©゙’ doubtnut

India's Number 1 Education App

PHYSICS

NCERT - FULL MARKS PHYSICS(TAMIL)

MAGNETISM AND MAGNETIC EFFECTS

OF ELECTRIC CURRENT

Example

1. The horizontal component and vertical
components of Earth's magnetic field at a
place are 0.15 G and 0.26 G respectively.

Calculate the angle of dip and resultant magnetic field.

D View Text Solution

2. Let the magnetic moment of a bar magnet be \vec{p}_{m} whose magnetic length is $\mathrm{d}=2 l$ and pole strength is q_{m}. Compute the magnetic moment of the bar magnet when it is cut into two pieces
along its length
3. Let the magnetic moment of a bar magnet be \vec{p}_{m} whose magnetic length is $\mathrm{d}=2 \mathrm{l}$ and pole strength is q_{m}. Compute the magnetic moment of the bar magnet when it is cut into two pieces
perpendicular to its length.

- View Text Solution

4. Compute the magnetic length of a uniform bar magnet if the geometrical length of the magnet is 12 cm . Mark the positions of magnetic pole points.

D View Text Solution

5. Calculate the magnetic flux coming out from
the surface containing magnetic dipole (say, a
bar magnet) as shown in figure.

- View Text Solution

6. The repulsive force between two magnetic poles in air is $9 \times 10^{-3} N$. If the two poles are equal in strength and are separated by a
distance of 10 cm , calculate the pole strength of each pole.

D View Text Solution

7. A short bar magnet has a magnetic moment
of $0.5 J T^{-1}$. Calculate magnitude and direction of the magnetic field produced by the bar magnet which is kept at a distance of 0.1 m from the center of the bar magnet along axial line of the bar magnet and
8. A short bar magnet has a magnetic moment
of $0.5 J T^{-1}$. Calculate magnitude and direction of the magnetic field produced by
the bar magnet which is kept at a distance of
0.1 m from the center of the bar magnet along normal bisector of the bar magnet.

D View Text Solution

9. Show the time period of oscillation when a bar magnet is kept in a uniform magnetic field
is $T=2 \pi \sqrt{\frac{1}{p_{m} B}}$ in second, where ।
represents moment of inertia of the bar magnet, p_{m} is the magnetic moment and is the magnetic field.

D View Text Solution

10. Consider a magnetic dipole which on switching ON external magnetic field orient only in two possible ways ie., one along the direction of the magnetic field (parallel to the field) and another anti-parallel to magnetic
field. Compute the energy for the possible orientation. Sketch the graph.

D View Text Solution

11. A coil of a tangent galvanometer of diametre 0.24 m has 100 turns. If the horizontal component of Earth's magnetic field is $25 \times 10^{-6} T$ then, calculate the current which gives a deflection of 60°.
12. Compute the intensity of magnetisation of the bar magnet whose mass, magnetic moment and density are $200 \mathrm{~g}, 2 A m^{2}$ and $8 \mathrm{gcm}^{-3}$, respectively.

- View Text Solution

13. Using the relation $\vec{B}=\mu_{o}(\vec{H}+\vec{M})$, show that $\chi_{m}=\mu_{r}-1$.
14. Two materials X and Y are magnetised, whose intensity of magnetisation are $500 \mathrm{Am}^{-1}$ and $2000 \mathrm{Am}^{-1}$, respectively. If the magnetising field is $1000 A m^{-1}$, then which one among these materials can be easily magnetized?.

D View Text Solution

15. The following figure shows the variation of intensity of magnetisation with the applied magnetic field intensity for three magnetic
materials X, Y and Z. Identify the materials X, Y and Z .

D View Text Solution
16. The magnetic field shown in the figure is due to the current carrying wire. In which

direction does the current flow in the wire?.

- B-fleld poins out to the page
x B-fleta point in to the page

- View Text Solution

17. Calculate the magnetic field at a point P which is perpendicular bisector to current carrying straight wire as shown in figure.

18. Show that for a straight conductor, the magnetic field

$$
\begin{gathered}
\vec{B}=\frac{\mu_{o} I}{4 \pi a}\left(\cos \varphi_{1}-\cos \varphi_{2}\right) \widehat{n} \\
=\frac{\mu_{o} I}{4 \pi a}\left(\sin \theta_{1}+\sin \theta_{2}\right) \widehat{n}
\end{gathered}
$$

- View Text Solution

19. What is the magnetic field at the center of the loop shown in figure?

- View Text Solution

20. Compute the magnitude of the magnetic field of a long, straight wire carrying a current of 1A at distance of 1 m from it. Compare it with Earth's magnetic field.

D View Text Solution

21. Calculate the magnetic field inside a solenoid, when
the length of the solenoid becomes twice and fixed number of turns
22. Calculate the magnetic field inside a solenoid, when
both the length of the solenoid and number of turns are double

- View Text Solution

23. Calculate the magnetic field inside a solenoid, when
the number of turns becomes twice for the
fixed length of the solenoid Compare the results.

D View Text Solution

24. A particle of charge q moves with velocity
\vec{v} along positive y -direction in a magnetic field \vec{B}. Compute the Lorentz force experienced by the particle
when magnetic field is along positive y -

direction

D View Text Solution
25. A particle of charge q moves with velocity
\vec{v} along positive y -direction in a magnetic field \vec{B}. Compute the Lorentz force experienced by the particle when magnetic field points in positive z direction

- View Text Solution

26. A particle of charge q moves with velocity \vec{v} along positive y - direction in a magnetic
field \vec{B}. Compute the Lorentz force experienced by the particle
when magnetic field is in zy - plane and making an angle θ with velocity of the particle. Mark the direction of magnetic force in each case.

D View Text Solution

27. Compute the work done and power delivered by the Lorentz force on the particle of charge q moving with velocity \vec{v}. Calculate the angle between Lorentz force and velocity
of the charged particle and also interpret the result.

D View Text Solution

28. An electron moving perpendicular to a uniform magnetic field 0.500 T undergoes
circular motion of radius 2.80 mm . What is the speed of electron?
29. A proton moves in a uniform magnetic field of strength 0.500 T magnetic field is directed along the x-axis. At initial time, $t s=0$, the proton has velocity
$\vec{v}=\left(1.95 \times 10^{5} \hat{i}+2.00 \times 10^{5} \hat{k}\right) m s^{-1}$.
Find

At initial time, what is the acceleration of the proton.

D View Text Solution

30. A proton moves in a uniform magnetic field of strength 0.500 T magnetic field is directed along the x -axis. At initial time, $\mathrm{t} s=0$, the proton has
velocity
$\vec{v}=\left(1.95 \times 10^{5} \hat{i}+2.00 \times 10^{5} \hat{k}\right) m s^{-1}$.
Find

Is the path circular or helical?. If helical, calculate the radius of helical trajectory and also calculate the pitch of the helix (Note:

Pitch of the helix is the distance travelled along the helix axis per revolution).

View Text Solution

31. Two singly ionized isotopes of uranium
${ }_{92}^{235} U$ and ${ }_{92}^{238} U$ (isotopes have same atomic number but different mass number) are sent with velocity $1.00 \times 10^{5} \mathrm{~ms}^{-1}$ into a magnetic
field of strength 0.500 T normally. Compute the distance between the two isotopes after they complete a semi-circle. Also compute the time taken by each isotope to complete one semi-circular path. (Given: masses of the isotopes:

$$
=3.90 \times 10^{-25} \mathrm{~kg} \quad \text { and }
$$

$\left.m_{238}=3.95 \times 10^{-25} \mathrm{~kg}\right)$

D View Text Solution

32. Let E be the electric field of magnitude $6.0 \times 10^{6} \mathrm{NC}^{-1}$ and B be the magnetic field magnitude 0.83 T . Suppose an electron is accelerated with a potential of 200 V , will it
show zero deflection?. If not, at what potential will it show zero deflection.

D View Text Solution

33. Suppose a cyclotron is operated to accelerate protons with a magnetic field of strength 1 T . Calculate the frequency in which the electric field between two Dees could be reversed.
34. A metallic rod of linear density is $0.25 \mathrm{kgm}^{-1}$ is lying horizontally on a smooth inclined plane which makes an angle of 450 with the horizontal. The rod is not allowed to
slide down by flowing a current through it when a magnetic field of strength 0.25 T is acting on it in the vertical direction. Calculate
the electric current flowing in the rod to keep
it stationary.

D View Text Solution

35. Consider a circular wire loop of radius R, mass mept at rest on a rough surface. Let I be the current flowing through the loop and
\vec{B} be the magnetic field acting along horizontal as shown in Figure. Estimate the current I that should be applied so that one edge of the loop is lifted off the surface?

D View Text Solution

36. The coil of a moving coil galvanometer has

5 turns and each turn has an effective area of
$2 \times 10^{-2} m^{2}$. It is suspended in a magnetic field whose strength is $4 \times 10^{-2} W b m^{-2}$. If the torsional constant K of the suspension fibre is $4 \times 10^{-9} \mathrm{Nm}_{\mathrm{deg}}{ }^{-1}$.

Find its current sensitivity in degree per micro

- ampere.

D View Text Solution

37. The coil of a moving coil galvanometer has

5 turns and each turn has an effective area of $2 \times 10^{-2} m^{2}$. It is suspended in a magnetic
field whose strength is $4 \times 10^{-2} W b m^{-2}$. If the torsional constant K of the suspension
fibre is $4 \times 10^{-9} N m \mathrm{deg}^{-1}$.

Calculate the voltage sensitivity of the galvanometer for it to have full scale deflection of 50 divisions for 25 mV .

D View Text Solution

38. The coil of a moving coil galvanometer has

5 turns and each turn has an effective area of $2 \times 10^{-2} m^{2}$. It is suspended in a magnetic
field whose strength is $4 \times 10^{-2} W b m^{-2}$. If the torsional constant K of the suspension fibre is $4 \times 10^{-9} N m \mathrm{deg}^{-1}$.

Compute the resistance of the galvanometer.

D View Text Solution

39. The resistance of a moving coil galvanometer is made twice its original value in order to increase current sensitivity by 50%.

Will the voltage sensitivity change? If so, by how much?.

Evaluation I Multiple Choice Questions

1. The magnetic field at the center O of the following current loop is

$$
\begin{aligned}
& \text { A. } \frac{\mu I}{4 r} \oplus \\
& \text { B. } \frac{\mu_{0} I}{4 r} \odot
\end{aligned}
$$

C. $\frac{\mu_{0} I}{2 r} \otimes$
D. $\frac{\mu_{0} I}{2 r} \odot$

Answer: A

D View Text Solution

2. An electron moves straight inside a charged parallel plate capacitor of uniform charge density σ. The time taken by the electron to cross the parallel plate capacitor when the plates of the capacitor are kept under
constant magnetic field of induction \vec{B} is

$$
\begin{aligned}
& \text { A. } \varepsilon_{0} \frac{e l B}{\sigma} \\
& \text { B. } \varepsilon_{0} \frac{l B}{\sigma l} \\
& \text { C. } \varepsilon_{0} \frac{l B}{e \sigma} \\
& \text { D. } \varepsilon_{0} \frac{l B}{\sigma}
\end{aligned}
$$

Answer: D

3. The force experienced by a particle having mass m and charge q accelerated through a potential difference V when it is kept under perpendicular magnetic field \vec{B} is
A. $\sqrt{\frac{2 q^{3} B V}{m}}$
B. $\sqrt{\frac{q^{3} B^{2} V}{2 m}}$
C. $\sqrt{\frac{2 q^{3} B^{2} V}{m}}$
D. $\sqrt{\frac{2 q^{3} B V}{m^{3}}}$

Answer: C

D View Text Solution

4. A circular coil of radius 5 cm and 50 turns
carries a current of 3 ampere. Th e magnetic dipole moment of the coil is
A. $1.0 \mathrm{amp}-m^{2}$
B. $1.2 \mathrm{amp}-m^{2}$
C. $0.5 \mathrm{amp}-m^{2}$
D. $0.8 \mathrm{amp}-m^{2}$

Answer: B

D View Text Solution

5. A thin insulated wire forms a plane spiral of
$\mathrm{N}=100$ tight turns carrying a current $\mathrm{I}=8 \mathrm{~m} \mathrm{~A}$
(milli ampere). Th e radii of inside and outside
turns are $a=50 \mathrm{~mm}$ and $\mathrm{b}=100 \mathrm{~mm}$
respectively. The magnetic induction at the center of the spiral is
A. $5 \mu T$
B. $7 \mu T$
C. $8 \mu T$
D. $10 \mu T$

Answer: B

D View Text Solution
6. Three wires of equal lengths are bent in the form of loops. One of the loops is circle, another is a semi-circle and the third one is a
square. They are placed in a uniform magnetic
field and same electric current is passed
through them. Which of the following loop
configuration will experience greater torque?
A. circle
B. semi-circle
C. square
D. all of them

Answer: A

D View Text Solution
7. Two identical coils, each with N turns and radius R are placed coaxially at a distance R as shown in the figure. If I is the current passing through the loops in the same direction, then the magnetic field at a point P which is at exactly at $\frac{R}{2}$ distance between two coils is

A. $\frac{8 N \mu_{0} I}{\sqrt{5} R}$
B. $\frac{8 N \mu_{0} I}{5^{3 / 2} R}$
C. $\frac{8 N \mu_{0} I}{5 R}$
D. $\frac{4 N \mu_{0} I}{\sqrt{5} R}$

Answer: B

D View Text Solution

8. A wire of length I carries a current I along
the Y direction and magnetic field is given by $\vec{B}=\frac{\beta}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k}) T$. The magnitude of

Lorentz force acting on the wire is
A. $\sqrt{\frac{2}{\sqrt{3}}} \beta I l$
B. $\sqrt{\frac{1}{\sqrt{3}}} \beta I l$
C. $\sqrt{2} \beta I l$
D. $\sqrt{\frac{1}{2}} \beta I l$

Answer: A

D View Text Solution

9. A bar magnet of length I and magnetic moment M is bent in the form of an arc as
shown in figure. The new magnetic dipole
moment will be

A. M
B. $\frac{3}{\pi} M$
C. $\frac{2}{\pi} M$
D. $\frac{1}{2} M$

Answer: B

D View Text Solution

10. A non-conducting charged ring of charge q, mass m and radius r is rotated with constant angular speed ω. Find the ratio of its magnetic moment with angular momentum is

> A. $\frac{q}{m}$
> B. $\frac{2 q}{m}$
> C. $\frac{q}{2 m}$
D. $\frac{q}{4 m}$

Answer: C

D View Text Solution

11. The BH curve for a ferromagnetic material is
shown in the figure. The material is placed inside a long solenoid which contains 1000 turns/ cm. The current that should be passed
in the solenonid to demagnetize the
ferromagnet completely is

A. 1.00 m A (milli ampere)
B. 1.25 mA
C. 1.50 mA
D. 1.75 mA

Answer: B

D View Text Solution

12. Two short bar magnets have magnetic moments $1.20 \mathrm{Am}^{2}$ and $1.00 \mathrm{Am}^{2}$ respectively.

They are kept on a horizontal table parallel to each other with their north poles pointing towards the south. They have a common magnetic equator and are separated by a distance of 20.0 cm . The value of the resultant horizontal magnetic induction at the mid-
point O of the line joining their centers is (Horizontal components of Earth's magnetic induction is $3.6 \times 10^{-5} \mathrm{Wbm}^{-2}$)

> A. $3.60 \times 10^{-5} \mathrm{~Wb} \mathrm{~m}^{-2}$
> B. $3.5 \times 10^{-5} \mathrm{~Wb} \mathrm{~m} m^{-2}$
> C. $2.56 \times 10^{-4} \mathrm{~Wb} \mathrm{~m}$
> D. $2.2 \times 10^{-4} \mathrm{~Wb} \mathrm{~m}$

Answer: C

D View Text Solution
13. The vertical component of Earth's magnetic
field at a place is equal to the horizontal
component. What is the value of angle of dip at this place?
A. 30°
B. 45°
C. 60°
D. 90°

Answer: B

- View Text Solution

14. A flat dielectric disc of radius R carries an excess charge on its surface. The surface charge density is σ. The disc rotates about an axis perpendicular to its plane passing
through the center with angular velocity ω.

Find the magnitude of the torque on the disc if it is placed in a uniform magnetic field whose strength is B which is directed perpendicular to the axis of rotation

$$
\text { A. } \frac{1}{4} \sigma \omega \pi B R
$$

B. $\frac{1}{4} \sigma \omega \pi B R^{2}$
C. $\frac{1}{4} \sigma \omega \pi B R^{2}$
D. $\frac{1}{4} \sigma \omega \pi B R^{4}$

Answer: D

D View Text Solution

15. A simple pendulum with charged bob is oscillating with time period T and let θ be the angular displacement. If the uniform magnetic
field is switched $O N$ in a direction perpendicular to the plane of oscillation then
A. time period will decrease but θ will remain constant
B. time period remain constant but θ will
decrease

C. both T and θ will remain the same

D. both T and θ will decrease

Answer: C

Evaluation Iv Numerical Problems

1. A bar magnet having a magnetic moment
\vec{M} is cut into four pieces i.e., first cut in two
pieces along the axis of the magnet and each
piece is further cut into two pieces. Compute
the magnetic moment of each piece.

- View Text Solution

2. A conductor of linear mass density $0.2 \mathrm{gm}^{-1}$

suspended by two flexible wire as shown in
figure. Suppose the tension in the supporting
wires is zero when it is kept inside the magnetic field of 1 T whose direction is into
the page. Compute the current inside the conductor and also the direction of the
current. Assume $g=10 \mathrm{~ms}^{-2}$

D View Text Solution

3. A circular coil with cross-sectional area
$0.1 \mathrm{~cm}^{2}$ is kept in a uniform magnetic field of strength 0.2 T. If the current passing in the coil is 3 A and plane of the loop is perpendicular to
the direction of magnetic field. Calculate total torque on the coil

D View Text Solution

4. A circular coil with cross-sectional area
$0.1 \mathrm{~cm}^{2}$ is kept in a uniform magnetic field of strength 0.2 T. If the current passing in the coil is 3 A and plane of the loop is perpendicular to the direction of magnetic field. Calculate total force on the coil
5. A circular coil with cross-sectional area
$0.1 \mathrm{~cm}^{2}$ is kept in a uniform magnetic field of strength 0.2 T . If the current passing in the coil is 3 A and plane of the loop is erpendicular to
the direction of magnetic field. Calculate average force on each electron in the coil due to the magnetic field of the free electron density for the material of the wire is $10^{28} m^{-3}$.
6. A bar magnet is placed in a uniform magnetic field whose strength is 0.8 T .

Suppose the bar magnet orient at an angle
30° with the external field experiences a torque of 0.2 N m . Calculate:
the magnetic moment of the magnet

- View Text Solution

7. A bar magnet is placed in a uniform
magnetic field whose strength is 0.8 T .

Suppose the bar magnet orient at an angle
30° with the external field experiences a torque of 0.2 N m. Calculate:
the work done by an applied force in moving it from most stable configuration to the most unstable configuration and also compute the work done by the applied magnetic field in this case.

D View Text Solution

8. A non - conducting sphere has a mass of 100
g and radius 20 cm . A flat compact coil of wire
with turns 5 is wrapped tightly around it with
each turns concentric with the sphere. This
sphere is placed on an inclined plane such
that plane of coil is parallel to the inclined
plane. A uniform magnetic field of 0.5 T exists
in the region in vertically upward direction.

Compute the current I required to rest the sphere in equilibrium.

9. Calculate the magnetic field at the center of a square loop which carries a current of 1.5 A , length of each loop is 50 cm .

D View Text Solution

10. Let I_{1} and I_{2} be the steady currents passing through a long horizontal wire XY and $P Q$ respectively. The wire $P Q$ is fixed in horizontal plane and the wire XY be is allowed
to move freely in a vertical plane. Let the wire $X Y$ is in equilibrium at a height d over the parallel wire PQ as shown in figure.

Show that if the wire $X Y$ is slightly displaced and released, it executes Simple Harmonic

Motion (SHM). Also, compute the time period of oscillations.

