© 「'doubtnut India's Number 1 Education App

MATHS

NCERT - FULL MARKS MATHS(TAMIL)

DIFFERENTIALS AND PARTIAL DERIVATIVES

Example

1. Find the linear approximation for $f(x)=\sqrt{1+x}, x \geq-1$, at $x_{0}=3$. Use the linear approximation to estimate f (3.2).

D Watch Video Solution

2. Let us assume that the the the shape of a soap bubble is a sphere. Use linear approximation to approximate the increase in
the surface area of a soap bubble as its radius increases from 5 cm
to 5.2 cm also calculate the percentage error.

- Watch Video Solution

3. A right circular cylinder has radius $r=10 \mathrm{~cm}$ and height $\mathrm{h}=20 \mathrm{~cm}$ suppose that the radius of the cylinder is increased from 10 cm to 10.1 cm and the height does not change. Estimate the change in the volume of the cylinder. Also calculate the relative error and percentage error .

- Watch Video Solution

4. Let $\mathrm{f}, \mathrm{g}:(a, b) \rightarrow R$ be differentiable functions. Show that $\mathrm{d}(\mathrm{fg})$
= fdg + gdf.
5. Let $g(x)=x^{2}+\sin x$. Calculate the differential dg.

- Watch Video Solution

6. If the radius of a sphere, with radius 10 cm , has to decrease by
0.1 cm approximately how much will its volume decrease ?

D Watch Video Solution

7. Let $F(x, y)=\frac{2 x-3 y+4}{x^{2}+y^{2}+4}$ for all $(x, y) \in R^{2}$, Show that f is continuous on R^{2}.

D Watch Video Solution

8. Consider $f(x, y)=\frac{x y}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$ and $f(0,0)=0$
. Show that f is not continuous at $(0,0)$ and continuous at all other
points of R^{2}.

- Watch Video Solution

9. Let $g(x, y)=\frac{x^{2} y}{x^{4}+y^{2}}$ for $(\mathrm{x}, \mathrm{y}) \neq(0,0)$ and $\mathrm{f}(0,0)=0$.
(i) Show that $\lim _{(x, y) \rightarrow(0,0)} g(x, y)=0$ along every line $y=m x, m \in R$.
(ii) Show that $\lim _{(x, y) \rightarrow(0,0)} g(x, y)=\frac{k}{1+k^{2}}$, along every parabola $y=k x^{2}, k \in R\{0\}$.

- Watch Video Solution

10. Let $\mathrm{f}(\mathrm{x}, \mathrm{y})=0$ if $x y \neq 0$ and $f(x, y)=1$ if $\mathrm{xy}=0$.
(i) Calculate : $\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)$
(ii) Show that f is not continuous at $(0,0)$
11. Let $\mathrm{f}(\mathrm{x}, \mathrm{y})=0$ if $x y \neq 0$ and $f(x, y)=1$ if $\mathrm{xy}=0$.
(i) Calculate : $\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)$
(ii) Show that f is not continuous at $(0,0)$

D Watch Video Solution

12. Let $\mathrm{F}(\mathrm{x}, \mathrm{y})=x^{3} y+y^{2} x+7$ for all $(x, y) \in R^{2}$. Calculate $\frac{\partial F}{\partial x}(-1,3)$ and $\frac{\partial F}{\partial y}(-2,1)$

- Watch Video Solution

13. Let $w(x, y)=x y+\frac{e^{y}}{y^{2}+1}$ for all $(\mathrm{x}, \mathrm{y}) \in \mathbb{R}^{2}$. Calculate $\frac{\partial^{2} w}{\partial y \partial x}$ and $\frac{\partial^{2} w}{\partial x \partial y}$
14. Let $w(x, y)=x y+\frac{e^{y}}{y^{2}+1}$ for all $(\mathrm{x}, \mathrm{y}) \in \mathbb{R}^{2}$. Calculate $\frac{\partial^{2} w}{\partial y \partial x}$ and $\frac{\partial^{2} w}{\partial x \partial y}$

- Watch Video Solution

15. Let $F(x, y)=\frac{2 x-3 y+4}{x^{2}+y^{2}+4}$ for all $(x, y) \in R^{2}$, Show that f is continuous on R^{2}.

- Watch Video Solution

16. If $W=x^{2}+y^{2}+z^{2}, x, y, z \in R$ find the differential dW .

- Watch Video Solution

17. Let $\mathrm{W}(\mathrm{x}, \mathrm{y}, \mathrm{z})=x^{2}-x y+3 \sin z, x, y, z \in R$, Find the linear approximation at (2,-1,0).

Watch Video Solution

18.

Verify
the
above
theorem for
$F(x, y)=x^{2}-2 y^{2}+2 x y$ and $x(t)=\cos t, y(t)=\sin t, t \in[0,2 \pi]$

- Watch Video Solution

19.

Let
$(x, y)=x^{2}-y x+\sin (x+y), x(t)=e^{3 t}, y(t)=t^{2}, t \in R$.
Find $\frac{d g}{d t}$.

(Watch Video Solution

20. Let $g(x, y)=2 y+x^{2}, x=2 r-s, y=r^{2}+2 s, r, s \in \mathbb{R}$.

Find $\frac{\partial g}{\partial r}, \frac{\partial g}{\partial s}$
21. Show that $F(x, y)=\frac{x^{2}+5 x y-10 y^{2}}{3 x+7 y}$ is a homogeneous function of degree 1.

D Watch Video Solution

22. If $u=\sin ^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$ show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \tan u$.

D Watch Video Solution

Exercise 81

1. Let $f(x)=\sqrt[3]{x}$. Find the linear approximation at $\mathrm{x}=27$. Use the linear approximation to approximate $\sqrt[3]{27.2}$
2. Using the approximation to find approximate value of $(123)^{\frac{2}{3}}$

- Watch Video Solution

3. Use the linear approximation to find approximate values of $4 \sqrt{15}$

D View Text Solution
4. Use the linear approximation to find approximate values of $3 \sqrt{26}$
5. Find a linear approximation for the following functions at the indicated points.
$f(x)=x^{3}-5 x+12, x_{0}=2$

- Watch Video Solution

6. Find a linear approximation for the functions at the indicated point
$g(x)=\sqrt{x^{2}+9}, x_{9}=-4$

- Watch Video Solution

7. Find a linear approximation for the following function at the indicated points.
$h(x)=\frac{x}{x+1}, x_{0}=1$
8. The radius of a circular plate is measured as 12.65 cm instead of the actual length 12.5 cm . Find the following is calculating the area of the circular plate:
(i) Absolute error
(ii) Relative error
(iii) Percentage error

- Watch Video Solution

9. The radius of a circular plate is measured as 12.65 cm instead of the actual length 12.5 cm . Find the following is calculating the area of the circular plate:
(i) Absolute error
(ii) Relative error
(iii) Percentage error
10. The radius of a circular plate is measured as 12.65 cm instead of the actual length 12.5 cm . Find the following is calculating the area of the circular plate:
(i) Absolute error
(ii) Relative error
(iii) Percentage error

- Watch Video Solution

11. A sphere is made of ice having radius 10 cm . Its radius decreases
from 10 cm to 9.8 cm . Find approximations for the following: change in the volume
12. A sphere is made of ice having radius 10 cm . Its radius decreases from 10 cm to 9.8 cm . Find approximations for the following: change in the surface area

D View Text Solution

13. The time T , taken for a complete oscillation of a single pendulum with length I, is given by the equation $T=2 \pi \sqrt{\frac{l}{g}}$, where g is a constant. Find the approximate percentage error in the calculated value of T corresponding to an error of 2 percent in the value of I .

D View Text Solution

Exercise 82

1. Find differential dy for each of the following functions :
$y=\frac{(1-2 x)^{3}}{3-4 x}$

D View Text Solution

2. Find differential dy for each of the following functions :

$$
y=(3+\sin (2 x))^{2 / 3}
$$

- View Text Solution

3. Find differential dy for each of the following functions :
$y=e^{x^{2}-5 x+7} \cos \left(x^{2}-1\right)$

- View Text Solution

4. Find df for $f(x)=x^{2}+3 x$ and evaluate it for $\mathrm{x}=2$ and $\mathrm{dx}=0.1$

- View Text Solution

5. Find df for $f(x)=x^{2}+3 x$ and evaluate it for $x=3$ and $d x=0.02$

D View Text Solution

6. Find Δf and df for the function f for the indicated values of x ,
Δx and compare

$$
f(x)=x^{3}-2 x^{2}, x=2, \Delta x=d x=0.5
$$

- View Text Solution

7. Find Δf and df for the function f for the indicated values of x ,
Δx and compare
$f(x)=x^{2}+2 x+3, x=-0.5, \Delta x=d x=0.1$

D View Text Solution

8. Assuming $\log _{10}=0.4343$, find an approximate value of $\log _{10} 1003$.

D View Text Solution

9. The trunk of a tree has diameter 30 cm . During the following year, the circumference grew 6 cm .

Approximately, how much did the tree's diameter grow?
10. The trunk of a tree has diameter 30 cm . During the following year, the circumference grew 6 cm .

What is the percentage increase in area of the tree's cross-section?

D View Text Solution

11. An egg of a particular bird is very nearly spherical. If the radius to the inside of the shell is 5 mm and radiusto the outside ofthe shell is 5.3 mm , find the volume ofthe shell approximately

D View Text Solution

12. Assume that the cross section of the artery of human is circular.

A drug is given to a patient to dilate his arteries. If the radius of an artery is increased from 2 mm to 2.1 mm , how much is crosssectional area increased approximately?
13. In a newly developed city, it is estimated that the voting population (in thousands) will increase according to $V(t)=30+12 t^{2}-t^{3}, 0 \leq t \leq 8$ where t is the time in years.

Find the approximate change in voters for the time change from 4 to $44 \frac{1}{6}$ year.

D View Text Solution

14. The relation between the number of words y a person learns in x hours is given by $y=52 \sqrt{x}, 0 \leq x \leq 9$. What is the approximate number of words learned when x changes from 1 to 1.1 hour ?
15. The relation between the number of words y a person learns in x hours is given by $y=52 \sqrt{x}, 0 \leq x \leq 9$. What is the approximate number of words learned when x changes from 4 to 4.1 hour ?

- View Text Solution

16. A circular plate expands uniformly under the influence of heat. If it's radius increases from 10.5 cm to 10.75 cm , then find an approximate change in the area and the approximate percentage change in the area.

- View Text Solution

17. A coat of paint of thickness 0.2 cm is applied to the faces of a cube whose edge is 10 cm . Use the differentials to find
approximately how many cubic centimeters of paint is used to paint this cube. Also calculate the exact amount of paint used to paint this cube.

- View Text Solution

Exercise 83

1. Evaluate $\lim g(x, y)$, if the limit exists, where $(x, y) \rightarrow(1,2)$
$g(x, y)=\frac{3 x^{2}-x y}{x^{2}+y^{2}+3}$.

D View Text Solution

2. Evaluate $\lim _{(x, y) \rightarrow(0,0)} \cos \left(\frac{x^{3}+y^{2}}{x+y+2}\right)$. If the limit exists.
3. Evaluate $\lim _{(x, y) \rightarrow(0,0)} \cos \left(\frac{e^{x} \sin y}{y}\right)$, if the limit exists.

D View Text Solution

Exercise 84

1. Find the partial derivatives of the following functions at the indicated points.
$f(x, y)=3 x^{2}-2 x y+y^{2}+5 x+2,(2,-5)$

- View Text Solution

2. Find the partial derivatives of the following functions at the indicated points.
$g(x, y)=3 x^{2}+y^{2}+5 x+2,(1,-2)$
3. Find the partial derivatives of the following functions at the indicated points.
$h(x, y)=x \sin (x y)+z^{2} x,\left(2, \frac{\pi}{4}, 1\right)$

D View Text Solution

4. Find the partial derivatives of the following functions at the indicated points.
$G(x, y)=e^{x+3 y} \log \left(x^{2}+y^{2}\right),(-1,1)$

D View Text Solution
5. If $U(x y, z)=\frac{x^{2}+y^{2}}{x y}+3 z^{2} y$, find $\frac{\partial U}{\partial x}, \frac{\partial U}{\partial y}$ and $\frac{\partial U}{\partial z}$.
6. If $U(x, y, z)=\log \left(x^{3}+y^{3}+z^{3}\right)$, find $\frac{\partial U}{\partial x}+\frac{\partial U}{\partial y}+\frac{\partial U}{\partial z}$.

D View Text Solution

7. For each of the following functions find the $g_{x y}, g_{x x}, g_{y y}$ and $g_{y x}$. $g(x, y)=x e^{y}+3 x^{2} y$

- View Text Solution

8. For each of the following functions find the $g_{x y}, g_{x x}, g_{y y}$ and $g_{y x}$.

$$
g(x, y)=\log (5 x+3 y)
$$

- View Text Solution

9. For each of the following functions find the $g_{x y}, g_{x x}, g_{y y}$ and $g_{y x}$.

$$
g(x, y)=x^{2}+3 x y-7 y+\cos (5 x)
$$

D View Text Solution

10. A firm produces two types of calculators each week, x number of type A and y number of type B. The weekly revenue and cost functions
$R(x, y)=80 x+90 y+0.04 x y-0.05 x^{2}-0.05 y^{2} \quad$ and $C(x, y)=8 x+6 y+2000$ respectively.

Find the profit function $P(x, y)$

- View Text Solution

11. A firm produces two types of calculators each week, x number of type A and y number of type B. The weekly revenue and cost functions
$R(x, y)=80 x+90 y+0.04 x y-0.05 x^{2}-0.05 y^{2}$
and
$C(x, y)=8 x+6 y+2000$ respectively.

Find $\frac{\partial P}{\partial x}(1200,1800)$ and $\frac{\partial p}{\partial y}(1200,1800)$ and interpret these results.

- View Text Solution

Exercise 85

1. If $w(x, y)=x^{3}-3 x y+2 y^{2}, x, y \in \mathbb{R}$, find the linear approximation for wat (1,-1).

D View Text Solution

2. Let $z(x, y)=x^{2} y+3 x y^{4}, x, y \in \mathbb{R}$. Find the linear approximation for z at (2, -1).

D View Text Solution
3. If $v(x, y)=x^{2}-x y+\frac{1}{4} y^{2}+7, x, y \in R$, find the differential dv.

- View Text Solution

4. If $W(x, y, z)=x^{2}-x y+3 \sin z, x, y, z \in \mathbb{R}$. Find the linear approximation at $(2,-1,0)$.

- View Text Solution

5. Let $V(x, y, z)=x y+y z+z x, x, y, z \in \mathbb{R}$. Find the differential dV.

- View Text Solution

1. If $u(x, y)=x^{2} y+3 x y^{4}, x=e^{t}$ and $y=\sin t$, find $\frac{d u}{d t}$ and evaluate it at $\mathrm{t}=0$.

- View Text Solution

2. If $\quad w(x, y, z)=x^{2}+y^{2}+z^{2}, x=e^{t}, y=e^{t} \sin t \quad$ and $z=e^{t} \cos t$, find $\frac{d w}{d t}$.

D View Text Solution

3. Let $U(x, y, z)=x y z, x=e^{-t}, y=e^{-t} \cos t, z=\sin t, t \in \mathbb{R}$.

Find $\frac{d U}{d t}$.

- View Text Solution

4. If $w(x, y)=6 x^{3}-3 x y+2 y^{2}, x=e^{x}, y=\cos s, s \in \mathbb{R}$, find $\frac{d w}{d s}$, and evaluate at $\mathrm{s}=0$,

D View Text Solution

5. If $z(x, y)=x \tan ^{-1}(x y), x=t^{2}, y=s e^{t}, s, t \in \mathbb{R}$. Find $\frac{\partial z}{\partial t s}$ and $\frac{\partial z}{\partial t}$ at $\mathrm{s}=\mathrm{t}=1$.

- View Text Solution

6. Let $z(x, y)=x^{3}-3 x^{2} y^{3}$, where $x=s e^{t}, y=s e^{-t}, s, t \in \mathbb{R}$.

Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

D View Text Solution

7. $W(x, y, z)=x y+y z+z x, x=u-v, y=u v, u, v \in \mathbb{R}$. Find $\frac{\partial W}{\partial u}, \frac{\partial W}{\partial v}$, and evaluate them at $\left(\frac{1}{2}, 1\right)$.

D View Text Solution

Exercise 87

1. In each of the following cases, determine whether the following
function is homogeneous or not. If it is so, find the degree.
$f(x, y)=x^{2} y+6 x^{3}+7$

- View Text Solution

2. In each of the following cases, determine whether the following
function is homogeneous or not. If it is so, find the degree.
$h(x, y)=\frac{6 x^{2} y^{3}-\pi y^{5}+9 x^{4} y}{2020 x^{2}+2019 y^{2}}$

- View Text Solution

3. In each of the following cases, determine whether the following function is homogeneous or not. If it is so, find the degree.
$g(x, y, z)=\frac{\sqrt{3 x^{2}+5 y^{2}+z^{2}}}{4 x+7 y}$

D View Text Solution

4. In each of the following cases, determine whether the following function is homogeneous or not. If it is so, find the degree.
$U=(x, y, z)=x y+\sin \left(\frac{y^{2}-2 z^{2}}{x y}\right)$

D View Text Solution

5. If $w(x, y, z)=\log \left(\frac{5 x^{3} y^{4}+7 y^{2} x z^{4}-75 y^{3} z^{4}}{x^{2}+y^{2}}\right)$, find
$x \frac{\partial w}{\partial x}+y \frac{\partial w}{\partial y}+z \frac{\partial w}{\partial z}$.
D View Text Solution

Exercise 88

1. A circular template has a radius of 10 cm . The measurement of radius has an approximate error of 0.02 cm . Then the percentage error in calculating area of this template is
A. 0.2%
B. 0.4%
C. 0.04%
D. 0.08%

D View Text Solution

2. The percentage error of fifth root of 31 is approximately how many times the percentage error in 31 ?
A. $\frac{1}{31}$
B. $\frac{1}{5}$
C. 5
D. 31

Answer: B

D View Text Solution
3. If $u(x, y)=e^{x^{2}+y^{2}}$, then $\frac{\partial u}{\partial x}$ is equal to
A. $e^{x^{2}+y^{2}}$
B. 2 xu
C. $x^{2} u$
D. $y^{2} u$

Answer: B

D View Text Solution

4. If $v(x, y)=\log \left(e^{x}+e^{y}\right)$, then $\frac{\partial v}{d e x}+\frac{\partial v}{\partial y}$ is equal to
A. $e^{x}+e^{y}$
B. $\frac{1}{e^{x}+e^{y}}$
C. 2
D. 1

Answer: D

D View Text Solution

5. If $w(x, y)=x^{y}, x>0$, then $\frac{\partial w}{\partial x}$ is equal to
A. $x^{y} \log x$
B. $y \log x$
C. $y x^{y-1}$
D. $x \log y$

Answer: C

- View Text Solution

6. If $f(x, y)=e^{x y}$, then $\frac{\partial^{2} f}{\partial x \partial y}$ is equal to
A. $x y e^{x y}$
B. $(1+x y) e^{x y}$
C. $(1+y) e^{x y}$
D. $(1+x) e^{x y}$

Answer: B

- View Text Solution

7. If we measure the side of a cube to be 4 cm with an error of 0.1 cm , then the error in our calculation of the volume is
A. $0.4 \mathrm{cu} . \mathrm{cm}$
B. $0.45 \mathrm{cu} . \mathrm{cm}$
C. 2 cu.cm
D. $4.8 \mathrm{cu} . \mathrm{cm}$

Answer: D

- View Text Solution

8. The change in the surface area $S=6 x^{2}$ of a cube when the edge length varies from x_{0} to $x_{0}+d x$ is
A. $12 x_{0}+d x$
B. $12 x_{0} d x$
C. $6 x_{0} d x$
D. $6 x_{0}+d x$

Answer: B

9. The approximate change in the volume V of a cube of side x metres caused by increasing the side by 1% is
A. $0.3 x d x m^{3}$
B. $0.03 x \mathrm{~m}^{3}$
C. $0.03 x^{2} m^{3}$
D. $0.03 x^{3} m^{3}$

Answer: C

D View Text Solution

10. If $g(x, y)=3 x^{2}-5 y+2 y^{2}, x(t)=e^{t}$ and $y(t)=\cos t$, then $\frac{d g}{d t}$ is equal to
A. $6 e^{2 t}+5 \sin t-4 \cos t \sin t$
B. $6 e^{2 t}-5 \sin t+4 \cos t \sin t$
C. $3 e^{2 t}+5 \sin t+4 \cos t \sin t$
D. $3 e^{2 t}-5 \sin t+4 \cos t \sin t$

Answer: A

- View Text Solution

11. If $f(x)=\frac{x}{x+1}$, then its differential is given by
A. $\frac{-1}{(x+1)^{2}} d x$
B. $\frac{1}{(x+1)^{2}} d x$
C. $\frac{1}{x+1} d x$
D. $\frac{-1}{x+1} d x$

- View Text Solution

12. If $u(x, y)=x^{2}+3 x y+y-2019$, then $\left.\frac{\partial u}{\partial x}\right|_{(4,5)}$ is equal to
A. -4
B. -3
C. -7
D. 13

Answer: C

D View Text Solution
13. Linear approximation for $\mathrm{g}(\mathrm{x})=\cos \mathrm{x}$ at $x=\frac{\pi}{2}$ is
A. $x+\frac{\pi}{2}$
B. $-x+\frac{\pi}{2}$
C. $x-\frac{\pi}{2}$
D. $-x-\frac{\pi}{2}$

Answer: B

- View Text Solution

14. If $w(x, y, z)=x^{2}(y-z)+y^{2}(z-x)+z^{2}(x-y)$, then $\frac{\partial w}{\partial x}+\frac{\partial w}{\partial y}+\frac{\partial w}{\partial z}$ is
A. $x y+y z+z x$
B. $x(y+z)$
C. $y(z+x)$
D. 0

D View Text Solution

15. If $f(x, y, z)=x y+y z+z x$, then $f(x)-f_{z}$ is equal to
A. $z-x$
B. $y-z$
C. $x-z$
D. $y-x$

Answer: A

- View Text Solution

