

MATHS

BOOKS - VGS PUBLICATION-BRILLIANT

MATHEMATICS-II(B) MODEL PAPER 3

Section A

1. Find the equation of the circle passing through

(3,4) and having the centre at (-3,4)

2. If the length of the tangent from (5,4) to

the circle $x^2 + y^2 + 2ky = 0$ is 1 the n find k.

Watch Video Solution

3. If the the angle between the circles

$$x^2+y^2-12x-6y+41=0$$
 and $x^2+y^2+kx+6y-59=0$ is 45° find k.

4. If ((1)/(2),2) is one extermity of a focalchord of the parabola $y^2 = 8x$. Find the co-ordinates of the other extremity.

Watch Video Solution

5. Find the equation of the hyperbola whose are

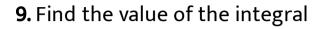
 $(\pm 5, 0)$ the transverse axis is of length 8.

6. Evaluate the integerals.

$$\int \!\! rac{\left(3x+1
ight) ^{2}}{2x} dxx \in I \subset R ackslash \{0\}$$

Watch Video Solution

7. Evaluate :
$$\int \frac{\log x}{x} dx$$
 .


Watch Video Solution

8. Evaluate
$$\lim_{n
ightarrow\infty} \, rac{2^k+4^k+6^k+\ldots+\left(2n
ight)^k}{n^{k+1}}$$
 by

using the method of finding definite integral as the

limit of a sum.

$$\int\limits_{0}^{2\pi}\sin^{2}x\cos^{4}xdx$$

Watch Video Solution

10. Solve
$$rac{dy}{dx}=e^{x-y}+x^2e^{-y}.$$

1. Find the equation of the circle with centre (-2,3) cutting a chord length 2 units on 3x + 4y + 4 = 0

Watch Video Solution

2. Find the equation of the circle which passes through the origin and intersects each of the following circles orthogonally.

$$x^2 + y^2 - 4x + 6y + 10, x^2 + y^2 + 12y + 6 = 0$$

3. Find the length of major axis,minor axis, latus rectum, eccentricity co-ordinates of centre, foci and the equations of directrices of the following ellipse. $4x^2 + y^2 - 8x + 2y + 1 = 0$

Watch Video Solution

4. A circle of radius 4, is concentric with the ellipse $3x^2 + 13y^2 = 78$. Prove that a common tangent is inclined to the major axis at an angle $\frac{\pi}{4}$

5. Tangents to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ make angle θ_1, θ_2 with transvrse axis of a hyperbola. Show that the points of intersection of these tangents lies on the curve $2xy = k(x^2 - a^2)$ when $\tan \theta_1 + \tan \theta_2 = k$

Watch Video Solution

6. Evaluate :
$$\int_{0}^{\frac{\pi}{4}} \log(1+\tan x) dx$$

7. Solve
$$\frac{1}{x} \frac{dy}{dx} + y$$
. $e^x = e^{(1-x)e^x}$
Watch Video Solution
Section C
1. Find the equation of the circle passing through (2,

1), (5, 5), (-6, 7).

that

 $x^2+y^2-6x-9y+13=0, x^2+y^2-2x-16y=0$

touch each other . Find the point of contact and the equation of common tangent at their point of contact.

Watch Video Solution

3. Find the equation of the parabola whose axis is parallel to X-axis and which passes through these points.

(-2,1),(1,2), and (-1,3)

4.
$$\int (6x+5)\sqrt{6-2x^2+x}dx$$

Watch Video Solution

5. Show that

If
$$I_n=\int\!\!\cos^n x dx,\,\, ext{then show that}\ I_n=rac{1}{n}\!\cos^{n-1}x\sin x+rac{n-1}{n}I_{n-2}.$$

6.
$$\int_0^\pi rac{x}{1+\cos^2 x} dx =$$

7. Solve $ig(x^3-3xy^2ig)dx+ig(3x^2y-y^3ig)dy=0$

