

CHEMISTRY

BOOKS - SAI CHEMISTRY (TELUGU ENGLISH)

ATOMS

Mcqs

1. If an electron has an energy such that its de Broglie wavelength is $5500 ext{Å}$, then the energy value of that electron is $\left(h=6.6 imes 10^{-34}
ight)$ Js, $m_c=9.1 imes 10^{-31}$ kg

A. 8 imes 10 - 20J

B.
$$8 imes 10^{-10} J$$

 $\mathsf{C.}\,8J$

D.
$$8 imes 10 - 25J$$

Answer: d

- **2.** The following statements are given about hydrozen atom
- (A) The wavelength of the spectral lines of lyman series are greater than the wavelength of the second spectral line of Balmer series.
- (B) The orbits correspond to circular standing waves in

which circumference of the orbit equas a whole numbers of wavelengths.

- A. A is flse ,B is true
- B. A is true ,B is false
- C. A is false,B is false
- D. A is true,B is true

Answer: A

Watch Video Solution

3. The ratio of the De-Broglie wavelength for the electron and proton moving the same velocity is

$$m_p-Mass$$
 of proton, $m_e-\,$ Mass of electron)

A.
$$m_p$$
 : m_e

B.
$$m_p^2$$
 : m_e^2

C.
$$m_e$$
 : m_p

D.
$$m_e^2$$
 : m_p^2

Answer: c

4. The ratio of longest wavelength line in the Balmer andaschen series of hydrogen spectrum is

$$\frac{5}{36}$$

B.
$$\frac{7}{20}$$

C.
$$\frac{7}{144}$$

D.
$$\frac{5}{27}$$

Answer: b

Watch Video Solution

5. the energy of photon is equal to the kinetic energy of a porton,If λ_1 is the De-Broglie wavelength of a proton, λ_2 the wavelength associated with the proton and if the energt of the protonis E, then (λ_1/λ_2) is proportional to

A.
$$E^4$$

B.
$$E^{1/2}$$

$$\mathsf{C}.\,E^2$$

D. E

Answer: b

Watch Video Solution

6. The radius of the first orbit of hydrogen is r_H and the energy in the ground state is -13.6eV.considering a μ - particle with the mass 207 m_e revolving round a porton as in hydrogen atom, the energy and radius of

proton and $\mu\text{-combination}$ respectively in the first orbit are(assume nucleus to be stationary)

A.
$$-14.6 imes207eV, \, rac{r_H}{207}$$

$$\mathrm{B.}-207\times13.6eV,207r_{H}$$

C.
$$-\frac{13.6}{207}eV. \frac{r_H}{207}$$

$${\rm D.} - \frac{13.6}{207} eV, 207 r_H$$

Answer: a

Watch Video Solution

7. The De-Broglie wavelength of an electron moving with a velocity of $1.5 imes 10^8 ms/s$ is equal to that of a

photon The ratio of kinetic energy of the electron to that of the photon $\left(c=3 imes10^{8}m\,/\,s
ight)$

- A. 2
- B. 4
- C. $\frac{1}{2}$ D. $\frac{1}{4}$

Answer: d

Watch Video Solution

8. A proton when accelerated through a potential difference of V, has a De-Broglie wavelength λ associated with it.if an lpha-particle is to have the same De-Broglie wavelength λ , it must be accelerated through a potential difference of

A.
$$\frac{V}{8}$$
B. $\frac{V}{4}$

$$-rac{V}{4}$$

$$\mathsf{C.}\,4V$$

D. 8V

Answer: a

9. The work function of a certain metal is $3.31 \times 10^{-\,(\,-19\,)}\,j$ then, the maximum kinetic energy of photoelectrons emitted by incident radiation of wavelength 5000ÅIS1(GIVEN,H=

$$6.62XX10^{-34}J_{-s}, c=3 imes10^8ms^{-1}, e=1.6 imes10^{-19}C)$$

A. 2.48eV

B. 0,41ev

 $\mathsf{C}.\,2.07eV$

D. 0.82eV

Answer: b

10. the ratio nof the maximum and minimum wavelengths in Brackets series of hydrozen spectra is

- A. $\frac{25}{9}$
- B. $\frac{17}{6}$
- $\mathsf{C.}\,\frac{9}{5}$
- D. $\frac{4}{3}$

Answer: A

Watch Video Solution

11. in bohr model of hydrogen atom, rhe ratio of period of revolution of an electron in n=2 and n=1 orbits

- A.2:1
- B. 4:1
- C.6:1
- D. 16:1

Answer: c

Watch Video Solution

12. In hydrogen spectrum the shortest wavelength in Balmer series is λ . The shortest wavelength in Bracket series will be

- A. 2λ
- B. 4λ
- $\mathsf{C.}\,9\lambda$
- D. 16λ

Answer: b

Watch Video Solution

13. the radius of Bohr orbit depends on as

- A. $\frac{1}{2}$
 - B. $\frac{1}{n^2}$
 - C. n

D. n^2

Answer: d

Watch Video Solution

14. When the electron in hydrogen atom is excited from the 4^th stationary orbit to the 5^th stationary orbit, the chang e in the angular momentum of the electron in j_{-S} IS (Planck's cpnstant h $=6.64\times10^{-34}J_{-s}$)

A.
$$4.16 imes 10^{-34}$$

B.
$$3.32 imes 10^{-34}$$

$$\mathsf{C.}\,1.05\times10^{-34}$$

D.
$$2.08 imes 10^{-34}$$

Answer: c

Watch Video Solution

15. The age of potterey is determained by archlogists using a radio isotope of

- A. carbon
- B. Cobalt
- C. Iodine
- D. Phosphorus

Answer: a

Watch Video Solution

- **16.** The first line is the Lyman series has wavelength λ
- .The first line in Balmer series has wavelength

A.
$$\frac{27}{5}\lambda$$

B.
$$\frac{5}{27}\lambda$$

$$\mathsf{C.}\,\frac{9}{2}\lambda$$

D.
$$\frac{2}{9}\lambda$$

Answer: a

17. Neutron was discovered by

- A. Madam Curie
- B. Moseley
- C. Rutherford
- D. handwick

Answer: d

18. The radius of the hydrogen atom in the ground state is of the order of

A.
$$10^{-4} cm$$

B.
$$10^{-5}cm$$

$$\mathsf{C.}\,10^{-7}cm$$

D.
$$10^{-8} cm$$

Answer: d

Watch Video Solution

19. The Blamer's general formula for hydrogen is obtained by putting n_1 equal to

B. 1
C. 3
D. ∞
Answer: a
Watch Video Solution
20. if a is the radius of first Bohr orbit in hydrogen
atom, the radius of $3^r d$ orbit is
A. 3a
B. 9a

A. 2

- C. 27a
- D. 81a

Answer: b

Watch Video Solution

21. In neutron discovery expirement, berillium is bombareded by

- A. α =particle
- B. beta`-particle
- C. neutron
- D. protons

Answer: a

Watch Video Solution

22. for an electron in H-atom the frequency of photon for transition between levels 1 and 2 is v. The photon frequency for transition between levels 2 and 3 is closet to

A. 0.2v

B. 0.1v

C. v

D. A is true,B is true

Answer: a

Watch Video Solution

23. The closet distance of approach of an α -particle travelling with a velocity v to a certain nucleus is x.the distance of closet approach of α -particle travelling with a velocity 3 v to the same nucleus is

- A. $\frac{X}{5}$
- $\mathsf{B.}\;\frac{X}{6}$
- $\operatorname{C.}\frac{X}{9}$
- D. $\frac{X}{10}$

Answer: c

Watch Video Solution

24. The two elements have their atomic numbers as Z_1 and Z_2 The ratio of the wavelength λ_1 and λ_2 corresponding to their K_{α} lines is

A.
$$\frac{(Z_2-1)}{(Z_1-1)}$$

B.
$$rac{Z_1}{Z_2}$$

C.
$$\frac{Z_2}{Z_1}$$

D.
$$rac{\left(Z_2-1
ight)^2}{\left(Z_1-1
ight)^2}$$

Answer: d

25. From Bohr's theory when electrons jump from high energy orbit to second orbit spectral lines that occur belongs to

- A. Layman series
- B. Balmer series
- C. Paschen series
- D. Pfund series

Answer: b

