. Simplify the following:

 $i^{1948} - i^{1869}$

3. Simplify the following:

 $ii^2i^3.\ldots.i^{2000}$

4. Simplify the following:

 $\sum\limits_{n=1}^{10}i^{n+50}$

3. Evaluate the following if z = -2i and w = -1 + 3i

2z + 3w

View Text Solution

4. Evaluate the following if z = -2i and w = -1 + 3i

zw

View Text Solution

5. Evaluate the following if z = -2i and w = -1 + 3i

$$z^2 + 2zw + w^2$$

6. Evaluate the following if z = -2i and w = -1 + 3i

$$(z+w)^2$$

View Text Solution

7. Find the values of the real numbers x and y, if the complex

numbers

$$(3-i)x - (2-i)y + 2i + 5 \,\, {
m and} \,\, 2x + (\, -1) + 2i)y + 3 + 2i$$

are equal.

1. Write the following in the rectangular form:

$$\overline{(5+9i)+(2-4i)}$$

2. Write the following in the rectangular form:

 $\frac{10-5i}{6+2i}$

3. Write the following in the rectangular form:

$$\overline{3i}+rac{1}{2-i}$$

4. If z= x+ iy, find the following in rectangular form.

Re
$$\left(\frac{1}{z}\right)$$

6. If z= x+ iy, find the following in rectangular form.

 ${\sf Im} \left(3z + 4\bar{z} + \, -4i \right)$

7. If $z_1=2-I$ and $z_2=-4+3i$, find the inverse of z_1z_2 and $\displaystyle \frac{z_1}{z_2}$

View Text Solution

8. The complex numbers u,v, and w are related by $\frac{1}{u} = \frac{1}{v} + \frac{1}{w}$. If v = 3 - 4i and w = 4 + 3i, find u in

rectangular form.

View Text Solution

9. Find the least value of the positive integer n for which

$$\left(\sqrt{3}+i
ight)^n$$

real

10. Find the least value of the positive integer n for which

$$\left(\sqrt{3}+i
ight)^n$$

purely imaginary

Exercise 2 5

1. Find the modulus of the following complex numbers

 $\frac{2i}{3+4i}$

2. Find the modulus of the following complex numbers

$$\frac{2-i}{1+i}+\frac{1-2i}{1-i}$$

3. Find the modulus of the following complex numbers

$$(1-i)^{10}$$

4. Find the modulus of the following complex numbers

2i(3-4i)(4-3i)

5. For any two complex numbers z_1 and z_2 , such that $|z_1| = |z_2| = 1$ and $z_1 z_2 \neq = -1$, then show that $\frac{z_1 + z_2}{1 + z_1 z_2}$ is a real number.

View Text Solution

6. If
$$|z| = 3$$
, show that $7 \le |z+6-8i| \le 13$

View Text Solution

7. If z_1, z_2 , and z_3 are three complex numbers such that $|z_1| = 1, |z_2| = 2, |z_3| = 3$ and $|z_1 + z_2 + z_3| = 1$, show that $|9z_1z_2 + 4z_1z_3 + z_2z_3| = 6$

8. Show that the equation $z^3 = 2\bar{z} = 0$ has five solutions.

1. Obtain the Cartesian form of the locus of z= x+iy in each of

the following cases:

$$\left[{\operatorname{Re}} \ \ (iz)
ight]^2 = 3$$

View Text Solution

2. Obtain the Cartesian form of the locus of z= x+iy in each of

the following cases:

Im [(1-z)z+1]=0`

4. Obtain the Cartesian form of the locus of z= x+iy in each of

the following cases:

$$ar{z}=z^{\,-1}$$

5. Show that the following equations represent a circle, and,

find its centre and radius.

|z-2-i|=3

View Text Solution

6. Show that the following equations represent a circle, and,

find its centre and radius.

$$|2z+2-4i|=2$$

View Text Solution

7. Show that the following equations represent a circle, and,

find its centre and radius.

|3z - 6 + 12i| = 8

9. Obtain the Cartesian equation for the locus of z=x+iy

in each of the following cases:

$$|z-4|^2 - |z-1|^2 = 16$$

View Text Solution

Exercise 2 7

1. Write in polar form of the following complex numbers

 $2+i2\sqrt{3}$

- 2. Write in polar form of the following complex numbers
- $3-I\sqrt{3}$

- 3. Write in polar form of the following complex numbers
- -2-i2

4. Write in polar form of the following complex numbers

$$\frac{i-1}{\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}}$$

5. Find the rectangular form of the complex numbers

$$\Big(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}\Big) \Big(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12}\Big)$$

View Text Solution

6. Find the rectangular form of the complex numbers

$$rac{\cosrac{\pi}{6}-i\sinrac{\pi}{6}}{2\Big(\cosrac{\pi}{3}+i\sinrac{\pi}{3}\Big)}$$

1. Find the value of
$$\left(rac{1+\sinrac{\pi}{10}+i\cosrac{\pi}{10}}{1+\sinrac{\pi}{10}-i\cosrac{\pi}{10}}
ight)^{10}$$

Niew Text Solution

2. Solve the equation
$$z^3+27=0$$

3. Find the value of
$$\sum\limits_{k=1}^8 \left(\cos rac{2k\pi}{9} + i \sin rac{2k\pi}{9}
ight)$$

4. If z = 2 - 2i, find the rotation of z by heta radians in the

counter clockwise direction about the origin when

$$heta=rac{\pi}{3}$$

View Text Solution

5. If z=2-2i, find the rotation of z by heta radians in the

counter clockwise direction about the origin when

$$heta = rac{2\pi}{3}$$

View Text Solution

6. If z = 2 - 2i, find the rotation of z by θ radians in the counter clockwise direction about the origin when 3π

$$\theta = \frac{3\pi}{2}$$

2. The value of $\sum\limits_{i=1}^{13} (i^n + i^{n-1})$ is

A. 1+i

B.i

C. 1

D. 0

Answer: A

3. The area of the triangle formed by the complex numbers z, iz, and z + iz in the Argand's diagram is

A.
$$rac{1}{2}ert zert^2$$

 $\mathsf{B.}\left|z\right|^{2}$

C.
$$\frac{3}{2}|z|^2$$

D. $2|z|^2$

Answer: A

4. The conjugate of a complex number is $\frac{1}{i-2}$. Then, the complex number is

A.
$$\frac{1}{i+2}$$

B. $\frac{-1}{i+2}$
C. $\frac{-1}{i-2}$
D. $\frac{1}{i-2}$

Answer: B

5. If
$$z=rac{\left(\sqrt{3}+i
ight)^3 (3i+4)^2}{\left(8+6i
ight)^2}$$
 , then $|\mathsf{z}|$ is equal to

A. 0

B. 1

C. 2

D. 3

Answer: C

6. If z is a non zero complex number, such that $2iz^2 = ar{z}$ then

|Z| is

A. $\frac{1}{2}$ B. 1 C. 2

D. 3

Answer: A

View Text Solution

7. If $|z-2+i| \leq 2$, then the greatest value of |z| is

A.
$$\sqrt{3}-2$$

 $\mathsf{B}.\sqrt{3}+2$

C.
$$\sqrt{5}-2$$

 $\mathsf{D}.\,\sqrt{5}+2$

Answer: D

8. If
$$\left|z-rac{3}{z}
ight|=2$$
, then the least value of $|z|$ is

A. 1

B. 2

C. 3

D. 5

Answer: A

9. If
$$|z|=1$$
, then the value of $\displaystyle rac{1+z}{1+ar{z}}$ is

A. z

B. \bar{z}

$$\mathsf{C}.\,\frac{1}{z}$$

D. 1

Answer: A

10. The solution of the equation |z|-z=1+2i is

A.
$$rac{3}{2}-2i$$

B.
$$-rac{3}{2}+2i$$

C. $2-rac{3}{2}i$
D. $2+rac{3}{2}i$

Answer: A

11. If $|z_1|=1, |z_2|=2, |z_3|=3$ and $|9z_1z_2+z_2z_3|=12$, then the value of $|z_1+z_2+z_3|$ is

A. 1

B. 2

C. 3

D. 4

Answer: B

Answer: B

13.	z_1, z_3	and z_3	are	complex	numbers	such	that
$z_1 +$	$-z_2 + z_2$	$z_3=0$ a	$ z_1 $	$ = z_2 =$	$ z_3 =1$		then
$z_1^2+z_2^2+z_3^2$ is							
A	4. 3						
E	3. 2						
C	2. 1						
C	0. 0						

Answer: D

A. $\frac{1}{2}$

14. If $\displaystyle rac{z-1}{z+1}$ is purely imaginary, then $|\mathsf{z}|$ is

B. 1

C. 2

D. 3

Answer: B

15. If z = x + iy is a complex number such that |z+2| = |z-2|, then the locus of z is

A. real axis

B. imaginary axis

C. ellipse

D. circle

Answer: B

16. The principal argument of
$$rac{3}{-1+i}$$
 is

A.
$$\frac{-5\pi}{6}$$

B.
$$\frac{-2\pi}{3}$$

C.
$$\frac{-3\pi}{4}$$

D.
$$\frac{-\pi}{2}$$

Answer: C

17. The principal argument of $(\sin 40^\circ + I \cos 40^\circ)$ is

A. -110° B. -70° C. 70°

D. 110°

Answer: A

View Text Solution 18. If (1+i) (1+2i) (1+3i)....(1+ni) = x +iy, then

$$2\cdot 5\cdot 10.\ldots \left(1+n^2
ight)$$
 is

B.i

 $\mathsf{C}.\,x^2+y^2$

 $\mathsf{D.}\,1+n^2$

Answer: C

19. If $\omega
eq 1$ is a cubic root of unity and $\left(1+\omega
ight)^7 = A + B\omega$,

then (A,B) equals

A. (1, 0)B. (-1, 1)C. (0, 1)

D.(1,1)

Answer: D

21. If
$$\alpha$$
 and β are the roots of $x^2 + x + 1 = 0$, then $\alpha^{2020} + \beta^{2020}$ is
A. -2
B. -1
C. 1
D. 2

Answer: B

22. The product of all four values of $\left(\cosrac{\pi}{3}+i\sinrac{\pi}{3}
ight)^{rac{3}{4}}$ is

B. -1

C. 1

D. 2

Answer: C

23. If
$$\omega \neq 1$$
 is a cubic root of unity and
 $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -\omega^2 - 1 & \omega^2 \\ 1 & \omega^2 & \omega^7 \end{vmatrix} = 3k$, then k is equal to

A. 1

B. -1

C. $\sqrt{3}i$

D.
$$-\sqrt{3}i$$

Answer: D

24. The value of
$$\left(rac{1+\sqrt{3}i}{1-\sqrt{3}i}
ight)^{10}$$
 is

A. cis
$$\frac{2\pi}{3}$$

B. cis $\frac{4\pi}{3}$
C. $-$ cis $\frac{2\pi}{3}$
D. $-$ cis $\frac{4\pi}{3}$

Answer: A

25. If $\omega = cis \frac{2\pi}{3}$, then the number of distinct roots of $\begin{vmatrix} z+1 & \omega & \omega^2 \\ \omega & z+\omega^2 & 1 \\ \omega^2 & 1 & z+\omega \end{vmatrix} = 0$ A.1 B.2 C.3

D. 4

Answer: A

