

MATHS

BOOKS - VGS PUBLICATION-BRILLIANT

MATHEMATICS-II(B) MODEL PAPER 4

Section A

1. Write the parametric equations of the circle $\left(x-3\right)^2+\left(y-4\right)^2=8^2.$

Watch Video Solution

2. Find the equation of the normal at P of the

circle S=0 where P and S are given by

$$P=(3,5), S\equiv x^2+y^2-10x-2y+6$$

3. Find k if the circles $x^2+y^2-5x-14y-34=0$ and $x^2+y^2+2x+4y+k=0$ are orthogonal to each other.

4. Find the value of k if the line 2y=5x+k is a tangent to the parabola $y^2=6x$

5. Find the centre, foci, eccentricity equation of the directrices, length of the latus rectum of the hyperbola.

Watch Video Solution

6. $\int \frac{\sin(\tan^{-1}x)}{1+x^2} dx, x \in R.$

Watch Video Solution

7. Evaluate the integerals.

 $\int \!\! e^x igg(rac{1+x\log x}{x}igg) dx on(0,\infty).$

8. Evaluate the definite integrals.

 $\sqrt{2+2\cos\theta}d heta$

9. Find
$$\int\limits_{-\pi/2}^{\pi/2} \sin^2 x \cos^4 x dx$$

10. $x^{\frac{1}{2}} \left(\frac{d^2y}{dx^2}\right)^{\frac{1}{3}} + x.$ $\frac{dy}{dx} + y = 0$ has order 2 and degree 1.

Section B

Prove.

by the circle $x^2+y^2-x3y-22=0$ on

1. Find the length of the chord intercepted

the line y = x - 3

2. Find the radical centre of the following circles

$$x^2 + y^2 - 4x - 6y + 5 = 0$$

$$x^2 + y^2 - 2x - 4y - 1 = 0$$

$$x^2 + y^2 - 6x - 2y = 0$$

3. Find the equation of the ellise in the standard form whose distance between foci is 2 and the length of latus rectum is $\frac{15}{2}$.

4. If a tangent to the ellipse meets major and minor axis at M and

N respectively and C is the centre of the ellipse thejon a^2 b^2

$$\frac{a^2}{\left(CM\right)^2} + \frac{b^2}{\left(CN\right)^2} =$$

5. Find the centre, foci, eccentricity equation of the directrices, length of the latus rectum of the hyperbola.

$$x^2 - 4y^2 = 4$$

6. Find the area bounded by $y = \sin x$ and $y = \cos x$ between any two consecutive points of intersection.

7. Solve the following differential equations.

$$\left(1+x^2
ight)rac{dy}{dx}+y=e^{ an^{-1}x}$$

Section C

2.

- (3,4)(3,2),(1,4)
 - Watch Video Solution

 $x^2 + y^2 + 22x - 4y - 100 = 0$ and $x^2 + y^2 - 22x + 4y + 100 = 0$

direct

Find the

1. Find the equation of the circle passing through the points

common tangents of the circles

3. Prove that the area of the triangle formed by the tangents at $(x_1,y_1),(x_2){
m and}(x_3,y_3)$ to the parabola $y^2=4ax(a>0)$ is $\dfrac{1}{16a}|(y_1-y_2)(y_2-y_3)(y_3-y_1)|$ sq.units.

4. Evaluate the following integrals.

$$\int \frac{2\cos x + 3\sin x}{4\cos x + 5\sin x} dx$$

5. Obtain reduction formula for $l_n=\int\!\! \tan^n x dx$, n being a positive integer $n\leq 2$ and deduce the value of $\int\!\! \tan^6 x dx$.

- **6.** Show that $\int\limits_0^{\pi/2} rac{x}{\sin x + \cos x} dx = rac{\pi}{2\sqrt{2}} \log \left(\sqrt{2} + 1
 ight)$.
 - Watch Video Solution

7. Solve the following differential equations.

$$\left(x^2y-2xy^2
ight)dx=\left(x^3-3x^2y
ight)dy$$

Watch Video Solution