

MATHS

BOOKS - VGS PUBLICATION-BRILLIANT

MODEL PAPER 4

Section A I Very Short Answer Type Questions

1. Find the complex conjugate of (2+5i)(-4+6i).

2. If $x+iy=cislpha.\,ciseta,\,$ then find the valeu of $x^2+y^2.$

3. If A,B,C are angles of a triangle such that x = cisA, y = cisB, z = cisC, then find the value of xyz .

C	Natch Video Solution

4. For what values of x the expression $2x^2 - 10x - 28$ is positive?

Watch Video Solution

5. If 1, 1, lpha are the roots of $x^3 - 6x^2 + 9x - 4 = 0$ then find

' α '.

6. Find the number of ways of arranging the letter of the word

"MATHEMATICS".

10. The mean and variance of a Binomial variate are 2.4 and 1.44

respectively. Find the parameters, P(X=2) and $P(1 < X \leq 4)$

Watch Video Solution

Section B li Short Answer Type Questions

1. If
$$(x - iy)^{1/3} = a - ib$$
, then show that $x = y$

$$rac{x}{a}+rac{y}{b}=4ig(a^2-b^2ig).$$

2. Find the maximum value of the function

$$rac{x^2+14x+9}{x^2+2x+3}$$
 over R.

3. Find the sum of all 4- digited numbers that can be formed

using the digits 1,3,5,7,9.

Watch Video Solution

4. Prove that

$$^{25}C_4 + \sum\limits_{r=0}^4 {}^{(29-r)}C_3 = {}^{30}C_4$$

Neither A not B occurs.

8. A problem in calculus is given to two students, A and B whose chances of solving it are 1/3, 1/4 respectively. Find the probability of the problem being solved if both of them try'independently.

Section C lii Long Answer Type Questions

1. If n is a positive integer, show that

$$\left(P+iQ
ight)^{1/n}+\left(P-iQ
ight)^{1/n}=2ig(P^2+Q^2ig)^{1/2n}\cosigg(rac{1}{n}, an.\,rac{Q}{P}igg)$$

2. The equation whose roots are reciprocals of the roots of $6x^6 - 25x^5 + 31x^4 - 31x^2 + 25x - 6 = 0$ is

Watch Video Solution

 $C_0. C_r + C_1. C_{r+1} + C_2. C_{r+2} + \ldots + C_{n-r}. C_n$

 $={}^{2n}C_{(\,n+r)}$ and hence deduce that

Prove that : $C_0^2 + C_1^2 + C_2^2 + \ldots + C_n^2 = {}^{2n}C_n$

Watch Video Solution

4. Prove that : For n = 0, 1, 2, 3,, n, prove that

$$C_0. C_r + C_1. C_{r+1} + C_2. C_{r+2} + \ldots + C_{n-r}. C_n$$

 $= {}^{2n}C_{(n+r)}$ and hence deduce that

 $C_0. C_1 + C_1. C_2 + C_2. C_3 + \dots + C_{n-1}. C_n = {}^{2n}C_{n+1}$

5. Find the sum of the infinite series

$$rac{7}{5}igg(1+rac{1}{10^2}+rac{1.3}{1.2}.\,rac{1}{10^4}+rac{1.3.5}{1.2.3}.\,rac{1}{10^6}+....igg)$$

Watch Video Solution

6. Find the mean deviation from the mean of the following data:

Marks	0-10	10-20	20-30	30-40	40-50	50-60	60-70
No. of Students	6	5	· 8	15	7	. 6 .	_3 ,

Using step deviation method.

7. State and prove addition theorem on probability.

8. Find the probability of drawing and ace or a spade from a well

suffled pack of 52 cards ?

9. If X is a random varibale with probability distribution
$$P(X = k) = \frac{(k+1)C}{2}, K = 0, 1, 2,....$$
 then find C.
Watch Video Solution