©゙doubtnut

 India's Number 1 Education App
MATHS

BOOKS - VGS PUBLICATION-BRILLIANT

MODEL PAPER 10

Section A I Very Short Answer Type Questions

1. Write the conjugate of complex number $\frac{5 i}{7+i}$

- Watch Video Solution

2. Express 1 - i in modulas - amplitude form.
3. If A, B, C are angles of a triangle such that $x=\operatorname{cis} A, y=\operatorname{cis} B, z=c i s C$, then find the value of xyz.

- Watch Video Solution

4. For what values of x, the following expressions are negative ?

$$
15+4 x-3 x^{2}
$$

- Watch Video Solution

5. Find the transformed equation whose roots are the negative of the roots of $x^{4}+5 x^{3}+11 x+3=0$

- Watch Video Solution

6. Find the number of 4 letter words that can be formed using the letters of the word PISTON in which atleast one letter is repeated.
7. If $10 .{ }^{n} C_{2}=3 .{ }^{n+1} C_{3}$ find n .

- Watch Video Solution

8. Prove the $C_{0}+2 . C_{1}+4 . C_{2}+8 . C_{3}+\ldots+2^{n} . C_{n}=3^{n}$

- Watch Video Solution

9. Find the variance for an ungrouped data $5,12,3,18,6,8,2,10$.

- Watch Video Solution

10. The probability that a person chosen at random is left handed (in hand writing) is 0.1 what is the probability that in a group of ten people there is one and only one who is left handed.

Section B li Short Answer Type Questions

1. Show that the points in the Argand plane represented by the complex numbers $-2+7 i,-\frac{3}{2}+\frac{1}{2}+i 4-3 i \frac{7}{2}(1+i)$ are the vertices of a rhombus.

- Watch Video Solution

2. Prove that $\frac{1}{3 x+1}+\frac{1}{x+1}-\frac{1}{(3 x+1)(x+1)}$ does not lie between 1 and 4 , if x is real.

- Watch Video Solution

3. If the letters of the word MASTER are permuted in all possible ways and the words thus formed are arranged in the dictionary order, then find the rank of the word MASTER.

(D) Watch Video Solution

4. Prove that $\frac{{ }^{4 n} C_{2 n}}{{ }^{2 n} C_{n}}=\frac{1.3,5 \ldots \ldots(4 n-1)}{\{1.3 .5 \ldots(2 n-1)\}^{2}}$

- Watch Video Solution

5. Resolve the $\frac{2 x^{2}+3 x+4}{(x-1)\left(x^{2}+2\right)}$ into partial fractions.

- Watch Video Solution

6. If A, B, C are three events , Show that $p(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C)-P(C$

- Watch Video Solution

7. A problem in calculus is given to two students, A and B whose chances of solving it are $1 / 3,1 / 4$ respectively. Find the probability of the problem
being solved if both of them try'independently.

- Watch Video Solution

Section C lii Long Answer Type Questions

1. A: $(1+i)^{6}+(1-i)^{6}=0$

R : If n is a positive integer then
$(1+i)^{n}+(1-i)^{n}=2^{(n / 2)+1} \cdot \cos \frac{n \pi}{4}$

- Watch Video Solution

2. Solve $x^{4}-4 x^{2}+8 x+35=0$,given that $2+i \sqrt{3}$ is a root.

- Watch Video Solution

3. If the coefficients of $r^{\text {th }},(r+1)^{\text {th }}$ and $(r+2)^{\text {nd }}$ terms in the expansion of $(1+x)^{n}$ are in A.P. then show that
$n^{2}-(4 r+1) n+4 r^{2}-2=0$.

- Watch Video Solution

4. If $x=\frac{1.3}{3.6}+\frac{1.3 .5}{3.6 .9}+\frac{1.3 .5 .7}{3.6 .9 .12}+\ldots . \quad$ then prove that $9 x^{2}+24 x=11$.

- Watch Video Solution

5. Find the mean deviation from the mean for the following continuous
frequency distribution.

Sales in Rs. thousand	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	90
Number of Companies	5	15	25	30	20	5

- Watch Video Solution

6. State and prove Baye's theorem.
7. The range of a random variable X is $\{0,1,2\}$.

Given

that
$P(X=0)=3 C^{3}, P(X=1)=4 C-10 C^{2}, P(X=2)=5 C-1$
Find the value of C .

- Watch Video Solution

8. The range of a random variable X is $\{0,1,2\}$. Given that $P(X=0)=3 c^{3}, P(X=1)=4 c-10 c^{2}, P(X=2)=5 c-1$
i) Find the value of c
ii) $P(X<1), P(1<X \leq 2)$ and $P(0<X \leq 3)$

- Watch Video Solution

9. The range of a random variable X is $\{0,1,2\}$. Given that $P(X=0)=3 c^{3}, P(X=1)=4 c-10 c^{2}, P(X=2)=5 c-1$
i) Find the value of c
ii) $P(X<1), P(1<X \leq 2)$ and $P(0<X \leq 3)$
