©゙" doubtnut

India's Number 1 Education App

MATHS

NCERT - FULL MARKS MATHS(TAMIL)

TWO DIMENSIONAL ANALYTICAL

GEOMETRY-I!

Example

1. Find the equation of the circle described on
the chord $3 X+Y+5=0$ of the circle
$x^{2}+y^{2}=16$ as diameter.

D View Text Solution

2. Examine the position of the point $(2,3)$ with respect to the circle
$x^{2}+y^{2}-6 x-8 y+12=0$.

D View Text Solution

3. The line $3 x+4 y-12=0$ meets the coordinate axes at A and B. Find the equation

of the circle drawn on $A B$ as diameter

D View Text Solution

4. A line $3 x+4 y+10=0$ cuts a chord of
length 6 units on a circle with centre of the circle $(2,1)$. Find the equation of the circle in general form.

D View Text Solution
5. A circle of radius 3 units touches both the axes. Find the equations of all possible circles
formed in the general form.

D View Text Solution

6. Find the centre and radius of the circle $3 x^{2}+(a+1) y^{2}+6 x-9 y+a+4=0$.

D View Text Solution
7. Find the equations of the tangent and normal to the circle
$x^{2}+y^{2}=25 a t P(-3,4)$.

D View Text Solution

8. If $y=4 x+c$ is tangent to the circle $x^{2}+y^{2}=9$, find c.

D View Text Solution
9. Find the length of Latus rectum of the parabola $y^{2}=4 a x$.

D View Text Solution

10. Find the equation of the parabola with focus $(-\sqrt{2}, 0)$ and directrix $x=\sqrt{2}$.

D View Text Solution

11. Find the equation of the parabola whose vertex is $(5,-2)$ and focus $(2,-2)$.

D View Text Solution

12. Find the equation of the parabola with
vertex $(-1,-1)$, axis parallel to y-axis and passing through $(3,6)$.

D View Text Solution

13. Find the vertex, focus, directrix, and length
of the latus rectum of the parabola
$x^{2}-4 x-5 y-1=0$.

D View Text Solution
14. Find the equation of the ellipse with foci
$(\pm 2,0)$, vertices $(\pm 3,0)$.

D View Text Solution
15. Find the equation of the ellipse whose eccentricity is $\frac{1}{2}$, one of the foci is $(2,3)$ and a directrix is $x=7$. Also find the length of the major and minor axes of the ellipse.

D View Text Solution

16. Find the foci, vertices and length of major and minor axis of the conic
$4 x^{2}+36 y^{2}+40 x-288 y+532=0$.
17. Find the equation of the hyperbola with
vertices $(0, \pm 4)$ and foci $(0, \pm 6)$.

D View Text Solution

18. Find the vertices, foci for the hyperbola $9 x^{2}-16 y^{2}=144$.

D View Text Solution
19. The orbit of Halley's Come is an ellipse 36 18. astronomical units long and by 912. astronomical units wide. Find its eccentricity.

D View Text Solution

20. Find the equations of tangent and normal to the parabola
$x^{2}+6 x+4 y+5=0 a t(1,-3)$.
21. Find the equations of tangent and normal to the ellipse $x^{2}+4 y^{2}=32$ when $\theta=\frac{\pi}{4}$.

D View Text Solution

22. The maximum and minimum distances of
the Earth from the Sun respectively are $152 \times 10^{8} \mathrm{~km}$ and $94.5 \times 10^{8} \mathrm{~km}$. The Sun is at one focus of the elliptical orbit. Find the distance from the Sun to the other focus.
23. A concrete bridge is designed as a parabolic arch. The road over bridge is 40 m long and the maximum height of the arch is 15 m . Write the equation of the parabolic arch.

D View Text Solution

24. The parabolic communication antenna has
a focus at 2 m distance from the vertex of the antenna. Find the width of the antenna 3m from the vertex.
25. search light has a parabolic reflector (has a cross section that forms a 'bowl'). The parabolic bowl is 40 cm wide from rim to rim and 30 cm deep. The bulb is located at the focus

What is the equation of the parabola used for reflector?

- View Text Solution

26. An equation of the elliptical part of an optical lens system is $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$. The parabolic part of the system has a focus in common with the right focus of the ellipse
.The vertex of the parabola is at the origin and the parabola opens to the right. Determine the equation of the parabola.

D View Text Solution

27. A room 34 m long is constructed to be a whispering gallery. The room has an elliptical ceiling, as shown in Fig. 5.64. If the maximum height of the ceiling is 8 m , determine where the foci are located.

D View Text Solution

28. Certain telescopes contain both parabolic mirror and a hyperbolic mirror. In the telescope shown in the parabola and
hyperbola share focus F_{1} which is 14 mabove the vertex of the parabola. The hyperbola's second focus F_{2} is 2 m above the parabola's vertex. The vertex of the hyperbolic mirror is

1m below F_{1}. Position a coordinate system with the origin at the centre of the hyperbola and with the foci on the y-axis. Then find the equation of the hyperbola.

D View Text Solution

Exercise 51

1. Obtain the equation of the circles with radius 5 cm and touching x-axis at the origin in general form.

D View Text Solution

2. Find the equation of the circle with centre
$(2,-1)$ and passing through the point $(3,6)$ in standard form

D View Text Solution
3. Find the equation of circles that touch both
the axes and pass through($-4,-2$) in general form.

D View Text Solution

4. Obtain the equation of the circle for which
$(3,4)$ and $(2,7)$ are the ends of a diameter.

- View Text Solution

5. Find the equation of the circle through the points $(1,0),(-1,0)$, and $(0,1)$.

D View Text Solution

6. A circle of area 9π square units has two of its diameters along the lines
$x+y=5$ and $x-y=1$. Find the equation of the circle.
7. If $y=2 \sqrt{2} x+c$ is a tangent to the circle $x^{2}+y^{2}=16$, find the value of c .

- View Text Solution

8. Find the equation of the tangent and

$$
\begin{aligned}
& \text { normal to } \\
& x^{2}+y^{2}-6 x+6 y-8=0 a t(2,2)
\end{aligned}
$$

9. Determine whether the points
$(-2,1),(0,0)$ and $(-4,-3)$ lie outside,

> on \quad or \quad inside $x^{2}+y^{2}-5 x+2 y-5=0$ the
circle

D View Text Solution

10. Find centre and radius of the following circles.

$$
x^{2}+(y+2)^{2}=0
$$

11. Find centre and radius of the following circles.
$x^{2}+y^{2}+6 x-4 y+4=0$

D View Text Solution

12. Find centre and radius of the following circles.
$x^{2}+y^{2}-x+2 y-3=0$
13. Find centre and radius of the following circles.
$2 x^{2}+2 y^{2}-6 x+4 y+2=0$

D View Text Solution

14.

If
the
equation
$3 x^{2}+(3-p) x y+q y^{2}-2 p x=8$
represents a circle, find p and q. Also determine the centre and radius of the circle.

Exercise 52

1. Find the equation of the parabola in each of
the cases given below:
force $(4,0)$ and directrix $x=-4$.

D View Text Solution

2. Find the equation of the parabola in each of
the cases given below:
passes through $(2,-3)$ and symmetric about y axis.

- View Text Solution

3. Find the equation of the parabola in each of the cases given below:
vertex ($1,-2$) and focus (4,-2).

D View Text Solution
4. Find the equation of the parabola in each of the cases given below: end points of latus rectum $(4,-8)$ and $(4,8)$.

D View Text Solution

5. Find the equation of the ellipse in each of the cases given below:
foci $(\pm 3,0), e=\frac{1}{2}$.
6. Find the equation of the ellipse in each of the cases given below:
foci $(0, \pm 4)$ and end points of major axis are $(0, \pm 5)$.

- View Text Solution

7. Find the equation of the ellipse in each of the cases given below:
length of latus rectum 8 , eccentricity $=\frac{3}{5}$ and major axis on x -axis.
8. Find the equation of the ellipse in each of the cases given below:
length of latus rectum 4, distance between foci $4 \sqrt{2}$ and major axis as y - axis.

- View Text Solution

9. Find the equation of the hyperbola in each of the cases given below:
foci $(\pm 2,0)$, eccentriciy $=\frac{3}{2}$.

D View Text Solution

10. Find the equation of the hyperbola in each of the cases given below:

Centre $(2,1)$, one of the foci $(8,1)$ and corresponding directrix $x=4$

D View Text Solution
11. Find the equation of the hyperbola in each of the cases given below:
passing through $(5,-2)$ and length of the transverse axis along x axis and of length 8 units.

- View Text Solution

Exercise 53

1. Identify the type of conic section for each of the equations
$2 x^{2}-y^{2}=7$

- View Text Solution

2. Identify the type of conic section for each of
the equations
$3 x^{2}+3 y^{2}-4 x+3 y+10=0$

3. Identify the type of conic section for each of

 the equations$3 x^{2}+2 y^{2}=14$

- View Text Solution

4. Identify the type of conic section for each of
the equations
$x^{2}+y^{2}+x-y=0$

- View Text Solution

5. Identify the type of conic section for each of the equations
$11 x^{2}-25 y^{2}-44 x+50 y-256=0$

D View Text Solution

6. Identify the type of conic section for each of the equations
$y^{2}+x+3 y+4=0$

- View Text Solution

1. Find the equations of the two tangents that can be drawn from $(5,2)$ the ellipse $2 x^{2}+7 y^{2}=14$.

D View Text Solution

2. Find the equations of tangents to the
hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{64}=1$ which are parallel to $10 x-3 y+9=0$.
3. Show that the line $x-y+4=0$ is a tangent to the ellipse $x^{2}+3 y^{2}=12$. Also find the coordinates of the point of contact

D View Text Solution

4. Find the equation of the tangent to the
parabola $y^{2}=16 x \quad$ perpendicular to
$2 x+2 y+3=0$.

D View Text Solution
5. Find the equation of the tangent att = 2to
the parabola $y^{2}=8 x$. (Hint: use parametric form)

D View Text Solution

6. Find the equations of the tangent and normal to hyperbola
$12 x^{2}-9 y^{2}=108 \theta=\frac{\pi}{2}$.
Hint:
use
parametric form)

Exercise 55

1. A bridge has a parabolic arch that is 10 m high in the centre and 30 m wide at the bottom. Find the height of the arch 6 m from the centre, on either sides

- View Text Solution

2. A tunnel through a mountain for a four lane
highway is to have a elliptical opening. The total width of the highway (not the opening) is to be 16 m , and the height at the edge of the road must be sufficient for a truck 4 m high to clear if the highest point of the opening is to be 5 m approximately. How wide must the opening be?

- View Text Solution

3. At a water fountain, water attains a maximum height of 4 m at horizontal distance of $05 . \mathrm{m}$ from its origin. If the path of water is a parabola, find the height of water at a horizontal distance of $075 . \mathrm{m}$ from the point of origin

D View Text Solution
4. An engineer designs a satellite dish with a parabolic cross section. The dish is 5 m wide at
the opening, and the focus is placed $12 . \mathrm{m}$ from the vertex

Position a coordinate system with the origin at the vertex and the x-axis on the parabola's axis of symmetry and find an equation of the parabola.

D View Text Solution

5. An engineer designs a satellite dish with a parabolic cross section. The dish is 5 m wide at the opening, and the focus is placed $12 . \mathrm{m}$
from the vertex

Find the depth of the satellite dish at the vertex.

D View Text Solution

6. A rod of length $12 . \mathrm{m}$ moves with its ends
always touching the coordinate axes. The
locus of a point P on the rod, which is $03 . \mathrm{m}$
from the end in contact with x-axis is an ellipse. Find the eccentricity.

D View Text Solution
7. Assume that water issuing from the end of a horizontal pipe, $75 . \mathrm{m}$ above the ground, describes a parabolic path. The vertex of the parabolic path is at the end of the pipe. At a position 25 . m below the line of the pipe, the flow of water has curved outward 3 m beyond the vertical line through the end of the pipe. How far beyond this vertical line will the water strike the ground?
8. On lighting a rocket cracker it gets projected in a parabolic path and reaches a maximum height of 4 m when it is 6 m away from the point of projection. Finally it reaches the ground 12 m away from the starting point.

Find the angle of projection.

D View Text Solution

9. Points A and B are 10 km apart and it is determined from the sound of an explosion heard at those points at different times that
the location of the explosion is 6 km closer to

A than B . Show that the location of the explosion is restricted to a particular curve and find an equation of it.

D View Text Solution

Exercise 56

1. The equation of the circle passing through
$(1,5)$ and $(4,1)$ and touching y-ais is
$x^{2}+y^{2}-5 x-6 y+9+\lambda(4 x+3 y-19)=0$
where λ is equal to
A. $0,-\frac{40}{9}$
B. 0
C. $\frac{40}{9}$
D. $\frac{-40}{9}$

Answer: A
(D) View Text Solution
2. The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the foci is

> A. $\frac{4}{3}$
> B. $\frac{4}{\sqrt{3}}$
> C. $\frac{2}{\sqrt{3}}$
> D. $\frac{3}{2}$

Answer: C

D View Text Solution
3. The circle $x^{2}+y^{2}=4 x+8 y+5$ intersects
the line $3 x-4 y=m$ at two distinct points if

$$
\text { A. } 15<m<65
$$

B. $35<m<85$
C. $-85<m<-35$
D. $-35<m<15$

Answer: D

- View Text Solution

4. The length of the diameter of the circle which touches the x-axis at the point $(1,0)$ and passes through the point $(2,3)$.

> A. $\frac{6}{5}$
> B. $\frac{5}{3}$
> C. $\frac{10}{3}$
> D. $\frac{3}{5}$

Answer: C

5. The radius of the circle
$3 x^{2}+b y^{2}+4 b x-6 b y+b^{2}=0$ is
A. 1
B. 3
C. $\sqrt{10}$
D. $\sqrt{11}$

Answer: C

D View Text Solution
6. The centre of the circle inscribed in a square
formed by the
lines
$x^{2}-8 x-12=0$ and $y^{2}-14 y+45=0$ is
A. $(4,7)$
B. $(7,4)$
C. $(9,4)$
D. $(4,9)$

Answer: A

D View Text Solution
7. The equation of the normal to the circle $x^{2}+y^{2}-2 x-2 y+1=0$ which is parallel to the line $2 x+4 y=3$ is
A. $x+2 y=3$
B. $x+2 y+3=0$
C. $2 x+2 y+3=0$
D. $x-2 y+3=0$

Answer: A

D View Text Solution
8. If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point on $16 x^{2}+25 y^{2}=400$
with foci $F_{1}(3,0)$ and $F_{2}(-3,0)$ then
$P F_{1}+P F_{2}$ is
A. 8
B. 6
C. 10
D. 12

Answer: C

D View Text Solution
9. The radius of the circle passing through the
point $(6,2)$ two of whose diameter are $x+y=6$ and $x+2 y=4$ is
A. 10
B. $2 \sqrt{5}$
C. 6
D. 4

Answer: B

D View Text Solution
10. two of whose diameter are $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$ is
A. $4\left(a^{2}+b^{2}\right)$
B. $2\left(a^{2}+b^{2}\right)$
C. $a^{2}+b^{2}$
D. $\frac{1}{2}\left(a^{2}+b^{2}\right)$

Answer: B
11. If the normals of the parabola $y^{2}=4 x$ drawn at the end points of its latus rectum are tangents sto the circle
$(x-3)^{2}+(y+2)^{2}=r^{2}$, then the value of r^{2} is
A. 2
B. 3
C. 1
D. 4
12. If $x+y=k$ is a normal to the parabola $y^{2}=12 x$, then the vlaue of k is
A. 3
B. -1
C. 1
D. 9

Answer: D

13. The ellipse $E_{1}: \frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ is inscribed in a rectangle R whose sides are parallel to the coordinate axes. Another ellipse E_{2} passing through the point $(0,4)$ circumscribes the rectangle R. The eccentricity of the ellipse is
A. $\frac{\sqrt{2}}{2}$
B. $\frac{\sqrt{3}}{2}$
C. $\frac{1}{2}$
D. $\frac{3}{4}$

Answer: C

- View Text Solution

14. Tangents are drawn to the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ parallel to the straight line
$2 x-y=1$. One of parallel to the straight line

$$
\begin{aligned}
& \text { А. }\left(\frac{9}{2 \sqrt{2}}, \frac{-1}{\sqrt{2}}\right) \\
& \text { В. }\left(\frac{-9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

c. $\left(\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
D. $(3 \sqrt{3},-2 \sqrt{2})$

Answer: C

D View Text Solution

15. The equation of the circle passing through
the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ having centre at $(0,3)$ is

$$
\text { A. } x^{2}+y^{2}-6 y-7=0
$$

$$
\begin{aligned}
& \text { B. } x^{2}+y^{2}-6 y+7=0 \\
& \text { C. } x^{2}+y^{2}-6 y-5=0 \\
& \text { D. } x^{2}+y^{2}-6 y+5=0
\end{aligned}
$$

Answer: A

D View Text Solution

16. Let C be the circle with centre a $(1,1)$ and
radius $=1$. If T is the circle centered at $(0, y)$ passing through the origin and touching the
circleC externally, then the radius of T is equal
to

$$
\begin{aligned}
& \text { A. } \frac{\sqrt{3}}{\sqrt{2}} \\
& \text { B. } \frac{\sqrt{3}}{2} \\
& \text { C. } \frac{1}{2} \\
& \text { D. } \frac{1}{4}
\end{aligned}
$$

Answer: D

D View Text Solution
17. Consider an ellipse whose centre is of the origin and its major axis is along x-axis. If its eccentrcity is $\frac{3}{5}$ and the distance between its foci is 6 , then the area of the quadrilateral inscribed in the ellipse with diagonals as major and minor axis of the ellipse is
A. 8
B. 32
C. 80
D. 40

Answer: D

D View Text Solution

18. Area of the greatest rectangle inscribed in
the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is
A. $2 a b$
B. $a b$
C. $\sqrt{a b}$
D. $\frac{a}{b}$

D View Text Solution

19. An ellipse has $O B$ as semi minor axes, F and
F^{\prime} its foci and the angle $F B F^{\prime}$ is a right angle.
Then the eccentricity of the ellipse is

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{2}} \\
& \text { B. } \frac{1}{2} \\
& \text { C. } \frac{1}{4} \\
& \text { D. } \frac{1}{\sqrt{3}}
\end{aligned}
$$

Answer: A

D View Text Solution

20. The eccentricity of the ellipse

$$
(x-3)^{2}+(y-4)^{2}=\frac{y^{2}}{9} \text { is }
$$

A. $\frac{\sqrt{3}}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{3 \sqrt{2}}$
D. $\frac{1}{\sqrt{3}}$

Answer: B

D View Text Solution

21. If the two tangents drawn from a point P to
the parabola $Y^{2}=4 x$ are at right angles
then the locus of P is
A. $2 x+1=0$
B. $x=-1$
C. $2 x-1=0$
D. $x=1$

Answer: B

- View Text Solution

22. The circle passing through $(1,-2)$ and touching the axis of x at $(3,0)$ and touching the axis of x at
A. $(-5,2)$
B. $(2,-5)$
C. $(5,-2)$
D. $(-2,5)$

Answer: C

D View Text Solution

23. The locus of a point whose distance from
$(-2,0)$ is $\frac{2}{3}$ times its distance from the line
$x=\frac{-9}{2}$ is
A. a parabola
B. a hyperbola
C. an ellipse
D. a circle

Answer: C

D View Text Solution

24. The values of m for which the line $y=m x+22 \sqrt{5}$ touches the hyperbola $16 x^{2}-9 y^{2}=144$ are the roots of
$x^{2}-(a+b) x-4=0$, then the value of
$(a+b)$ is
A. 2
B. 4
C. 0
D. -2

Answer: C

D View Text Solution

25. If the coordinates at one end of a diameter of the circle $x^{2}+y^{2}-8 x-4 y+c=0$ at are (11,2), the coordinates of the other end are
A. $(-5,2)$

$$
\begin{aligned}
& \text { B. }(2,-5) \\
& \text { C. }(5,-2) \\
& \text { D. }(-2,5)
\end{aligned}
$$

Answer: B

D View Text Solution

