©゙" doubtnut

CHEMISTRY

BOOKS - PREMIERS PUBLISHERS

CO-ORDINATION CHEMISTRY

Evaluate Yourself

1. When a coordination compound
$\mathrm{CrCI} \mathrm{I}_{3} .4 \mathrm{H}_{2} \mathrm{O}$ is mixed with silver nitrate
solution, one mole of silver chloride is
precipitated per mole of the compound. There are no free solvent molecules in that compound.

Assign the secondary valence to the metal and write the structural formula of the compound.

D View Text Solution

2. In the complex. $\left[\mathrm{Pt}\left(\mathrm{NO}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Br}$, identify the following

Central metal atom ion
3. In the complex. $\left[\operatorname{Pt}\left(\mathrm{NO}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Br}$, identify the following

Ligand(s) and their type

- View Text Solution

4. In the complex. $\left[\mathrm{Pt}\left(\mathrm{NO}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Br}$, identify the following

Coordination entity

5. In the complex. $\left[\mathrm{Pt}\left(\mathrm{NO}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Br}$, identify the following

Oxidation number of the central metal ion

- View Text Solution

6. In the complex. $\left[\mathrm{Pt}\left(\mathrm{NO}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Br}$, identify the following

Coordination number
7. Write the IUPAC name for the following compounds.
$K_{2}\left[\mathrm{Fe}(\mathrm{CN})_{3}(\mathrm{Cl})_{2}\left(\mathrm{NH}_{3}\right)\right]$

- View Text Solution

8. Write the IUPAC name for the following
compounds.
$\left[\mathrm{Cr}(\mathrm{CN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left[\mathrm{CO}(\mathrm{OX})_{2}(\mathrm{en})\right]$

- View Text Solution

9. Write the IUPAC name for the following compounds.
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$

D View Text Solution

10. Write the IUPAC name for the following compounds.
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3}(\mathrm{NC})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$
11. Write the IUPAC name for the following compounds.
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{+}$

D View Text Solution

12. Give the structure for the following compounds
diamminesilver (I) dicyanidoargntate (I)

- View Text Solution

13. Give the structure for the following compounds

Pentaammine nitrito- K Ncobalt (III) ion.

D View Text Solution

14. Give the structure for the following compounds
hexafluoro cobaltate (III) ion
15. Give the structure for the following compounds
dichloridobis(ethylenediamine) Cobalt
sulphate.

D View Text Solution

16. Give the structure for the following compounds

Tetracarbonylnickel (0)

- View Text Solution

17. Three compounds $A B$ and C have empirical formula $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. they are kept in a container with a dehydrating agent and they lost water and attiring constant weight as shown below.

- View Text Solution

18. Indicate the possible type of isomers for the following complexes and draw their isomers

$$
\left[C o(e n)_{3}\right]\left[C r(C N)_{6}\right]
$$

19. Indicate the possible type of isomers for the following complexes and draw their isomers $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]^{2+}$

- View Text Solution

20. Indicate the possible type of isomers for the following complexes and draw their isomers
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{NO}_{2}\right] \mathrm{Cl}$

D View Text Solution

21. Draw all possible stereo isomers of a complex
$\mathrm{Ca}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}(\mathrm{Ox})_{2}\right]$

D View Text Solution

22. The spin only magnetic moment of

Tetrachloride Manganate (II)ion is 5,9 BM. On the basis of VBT, predict the type of hybridisation and geometry of the compound.

- View Text Solution

23. Predict the number of unpaired electrons in $\left[\mathrm{CoCl}_{4}\right]^{2-}$ ion on the basis of VBT.

D View Text Solution

24. A metal complex having composition
$\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2} \mathrm{Br}\right]$ has been isolated in two
forms A and B. (B) reacted with silver nitrate to
give a white precipitate readily soluble in ammonium hydroxide whereas A gives a pale yellow precipitate. Write the formula of A and B.

State the hybridization of Co in each and calculate their spin only magnetic moment.

- View Text Solution

25. The mean pairing energy and octahedral field splitting energy of $\left[M n(C N)_{6}\right]^{3-}$ are $28,800 \mathrm{~cm}^{-1}$ and $38500 \mathrm{~cm}^{-1}$ respectively.

Whether this complex is stable in low spin or high spin?
26. Draw energy level diagram and indicate the number of electrons in each level for the complex $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$. Whether the complex is paramagnetic or diamagnetic?

- View Text Solution

27. For the $\left[\mathrm{CoF}_{6}\right]^{3-}$ ion the mean pairing energy is found to be $21000 \mathrm{~cm}^{-1}$. The magnitude of Δ_{0} is $13000 \mathrm{~cm}^{-1}$. Calculate the crystal field stabilization energy for this complex ion corresponding to low spin and high spin states.

- View Text Solution

Textbook Question Answers Choose The Correct

 Answer1. The sum of primary valence and secondary
valence of the metal M in the complex
$\left[M(e n)_{2}(O x)\right] C l$ is :
A. 3
B. 6
C. -3

Answer: D

- View Text Solution

2. An excess of silver nitrate is added to 100 ml of
a 0.01 M solution of penta aqua chlorido chromium (III) chloride. The number of moles of

AgCl precipitated would be:
A. 0.02
B. 0.002
C. 0.01
D. 0.2

Answer: B

- View Text Solution

3. A complex has a molecular formula $\mathrm{MSO}_{4} \mathrm{Cl} .6 \mathrm{H}_{2} \mathrm{O}$. The aqueous solution of it gives white precipitate with Barium chloride solution and no precipitate is obtained when it is treated with silver nitrate solution. If the
secondary valence of the metal is six, which one of the following correctly represents the complex?

$$
\begin{aligned}
& \text { A. }\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}\right] \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \text { B. }\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{SO}_{4} \\
& \text { C. }\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O} \\
& \text { D. }\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}\right] \mathrm{SO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Answer: C
4. Oxidation state of Iron and the charge on the
ligand NO in $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$ are:
A. +2 and 0 respectively
B. +3 and 0 respectively
C. +3 and -1 respectively
D. +1 and +1 respectively

Answer: D

- View Text Solution

5. As per IUPAC guidelines, the name of the complex $\left[\mathrm{Co}(e n)_{2}(\mathrm{ONO}) \mathrm{Cl}\right] \mathrm{Cl}$ is :
A. Chlorobisethylenediaminenitritocobalt (III)
chloride
B. chloridobis (ethane-1,2-diamine) nitro k-

Ocobaltate (III) chloride
C. chloridobis (ethane-1,2-diammine) nitrito
k-Ocobalt (II) chloride
D. chloridobis (ethane -1,2-diamine) nitro k-

Ocobalt (III) chloride

Answer: D

D View Text Solution

6. IUPAC name of the complex $K_{3}\left[\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$ is
A. potassiumtrioxalatoaluminium(III)
B. potassiumtrioxalatoaluminate(II)
C. potassiumtrisoxalatoaluminate(III)
D. potassium trioxalatoaluminate(III)

Answer: D

D View Text Solution

7. A magnetic moment of 1.73 BM will be shown by one among the following :
A. $T i C l_{4}$
B. $\left[\mathrm{CoCl}_{6}\right]^{4-}$
C. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
D. $\left[N i(C N)_{4}\right]^{2-}$

Answer: C

D View Text Solution

8. Crystal field stabilization energy for high spin
d^{5} octahedral complex is:
A. $-0.6 \Delta_{0}$
B. 0
C. $2\left(P-\Delta_{0}\right)$
D. $2\left(P+\Delta_{0}\right)$

Answer: B

D View Text Solution

9. In which of the following coordination entities
the magnitude of Δ_{0} will be maximum?

$$
\begin{aligned}
& \text { A. }\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-} \\
& \text { B. }\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-} \\
& \text { C. }\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \\
& \text { D. }\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}
\end{aligned}
$$

Answer: A

D View Text Solution

10. Which one of the following will give a pair of enantiomorphs?
A. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
B. $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
C. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{PtCl}_{4}\right]$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{NO}_{2}$

Answer: B

D View Text Solution

11. Which type of isomerism is exhibited by $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right] ?$
A. Coordination isomerism
B. Linkage isomerism
C. Optical isomerism
D. Geometrical isomerism

Answer: B

D View Text Solution
12. How many geometrical isomers are possible for \ll EVAO35.eps \gg ?
A. 3
B. 4
C. 0
D. 15

Answer: A

D View Text Solution

13. Which one of the following pairs represents
linkage isomers?

$$
\begin{array}{ll}
\text { A. }\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{PtCl}_{4}\right] & \text { and } \\
& {\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{CuCl} l_{4}\right]} \\
\text { B. }\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{3}\right)\right] \mathrm{SO}_{4} & \text { and } \\
& {\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}(\mathrm{ONO})\right]}
\end{array}
$$

C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{NCS})_{2} \mathrm{Cl}\right]$

$$
\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{SCN})_{2}\right] \mathrm{Cl}
$$

D. both (b) and (c)

Answer: C

D View Text Solution

14. Which kind of isomerism is possible for a complex $\left[M A_{4} B_{2}\right]^{n+}$?
A. geometrical and ionization

B. geometrical and optical

C. optical and ionization

D. geometrical only

Answer: A

- View Text Solution

15. Which one of the following complexes is not expected to exhibit isomerism?
A. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$

B. ItltEVA041.epsgtgt

$$
\begin{aligned}
& \text { C. }\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Cl} \\
& \text { D. }\left[\mathrm{Fe}(e n)_{3}\right]^{3+}
\end{aligned}
$$

Answer: D

- View Text Solution

16. A complex in which the oxidation number of the metal is zero is:
A. $K_{4}\left[F e(C N)_{6}\right]$

$$
\begin{aligned}
& \text { B. }\left[\mathrm{Fe}(\mathrm{CN})_{3}\left(\mathrm{NH}_{3}\right)_{3}\right] \\
& \text { C. }\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]
\end{aligned}
$$

D. both (b) and (c)

Answer: C

- View Text Solution

17. Formula of tris(ethane-1, 2-diamine)iron(II) phosphate:
A. $\left[\mathrm{Fe}\left(\mathrm{CH}_{3}-\mathrm{CH}\left(\mathrm{NH}_{2}\right)_{2}\right)_{3}\right]\left(\mathrm{PO}_{4}\right)_{3}$
B.

$$
\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}\right)_{3}\right]\left(\mathrm{PO}_{4}\right)
$$

c.

$$
\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}\right)_{3}\right]\left(\mathrm{PO}_{4}\right)_{2}
$$

D.

$$
\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}\right)_{3}\right]_{3}\left(\mathrm{PO}_{4}\right)_{2}
$$

Answer: D

D View Text Solution
18. Which of the following is paramagnetic in nature?

$$
\begin{aligned}
& \text { A. }\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} \\
& \text { B. }\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} \\
& \text { C. }\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \\
& \text { D. }\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}
\end{aligned}
$$

Answer: C

- View Text Solution

19. Fac-mer isomerism is shown by

$$
\begin{aligned}
& \text { A. }\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+} \\
& \text { B. }\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{Cl})_{2}\right]^{+} \\
& \text {C. }\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}(\mathrm{Cl})_{3}\right] \\
& \text { D. }\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{SO}_{4}
\end{aligned}
$$

Answer: C

- View Text Solution

20. Choose the correct statement.
A. Square planar complexes are more stable than octahedral complexes
B. The spin only magnetic moment of
$\left[C u(C I)_{4}\right]^{2-}$ is 1.732 BM and it has square planar structure.
C. Crystal field splitting energy $\left(\Delta_{0}\right)$ of
$\left[F e F_{6}\right]^{4-}$ is higher than the $\left(\Delta_{0}\right)$ of $\left[F e(C N)_{6}\right]^{4+}$
D. Crystal field stabilization energy of
$\left[V\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is higher than the crystal
field stabilization of $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Answer: D

- View Text Solution

Textbook Question Answers Answer The Following Question

1. Write the IUPAC names for the following complexes.
$N a_{2}[N i(E D T A)]$
2. Write the IUPAC names for the following complexes.
$\left[A g(C N)_{2}\right]^{-}$

D View Text Solution

3. Write the IUPAC names for the following complexes.
$\left[\mathrm{Co}(e n)_{3}\right]_{2}\left(\mathrm{SO}_{4}\right)_{3}$

D View Text Solution
4. Write the IUPAC names for the following complexes.

$$
\left[\mathrm{Co}(\mathrm{ONO})\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}
$$

- View Text Solution

5. Write the IUPAC names for the following complexes.
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right]$

- View Text Solution

6. Write the formula for the following coordination compounds.
potassiumhexacyanidoferrate(II)

- View Text Solution

7. Write the formula for the following coordination compounds.
pentacarbonyliron(O)

View Text Solution
8. Write the formula for the following coordination compounds.
pentaamminenitrito $-\mathrm{k}-\mathrm{N}$-cobalt(III)ion

- View Text Solution

9. Write the formula for the following coordination compounds.
hexaamminecobalt(III)sulphate
10. Write the formula for the following coordination compounds.
sodiumtetrafluoridodihydroxidochromate (III)

D View Text Solution

11. Arrange the following in order of increasing molar conductivity
(i) $\mathrm{Mg}\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)(\mathrm{Cl})_{5}\right]$
(ii) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]_{3}\left[\mathrm{CoF}_{6}\right]_{2}$
(iii) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
12. $N i^{2+}$ is identified using alcoholic solution complex of dimethyl glyoxime. Write the structural formula for the rosy red precipitate of a formed in the reaction.

- View Text Solution

13. $\left[C u C l_{4}\right]^{2-}$ exists while $\left[C u I_{4}\right]^{2-}$ does not exist why?

D View Text Solution

14 Calculate the ratio of $\left[A g^{+}\right]$

$$
\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}
$$

M solution of NH_{3}. If the stability constant for the complex $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$is 1.7×10^{7}.

- View Text Solution

15. Give an example of coordination compound used in medicine and two examples of biologically important coordination compounds.

D View Text Solution

16. Based on VB theory explain why $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} \quad$ is paramagnetic, while $\left[N i(C N)_{4}\right]^{2-}$ is diamagnetic .

- View Text Solution

17. Draw all possible geometrical isomers of the complex $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$and identify the optically active isomer.

- View Text Solution

18. $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is coloured , while $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is colourless explain.

D View Text Solution

19. Give an example for complex of the type [$M a_{2} b_{2} c_{2}$] where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are monodentate ligands and give the possible isomers.

20. Give one test to differentiate

 $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{SO}_{4}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Cl}$.
- View Text Solution

21. In an octahedral crystal field, draw the figure to show splitting of d orbitals.

- View Text Solution

22. What is linkage isomerism ? Explain with an example.

- View Text Solution

23. Write briefly about the applications of coordination compounds in volumetric analysis.

D View Text Solution

24. Classify the following ligand based on the number of donor atoms.
NH_{3}
25. Classify the following ligand based on the number of donor atoms. en(ethane 1,2, diamine)

- View Text Solution

26. Classify the following ligand based on the number of donor atoms.
$o x^{2-}$
27. Classify the following ligand based on the number of donor atoms.
triaminotriethylamine

D View Text Solution

28. Classify the following ligand based on the number of donor atoms.
pyridine

- View Text Solution

29. Give the difference between double salts and coordination compounds.

- View Text Solution

30. Write the postulates of Werner's theory.

- View Text Solution

31. $\left[N i(C N)_{4}\right]^{2-}$ is diamagnetic, while
$\left[\mathrm{NiCl}_{4}\right]^{2-}$ is paramagnetic, explain using
crystal field theory.
32. Why tetrahedral complexes do not exhibit geometrical isomerism.

- View Text Solution

33. Explain optical isomerism in coordination compounds with an example.

- View Text Solution

34. What are hydrate isomers? Explain with an example.

D View Text Solution
35. What is crystal field splitting energy?

D View Text Solution
36. What is crystal field stabilization energy
(CFSE) ?
37. A solution of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is green, whereas a solution of $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is colorless

- Explain

D View Text Solution

38. Discuss briefly the nature of bonding in metal carbonyls.

D View Text Solution
39. What is the coordination entity formed when excess of liquid ammonia is added to an aqueous solution copper sulphate?

- View Text Solution

40. On the basis of VB theory explain the nature of bonding in $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$

- View Text Solution

41. What are the limitations of VB theory?

- View Text Solution

42. Write the oxidation state, coordination number, nature of ligand, magnetic property and electronic configuration in octahedral crystal field for the complex $K_{4}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]$.

- View Text Solution

Other Important Question Answer Choose The

 Correct Answer1. Which of the following complexes formed by $C u^{+2}$ ions is the most stable ?

$$
\begin{aligned}
& \text { A. } C u^{+2}+4 \mathrm{NH}_{3} \Leftrightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+2} \quad \log \\
& \mathrm{k}=11.6 \\
& \text { B. } C u^{+2}+4 C N^{-} \Leftrightarrow\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{-2} \log \mathrm{k} \\
& \quad=27.3 \\
& \text { C. } C u^{+2}+2 e n \Leftrightarrow\left[\mathrm{Cu}(e n)_{2}\right]^{+2} \log \mathrm{k}=15.4 \\
& \text { D. } C u^{+2}+4 \mathrm{H}_{2} O \Leftrightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{+2} \log \mathrm{k}
\end{aligned}
$$

=8.9

Answer: B

- View Text Solution

2. when 1 mol of $\mathrm{CrCl}_{3} 6 \mathrm{H}_{2} \mathrm{O}$ is treated with excess of $\mathrm{AgNO}_{3} 3 \mathrm{~mol}$ of AgCl are obtained.

The formula of the complex is :
A. $\left[\mathrm{CrCl}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] 3 \mathrm{H}_{2} \mathrm{O}$
B. $\left[\mathrm{CrCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{CrCl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$

Answer: D

D View Text Solution

3. The correct IUPAC name of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ is
A. Diamminedichloroplatinum (II)
B. Diammine dichloro platinum (IV)
C. iammine dichloro platinum (O)
D. Dichloro Diammine platinum (IV)

Answer: A

D View Text Solution

4. The stabilisation of coordination compounds
due to chelation is called chelate effect. Which of the following is the most stable complex species?
A. $F e(C o)_{5}$
B. $\left[F e(C N)_{6}\right]^{-3}$
C. $\left.F e\left(C_{2} O_{4}\right)_{3}\right]^{-3}$

$$
\text { D. }\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3}
$$

Answer: C

D View Text Solution

5. The compounds $\left[\mathrm{Co}\left(\mathrm{SO}_{4}\right)\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Br}$ and $\left[\mathrm{Co}\left(\mathrm{SO}_{4}\right)\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}$ represent :

A. linkage isomerism
B. ionisation isomerism
C. coordination isomerism

D. no isomerism

Answer: D

- View Text Solution

6. Which of the following species is not expected
to be a ligand?
A. NO
B. NH_{4}^{+}
C. $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$

Answer: B

- View Text Solution

7. The oxidation state of Fe in the brown ring complex $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$ is :
A. +1
B. +2
C. +3

D. +4

Answer: A

- View Text Solution

8. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{Cl}$ exhibits :
A. ionisation isomerism, geometrical isomerism and optical isomerism.
B. linkage isomerism, geometrical isomerism
and optical isomerism.
C. linkage isomerism, ionisation isomerism and optical isomerism.

D. linkage isomerism, ionisation isomerism

and geometrical isomerism.

Answer: D

- View Text Solution

9. Which of the following complex ions has geometrical isomers?

$$
\begin{aligned}
& \text { A. }\left[\mathrm{Co}(e n)_{3}\right]^{+3} \\
& \text { B. } \left.\left[\mathrm{Ni}(\mathrm{NH})_{3}\right)_{5} \mathrm{Br}\right]^{+} \\
& \text {C. }\left[\mathrm{Co}\left(N H_{3}\right)_{2}(e n)_{2}\right]^{+3} \\
& \text { D. }\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4}(e n)\right]^{+3}
\end{aligned}
$$

Answer: C

D View Text Solution

10. The correct statement with respect to the complexes $\mathrm{Ni}(\mathrm{CO})_{4}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{-2}$ is:
A. nickel is in the same oxidation state in both.
B. both have tetrahedral geometry
C. both have square planar geometry
D. have tetrahedral and square planar
geometry respectively.

Answer: D

- View Text Solution

11. When 0.01 mole of a cobalt complex is treated with excess AgNO_{3} solution, 4.305 g of silver chloride is precipitated. The formula of the complex is:

$$
\begin{aligned}
& \text { A. }\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right] \\
& \text { B. }\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} \\
& \text { C. }\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3} \\
& \text { D. }\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{NO}_{3}
\end{aligned}
$$

Answer: C
12. Amongst $N i(C O)_{4},\left[N i(C N)_{4}\right]^{-2}$ and $\left[N i C l_{4}\right]^{-2}$
A. $N i(C O)_{4}$ and $\left[\mathrm{NiCl}_{4}\right]^{-2}$ are diamagnetic and $\left[N i(C N)_{4}\right]^{-2}$ is paramagnetic .
B. $\left[N i C l_{4}\right]^{-2} \quad$ and $\quad\left[N i(C N)_{4}\right]^{-2} \quad$ are diamagnetic and $N i(C O)_{4}$ is
paramagnetic
C. $N i(C O)_{4} \quad$ and $\quad\left[N i(C N)_{4}\right]^{-2} \quad$ are diamagnetic and $\left[N i C l_{4}\right]^{-2} \quad$ is

paramagnetic

D. $N i(C O)_{4}$ is diamagnetic and $\left[N i C l_{4}\right]^{-2}$

 and $\left[N i(C N)_{4}\right]^{-2}$ are paramagnetic.
Answer: C

- View Text Solution

13. Which of the following complexes are not correctly matched with the hybridisation of their central metal ion ?
(i) $N i(C O)_{4} \Rightarrow s p^{3}$
(ii) $\left[N i(C N)_{4}\right]^{-2} \Rightarrow s p^{3}$
(iii) $\left[C_{6} F_{6}\right]^{-3} \Rightarrow d^{2} s p^{3}$
(iv) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{-3} \Rightarrow s p^{3} d^{2}$
A. (i) and (ii)
B. (ii) ,(iii) and (iv)
C. (i),(ii) and (iii)
D. (ii) and (iv)

Answer: B

D View Text Solution
14. Which of the following complexes has minimum magnitude of Δ_{0} ?
A. $\left[C r(C N)_{6}\right]^{-3}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3}$
C. $\left[\mathrm{CoCl}_{6}\right]^{-3}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3}$

Answer: C

D View Text Solution
15. Hybridisation, shape and magnetic moment of $\mathrm{K}_{3}\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{3}\right]$ is :
A. $d^{2} s p^{3}$, octahedral , 4.9 BM
B. $s p^{3} d^{2}$, octahedral , 4.9BM
C. $d s p^{2}$, square planar , 4.9 BM
D. $s p^{3}$, tetrahedral ,4.9 BM

Answer: B

- View Text Solution

16. The spin only magnetic moment value (in Bohr magneton) of $\mathrm{Cr}(\mathrm{CO})_{6}$ is :
A. 0
B. 2.84
C. 4.9
D. 5.92

Answer: A

D View Text Solution
17. Among the following complexes (K-P)
$K_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \Rightarrow K,\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3} \Rightarrow L$
$N a_{3}\left[C O(O X)_{3}\right] \Rightarrow M,\left[N i\left(H_{2} O\right)_{6}\right] C l_{2} \Rightarrow N$
$K_{3}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right] \Rightarrow \mathrm{O},\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{2} \Rightarrow P$
the diamagnetic complexes are :
A. K,L,M,N
B. K, M, O, P
C. L,M,O,P
D. L, M, N, O

Answer: C
18. Which of the following facts about the complex $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ is wrong?
A. The complex is paramagnetic
B. The complex is an outer orbital complex
C. The complex gives white precipitate with
silver nitrate solution.
D. The complex involves $d^{2} s p^{3}$ hybridisation
and is octahedral in shape.

Answer: B

D View Text Solution

19. The ' d ' electron configuration of
$C r^{+2}, M n^{+2}, F e^{+2}$ and $C o^{+2}$ are d^{4}, d^{5}, d^{6}
and d^{7} respectively. Which one of the following
will exhibit minimum paramagnetic behaviour?
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$
B. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$
C. $\left.\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$

$$
\text { D. }\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}
$$

Answer: D

- View Text Solution

20. Crystal field stabilisation energy for high spin d^{4} octahedral complex is:
A. $-0.6 \Delta_{0}$
B. $-1.8 \Delta_{0}$
C. $-1.66 \Delta_{0}+P$
```
D. \(-1.2 \Delta_{0}\)
```


Answer: A

- View Text Solution

21. In spectrochemical series, chlorine is above $\mathrm{H}_{2} \mathrm{O}$ i.e., $\mathrm{Cl}>\mathrm{H}_{2} \mathrm{O}$. This is due to:
A. Good π acceptor properties of chlorine
B. Strong σ donor and good π acceptor properties of chlorine.
C. Good π donor properties of chlorine.

D. Larger size of chlorine than $\mathrm{H}_{2} \mathrm{O}$.

Answer: C

- View Text Solution

22. The magnitude of crystal field stabilisation energy (CFSE or Δ_{t}) in tetrahedral complexes is considerably less than in the octahedral field. Because
A. There are only 4 ligands instead of six. So
the ligand field in only $2 / 3$ the size, hence
Δ_{t} is only $2 / 3$ the size.
B. the direction of orbitals does not coincide
with the direction of the ligands. This
reduces the crystal field stabilisation
energy $\left(\Delta_{t}\right)$ by further $2 / 3$.
C. both (a) and (b) are correct

D. both (a) and (b) are wrong.

- View Text Solution

23. Which of the following complex ions is expected to absorb visible light?

$$
\begin{aligned}
& \text { A. }\left[\mathrm{Ti}(e n)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+4} \\
& \text { B. }\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3} \\
& \text { c. }\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+2} \\
& \text { D. }\left[\mathrm{SC}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]^{+3}
\end{aligned}
$$

Answer: B

24. Which of the following is high spin complex?
A. $\left[\mathrm{CoCl}_{6}\right]^{-3}$
B. $\left[F e F_{6}\right]^{-3}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+2}$
D. All of these

Answer: D

- View Text Solution

25. Which one of the following ligand is capable of forming a low spin as well as high spin complex?
A. CO
B. F^{-}
C. NH_{3}
D. $C N^{-}$

Answer: C

26. Complexes with halide ions are generally:
A. low spin complexes
B. high spin complexes
C. both (a) and (b)
D. neither (a) and (b)

Answer: B

- View Text Solution

27. Which of the following shall form an octahedral complex?
A. d^{4} (low spin)
B. d^{8} (high spin)
C. d^{6} (low spin)
D. All of these

Answer: C

- View Text Solution

28. Match the entities of column I with appropriate entities of column II.

Column -I		Column-II	
A	CN $^{-}$	1	Bidentate ligand
B	Ethylene diamine	2	hexadentate ligand
C	Carbonate ion	3	ambidentate ligand
D	EDTA	4	chelating ligand

A. $A-3, B-4, C-1, D-2$
B. $A-4, B-1, C-2, D-3$
C. $\mathrm{A}-4, \mathrm{~B}-1, \mathrm{C}-3, \mathrm{D}-2$
D. $\mathrm{A}-2, \mathrm{~B}-4, \mathrm{C}-1, \mathrm{D}-3$

Answer: A

D View Text Solution

29. Assertion (A): The complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$ does not give precipitate with AgNO_{3}. Reason (R): The complex does counter ions.
A. If both assertion and reason are true and
reason is the correct explanation of assertion.
B. If both assertion and reason are true, but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

- View Text Solution

30. Assertion (A): The $\left[N i(e n)_{3}\right] C l_{2}$ (en= ethylene diamine) has lower stability than
$\left(N i\left(N H_{3}\right)_{6}\right)$.
Reason (R): In $\left[N i(e n)_{3}\right] C l_{2}$, the geometry of nickel is trigonal bipyramidal.
A. If both assertion and reason are true and
reason is the correct explanation of assertion.
B. If both assertion and reason are true, but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D

D View Text Solution

Other Important Question Answer Answer The Following

1. What is the coordination number of the central metal ions in the following complexes ?
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+2}$

D View Text Solution
2. What is the coordination number of the central metal ions in the following complexes? $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{-3}$

- View Text Solution

3. What is the coordination number of the central metal ions in the following complexes ?
$\left[P t(e n){ }_{2} C l_{2}\right]$
4. What is the coordination number of the central metal ions in the following complexes? $\left[M o(C N)_{8}\right]^{-4}$

- View Text Solution

5. What is the coordination number of the central metal ions in the following complexes?
$F e[E D T A]^{-}$
6. What is the coordination number of the central metal ions in the following complexes? $\left[\mathrm{Pd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{ONO})_{2} I_{2}\right]$

D View Text Solution

7. Calculate the oxidation state, of the central metal atom, in the following :
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{+2}$

- View Text Solution

8. Calculate the oxidation state, of the central metal atom, in the following :
$K_{4}\left[F e(C N)_{6}\right]$

- View Text Solution

9. Calculate the oxidation state, of the central

 metal atom, in the following :$\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{2}(\mathrm{Py})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{NO}_{3}$

D View Text Solution

10. Calculate the oxidation state, of the central metal atom, in the following :
$N i[C O]_{4}$

- View Text Solution

11. Calculate the oxidation state, of the central metal atom, in the following :
$[F e(E D T A)]^{-}$

- View Text Solution

12. Give the IUPAC names of the following compounds :
$K_{3}\left[\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$

D View Text Solution

13. Give the IUPAC names of the following compounds :
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right) \mathrm{Cl}\right] \mathrm{SO}_{4}$

- View Text Solution

14. Give the IUPAC names of the following compounds :
$K_{3}\left[C r(C N)_{6}\right]$

- View Text Solution

15. Give the IUPAC names of the following
compounds :
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{ONO}\right] \mathrm{Cl}_{2}$

D View Text Solution
16. Give the IUPAC names of the following compounds :
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CO}_{3}\right] \mathrm{Cl}$

D View Text Solution

17. Give the IUPAC names of the following compounds :
$\left[C r\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NCS})\right]\left[\mathrm{ZnCl}_{4}\right]$

- View Text Solution

18. Give the IUPAC names of the following
compounds :
$K\left[A u(C N)_{2}\right]$

D View Text Solution

19. Write the formula of following coordination
compounds.

Tetraammine diaqua cobalt (III) chloride.

D View Text Solution
20. Write the formula of following coordination compounds.

Potassium tetracyanonickelate (II).

- View Text Solution

21. Write the formula of following coordination compounds.

Tris (ethane 1, 2, diamine) chromium (III) chloride.
22. Write the formula of following coordination compounds.

Amminebromidochloridonitrito-N-platinate (III).

- View Text Solution

23. Write the formula of following coordination
compounds.

Dichlorido bis (ethane 1, 2, diamine) platinum (IV) nitrate.
24. Write the formula of following coordination compounds.

Iron (111) hexacyanoferrate (III).

D View Text Solution

25. Write the IUPAC names of the following coordination compounds :
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$

- View Text Solution

26. Write the IUPAC names of the following coordination compounds :
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$

D View Text Solution

27. Write the IUPAC names of the following coordination compounds:
$K_{3}\left[F e(C N)_{6}\right]$

D View Text Solution
28. Write the IUPAC names of the following coordination compounds :
$K_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$

- View Text Solution

29. Write the IUPAC names of the following coordination compounds :
$K_{2}\left[P d C l_{4}\right]$

- View Text Solution

30. Write the IUPAC names of the following coordination compounds :
$\operatorname{Pt}\left[\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{NH}_{2} \mathrm{CH} \mathrm{H}_{3}\right)\right] \mathrm{Cl}$

D View Text Solution

31. Using IUPAC names, write the formula of the following:

Tetra hydrazozincate (II)

- View Text Solution

32. Using IUPAC names, write the formula of the following:

Hexammine cobalt (III) sulphate.

- View Text Solution

33. Using IUPAC names, write the formula of the following:

Potassium trioxalato chromate (III)

D View Text Solution

34. Using IUPAC names, write the formula of the following:

Diammine dichloro platinum (II)

- View Text Solution

35. Using IUPAC names, write the formula of the
following:
Tetra bromido cuprate (II)

- View Text Solution

36. Using IUPAC names, write the formula of the following:

Pentaamminenitrito-O-cobalt(III)

- View Text Solution

37. Using IUPAC names, write the formula of the following:

Pentaamminenitrito-N-cobalt (III)

- View Text Solution

38. Specify the oxidation numbers of the metal ions in the following co-ordination entities. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{CN})(e n)_{2}\right]^{+2}$

- View Text Solution

39. Specify the oxidation numbers of the metal ions in the following co-ordination entities. $\left[P t C l_{4}\right]^{-2}$

D View Text Solution

40. Specify the oxidation numbers of the metal ions in the following co-ordination entities.
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$

D View Text Solution

41. Specify the oxidation numbers of the metal ions in the following co-ordination entities.
$\left[\mathrm{CoBr}_{2}(e n)_{2}\right]^{+}$

D View Text Solution

42. Specify the oxidation numbers of the metal ions in the following co-ordination entities.
$K_{3}\left[F e(C N)_{6}\right]$

D View Text Solution

43. Aqueous copper sulphate (blue in colour) gives a green precipitate with aqueous potassium fluoride. Explain these experimental results.
44. Aqueous copper sulphate (blue in colour) gives and (ii) a bright green solution with aqueous potassium chloride. Explain these experimental results.

D View Text Solution

45. Give two examples for each of the following :

Cationic complex

D View Text Solution

46. Give two examples for each of the following :

Anionic complex

- View Text Solution

47. Give two examples for each of the following :

Neutral complex

- View Text Solution

48. What are homoleptic and heteroleptic
complexes? Give one example for each.

- View Text Solution

49. Identify the following complexes homoleptic or heteroleptic complexes.
$\left[F e(C N)_{6}\right]^{-4}$

- View Text Solution

50. Identify the following complexes homoleptic or heteroleptic complexes.
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
51. Identify the following complexes homoleptic or heteroleptic complexes.

$$
\left[C r(e n)_{3}\right]^{+3}
$$

D View Text Solution

52. Identify the following complexes homoleptic or heteroleptic complexes.
$\left[\mathrm{Ag}\left(\mathrm{NH}_{2}\right)_{2}\right]^{+}$
53. Identify the following complexes homoleptic or heteroleptic complexes. $\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right]^{-3}$

D View Text Solution

54. Explain the following giving an example in each case:

Linkage isomerism

- View Text Solution

55. Explain the following giving an example in each case:

Coordination isomerism

D View Text Solution
56. Explain the following giving an example in each case:

Ionisation isomerism

- View Text Solution

57. Explain the following giving an example in each case:

Solvate or hydrate isomerism.

D View Text Solution

58. Give the ionisation isomer of the following and write their IUPAC names.
$\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] B r_{2}$

- View Text Solution

59. Give the ionisation isomer of the following and write their IUPAC names.
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{NO}_{2}$

D View Text Solution

60. Briefly outline the geometrical isomerism exhibited by square planar and with an example.
61. Write the structure of geometrical isomers in octahedral complexes of the type $M a_{4} b_{2}, M a_{2} b_{4}, M a_{2} b c, M a_{3} b_{3}$ where a +b are monodentate ligands. Give example for each type.

D View Text Solution

62. Mention the types of stereoisomerism exhibited by coordination compounds.
63. Explain the geometrical isomerism exhibited
by the $\left[M A_{3} B_{3}\right]^{ \pm n}$ where A and B are monodentate ligands.

- View Text Solution

64. Explain the terms facial and meritorial isomers

- View Text Solution

65. Write the formula of coordination isomers of
the following. Write their IUPAC names.
$\left[P t\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{CuCl}_{4}\right]$

- View Text Solution

66. Write the formula of coordination isomers of
the following. Write their IUPAC names.
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$

- View Text Solution

67. Write the formula of coordination isomers of the following. Write their IUPAC names.
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{SCN})_{6}\right]$

D View Text Solution

68. Write the formula of coordination isomers of the following. Write their IUPAC names.
$\mathrm{Co}(e n)_{3}\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$

D View Text Solution

69. Discuss the bonding in metal carbonyls.

D View Text Solution

70. Indicate the type of isomerism exhibited by
the following complexes and draw structures for these isomers.
$\mathrm{KCr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}$

- View Text Solution

71. Indicate the type of isomerism exhibited by the following complexes and draw structures for these isomers.

$$
\left[\mathrm{Co}(e n)_{3}\right] C l_{3}
$$

- View Text Solution

72. Indicate the type of isomerism exhibited by the following complexes and draw structures for these isomers.
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\left(\mathrm{NO}_{3}\right)_{2}\right]$
73. Indicate the type of isomerism exhibited by the following complexes and draw structures for these isomers.
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}_{2}\right]$

D View Text Solution

74. Give evidence to show that
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{SO}_{4} \quad$ and $\quad\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Cl}$ are ionisation isomers.
75. Draw the structure of optical isomers of $\mathrm{PtCl}_{2}(e n)_{2}$

D View Text Solution

76. Draw the structure of optical isomers of

$$
\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}(e n)_{2}\right]^{+}
$$

- View Text Solution

77. Write all the geometrical isomers of $\left[P t\left(\mathrm{NH}_{3}\right) \mathrm{BrClPy}\right]$ and how many of these exhibit optical isomerism ?

- View Text Solution

78. Draw the structure of all isomers
(geometrical and optical) of
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}(e n)_{2}\right]^{+2}$

D View Text Solution

79. Draw the structure of all isomers
(geometrical and optical) of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}(e n)\right]^{+}$

D View Text Solution

80. Draw the structure of geometrical isomers of $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{CN})_{4}\right]^{-}$
81. Out of the following two coordination entities which is optically active?
(i) $\quad \operatorname{cis}\left[\mathrm{CrCl}_{3}(o \mathrm{O})_{2}\right]^{-3}$
(ii)trans
$\left[\mathrm{CrCl}_{2}(o \mathrm{oX})_{2}\right]^{-3}$

D View Text Solution
82. Write the structures of isomers, if any and
write the names of the following complexes.
$\left[C r\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
83. Write the structures of isomers, if any and write the names of the following complexes.

$$
\left[\mathrm{Co}(e n)_{3}\right]^{+}
$$

- View Text Solution

84. Platinum (II) forms square planar complexes
and platinum (IV) gives octahedral complexes.

How many geometrical isomers are possible for each of the following. Draw their structures.
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right]^{+}$
85. Platinum (II) forms square planar complexes and platinum (IV) gives octahedral complexes.

How many geometrical isomers are possible for each of the following. Draw their structures.
$\left[P t\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{5}\right]^{-}$

D View Text Solution

86. Platinum (II) forms square planar complexes
and platinum (IV) gives octahedral complexes.
How many geometrical isomers are possible for
each of the following. Draw their structures.

$$
\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{ClNO}_{2}\right]
$$

- View Text Solution

87. Platinum (II) forms square planar complexes and platinum (IV) gives octahedral complexes. How many geometrical isomers are possible for each of the following. Draw their structures.
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{ClBr}\right]^{+2}$

- View Text Solution

88. Explain the term inner orbital complex with an example of each

D View Text Solution

89. Explain the term outer orbital complex with an example of each

D View Text Solution

90. $\left[C o(C N)_{6}\right]^{-3}$ and $\left[C o F_{6}\right]^{-3}$ are both octahedral complexes . Then what is the
difference between the two ?

- View Text Solution

91. Discuss the nature of bonding in the following coordination entities on the basis of valence bond theory .

$$
\left[F e(C N)_{6}\right]^{-4}
$$

92. Discuss the nature of bonding in the following coordination entities on the basis of valence bond theory .
$\left[F e F_{6}\right]^{-3}$

- View Text Solution

93. Discuss the nature of bonding in the following coordination entities on the basis of valence bond theory . $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{-3}$
94. Discuss the nature of bonding in the following coordination entities on the basis of valence bond theory .
$\left[N i C l_{4}\right]^{-2}$

D View Text Solution

95. $\left[\mathrm{NiCl}_{4}\right]^{2}$ is paramagnetic while $\mathrm{Ni}(\mathrm{CO})_{4}$ is
diamagnetic through both are tetrahedral why?
96. Explain $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3}$ is an inner orbital complex whereas $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+2}$ is an outer orbital complex.

D View Text Solution

97. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3}$ is paramagnetic while
$\left[N i(C N)_{4}\right]^{-2}$ is diamagnetic explain why ?
98. A solution of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$ is green but a solution of $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{-2}$ is colourless explain.

D View Text Solution

99. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{-4}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$ are of different colours in dilute solution why ?

D View Text Solution

100. Write down the IUPAC name of the each of
the following complexes and indicate the
oxidation state, electronic configuration and coordination number of the central metal ion.

Also give the stereochemistry and magnetic moment of each complex.
$\mathrm{K}_{4}\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]$

- View Text Solution

101. Write down the IUPAC name of the each of
the following complexes and indicate the oxidation state, electronic configuration and coordination number of the central metal ion.

Also give the stereochemistry and magnetic
moment of each complex.
$\left[C r C l_{3}\left(P y_{3}\right)\right]$

- View Text Solution

102. Write down the IUPAC name of the each of
the following complexes and indicate the oxidation state, electronic configuration and coordination number of the central metal ion.

Also give the stereochemistry and magnetic moment of each complex.
$K_{2}\left[M n(C N)_{4}\right]$
103. Write down the IUPAC name of the each of the following complexes and indicate the oxidation state, electronic configuration and coordination number of the central metal ion.

Also give the stereochemistry and magnetic moment of each complex.
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$

- View Text Solution

104. Write down the IUPAC name of the each of
the following complexes and indicate the oxidation state, electronic configuration and coordination number of the central metal ion.

Also give the stereochemistry and magnetic moment of each complex.
$C S\left[F e C l_{4}\right]$

- View Text Solution

105. Calculate the magnetic moment of the following coordination entities.
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3}$

D View Text Solution

106. Calculate the magnetic moment of the following coordination entities.
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3}$

D View Text Solution
107. Calculate the magnetic moment of the following coordination entities.
$\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$

D View Text Solution

108. What will be the correct order for the wave
length of absorption in the visible region of the
following:
$\left[\mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{6}\right]^{-4},\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+2},\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$

- View Text Solution

109. Give the number of unpaired electrons in the following complex ions: $\left[F e F_{6}\right]^{-4}$

- View Text Solution

110. Give the number of unpaired electrons in the following complex ions: $\left[F e(C N)_{6}\right]^{-4}$

D View Text Solution

111. Explain as how two complexes
$\left[N i(C N)_{4}\right]^{-2}$ and $\left[N i(C O)_{4}\right]$ have different
structures but do not differ in their magnetic behaviour. (Ni-28)

- View Text Solution

112. Using valence bond theory explain $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3}$ in relation to the complex given below:
type of hybridisation
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3}: \mathrm{Co}^{+3}=d^{6}$ configuration

- View Text Solution

113. Using valence bond theory explain $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3}$ in relation to the complex given below:
inner or outer orbital complex

- View Text Solution

114. Using valence bond theory explain $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3}$ in relation to the complex given below: magnetic behaviour
115. Using valence bond theory explain $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3}$ in relation to the complex given below:
spin only magnetic moment value

D View Text Solution

116. Discuss the nature of bonding in the following coordination entities on the basis of valence bond theory.
$\left[F e(C N)_{6}\right]^{-4}$
117. Discuss the nature of bonding in the following coordination entities on the basis of valence bond theory.
$\left[F e F_{6}\right]^{2-}$

D View Text Solution
118. Discuss the nature of bonding in the following coordination entities on the basis of
valence bond theory.

$$
\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{-3}
$$

- View Text Solution

119. Discuss the nature of bonding in the following coordination entities on the basis of
valence bond theory.
$\left[C O F_{6}\right]^{-3}$
120. What are crystal fields?

D View Text Solution

121. What do you understand by the term crystal field splitting?

- View Text Solution

122. Briefly discuss the crystal field splitting in octahedral complexes.
123. For the complex
$\left[\mathrm{Fe}(\mathrm{on})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl} \quad$ (en=ethylene diamine)
identify The complex is $\left[\mathrm{Fe}(e n)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$.
The oxidation number of Fe .

D View Text Solution

124. For the complex
$\left[\mathrm{Fe}(\mathrm{on})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl} \quad$ (en=ethylene diamine)
identify The complex is $\left[\mathrm{Fe}(e n)_{2} C l_{2}\right] C l$.
The hybrid orbital and shape of the complex.

- View Text Solution

125. For the complex
$\left[\mathrm{Fe}(\mathrm{on})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl} \quad$ (en=ethylene diamine) identify The complex is $\left[\mathrm{Fe}(e n)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$.

The magnetic behaviour of the complex.

- View Text Solution

126. For the complex
$\left[\mathrm{Fe}(\mathrm{on})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl} \quad$ (en=ethylene diamine)
identify The complex is $\left[\mathrm{Fe}(e n)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$.
The number of geometrical isomers.

- View Text Solution

127. For the complex
$\left[\mathrm{Fe}(\mathrm{on})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl} \quad$ (en=ethylene diamine),
identify The complex is $\left[\mathrm{Fe}(e n)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$.
Whether there is an optical isomer also.
128. For the complex
$\left[\mathrm{Fe}(\mathrm{on})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl} \quad$ (en=ethylene diamine)
identify The complex is $\left[\mathrm{Fe}(e n)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$.
The name of the complex (At. No of $F e^{-} \quad$ 26)

D View Text Solution

129. Compare the following complexes with respect to their shape, magnetic behaviour and the hybrid orbitals involved.
(i) $\left[\mathrm{CoF}_{4}\right]^{-2}, \quad$ (ii) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]$,
$\left[\mathrm{Ni}(\mathrm{Co})_{4}\right]$. (At No: $\left.\mathrm{Co}=27, \mathrm{Cr}=24, \mathrm{Ni}=28\right)$

- View Text Solution

130. Briefly discuss the crystal field splitting in octahedral complexes.

- View Text Solution

131. Briefly outline crystal field splitting in square planar complexes.
132. What is crystal field splitting energy ? How does the magnitude of Δ_{0} decide the actual configuration of ' d ' orbitals in a coordination entity ?

- View Text Solution

133. What is spectro chemical series ? Explain
the difference between a weak field ligand and a
strong field ligand.

D View Text Solution

134. How does the oxidation state of a metal ion influence or affect of crystal field splitting energy?

- View Text Solution

135. Briefly explain the distribution of ' d ' electrons in $t_{2 g}$ and e_{g} orbitals in octahedral complexes in a weak ligand field.
136. The hexa aqua manganese (II) ions contains
five unpaired electrons while hexacyano ions contain only one unpaired electron. Explain using crystal field theory .

D View Text Solution

137. Why do compounds having similar geometry have different magnetic moment ?
138. Briefly explain how the electrons are distributed between $t_{2 g}$ and e_{g} sets in an octahedral complex in the presence of a stong field ligand.

- View Text Solution

139. Using crystal field theory , draw energy level
diagram of the central metal atom/ion and determine the magnetic moment value of the following.
$\left[C O F_{6}\right]^{-3}$

- View Text Solution

140. Using crystal field theory , draw energy level diagram of the central metal atom/ion and determine the magnetic moment value of the following. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$

- View Text Solution

141. Using crystal field theory , draw energy level diagram of the central metal atom/ion and
determine the magnetic moment value of the following.

$$
\left[C u(C N)_{6}\right]^{-3}
$$

- View Text Solution

142. In the basis of crystal field theory explain
why cobalt (III) forms paramagnetic octahedral
complex with weak field ligands whereas it
forms diamagnetic octahedral complex with strong field ligands.
143. Differentiate between weak field and strong
field coordination entity.

D View Text Solution

144. State for a d^{6} configuration, how the actual configuration of the split 'd' orbitals in an octahedral field is decided by relative values of
Δ_{0} and P.

D View Text Solution

145. Arrange the following ligands in the increasing order of crystal field splitting power. $\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}, \mathrm{Cl}, \mathrm{F}, \mathrm{CN}$

- View Text Solution

146. Using crystal field theory , show energy level
diagrams, write the electronic configuration of the central metal atom/ion and determine the magnetic moment value in the following. $\left[F e F_{6}\right]^{-3}$
147. Using crystal field theory, show energy level
diagrams, write the electronic configuration of the central metal atom/ion and determine the magnetic moment value in the following . $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$

- View Text Solution

148. Using crystal field theory , show energy level
diagrams, write the electronic configuration of the central metal atom/ion and determine the
magnetic moment value in the following.

$$
\left[F e(C N)_{6}\right]^{-4}
$$

- View Text Solution

149. Give the oxidation state, ' d ' orbital occupation and coordination number of the central metal ion in the following complexes.
(i) $K_{3}\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$,(ii) $\left(\mathrm{NH}_{4}\right)\left[\mathrm{CoF}_{4}\right] \quad$,
(iii)
$C i s-\left[C r(e n)_{2} C l_{2}\right] C l$, (iv) $\left[M n\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{SO}_{4}$.

- View Text Solution

150. With the help of crystal field theory, product the number of unpaired electron in $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{-4}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$ complexes.

- View Text Solution

151. CO is stronger ligand than $N H_{3}$ for many metals. Explain giving appropriate reason.

- View Text Solution

152. What is meant by stability of a coordination compound in solution?

- View Text Solution

153. The stability constant of some complexes
are given below:

	Stability constant
$\mathrm{Cu}^{+2}+4 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+2}$	4.5×10^{11}
$\mathrm{Cu}^{+2}+4 \mathrm{CN}^{-} \rightleftharpoons\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{-2}$	2.0×10^{27}

Among CN^{-}and NH_{3} which is a stronger ligand ? Why?

D View Text Solution

154. The dissociation constants of $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+2}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3}$ are 1.10×10^{-12} and 6.2×10^{-36} respectively. Which complex would be more stable and why?

- View Text Solution

155. Calculate the over all complex dissociation equilibrium constant for the $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+2}$
ion given that β_{4} for this complex is 2.14×10^{13}

- View Text Solution

156. Calculate the ratio of $\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{-3}$ and $\left[\mathrm{Ag}^{+}\right]$in $0.1 \mathrm{M} S_{2} O_{3}$ solution. Given the stability or formation constant of $\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{-3}$ is 1.0×10^{13}.

- View Text Solution

157. Mention the use of coordination
compounds in metallurgy.

D View Text Solution

158. Mention the use of complexes used as
catalyst in organic reactions.

D View Text Solution

159. Mention the use of complexes in photography.
160. Mention the use of metal complexes in biological systems.

D View Text Solution

161. What is Cisplatin ? Mention its use.

- View Text Solution

162. What are metal carbonyls ? Mention their uses.

D View Text Solution

163. What are mononuclear and poly nuclear carbonyls ? Give examples .

D View Text Solution

164. What are non bridged metal carbonyls ?

Give examples.
165. What are bridged carbonyls ? Give example .

- View Text Solution

