

MATHS

BOOKS - UNITED BOOK HOUSE

HIGHER SECONDARY EXAMINATION 2020.

Exercise

1. \overrightarrow{a} and \overrightarrow{b} are two vectors such that $\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{a}-\overrightarrow{b}\right|$ then angle between \overrightarrow{a} and \overrightarrow{b}

- A. 30°
- B. 60°
- C. 90°
- D. 120°

Watch Video Solution

2. If ω be an imaginary cube root of 1 then the

value of
$$\begin{vmatrix} 1 & \omega^2 & \omega \\ \omega & 1 & \omega^2 \end{vmatrix}$$
 is $\begin{vmatrix} \omega^2 & \omega & 1 \end{vmatrix}$

$$A. -1$$

B. ω^3

C. 0

D. $-\omega^2$

Answer:

3. Let IR be the set of real numbers and the mapping $f\colon IR\to IR$ and $g\colon IR\to IR$ be define by $f(x)=5-x^2$ and g(x)=3x-4, then the value of (fog)(-1) is

A. 8

B. -44

C. 54

D. 16

Answer:

Watch Video Solution

4. a straight line makes an angle 45° with positive direction of x-axis and 60° with positive direction of z-axis. If the line makes and angle heta with positive direction of y-axis then θ is equal to-

- A. $45^{\,\circ}$
- B. 60°
- C. 120°
- D. 135°

- **5.** Value of $\int\limits_{0}^{z} \left(\sin^{2200}x \cos^{2200}x\right) dx$ is-
 - A. 0

C.
$$\frac{1}{2200}$$

D.
$$\frac{1}{1100}$$

Watch Video Solution

6. The principal value of $\sin^{-1}\left(\sin\left(\frac{5\pi}{6}\right)\right)$ is-

A.
$$\frac{\pi}{6}$$

B.
$$\frac{5\pi}{6}$$

C.
$$\frac{7\tau}{6}$$
D. $\frac{\pi}{3}$

Watch Video Solution

7. Evaluate : $\sec^2(\tan^{-1}2) + \cos ec^2(\cot^{-1}3)$.

8. Show that
$$\begin{vmatrix} 1 & \log_a b & \log_a c \\ \log_b a & 1 & \log_b c \\ \log_c a & \log_c b & 1 \end{vmatrix} = 0,$$

(a>0.b>0.c>0)

9. Find the deferential equation of $xy=Ae^x+Be^{-x}+x^2$ by eleminating A and B (A,B are constants).

10. If $x^2=a^{\sin^{-1}t}$ and $y^2=a^{\cos^{-1}t}$ then show that $\frac{dy}{dx}=-\frac{y}{x}$.

11. If
$$f(x)=\frac{\sin 5x}{2x}$$
 (when $x\neq 0$) = $\frac{5k}{4}$ (when x= 0), and f(x) is continuous at x=0, find k.

12. If x>0,y>0 and xy=100, find the minimum value of (x+y)

Watch Video Solution

13. Evaluate: $\int \left(\frac{\cos x + x \sin x}{x(x + \cos x)}\right) dx$.

Watch Video Solution

14. If f(x) = -f(-x) then show that $\int f(x) dx = 0$.

15. Find a vector of magnitude 14 in the direction of the vector $-3\hat{i}+6\hat{j}-2\hat{k}$.

Watch Video Solution

16. Find the direction cosines of a straight line which is situate on yz-plane and inclined at an angle 60° with poistive direction of z-axis.

17. If $P(A)=\frac{1}{4}, P(B)=\frac{1}{3}$ and $P(A-B)=\frac{1}{6}$ then verify whether a and B are two independent event or not.

18. The mean and variance of a binomial distribution B(n,p|) are 4 and 3.2 respectively. Find the value of n and p.

19. *' is an operation defined on Z set of all integers as a*b = a+b-2 for all $a,b\in z$.

Find identity element of *'

Watch Video Solution

20. *' is an operation defined on Z set of all integers as a*b = a+b-2 for all $a,b\in z$.

Find the inverse of an element $a \in Z$.

Show

Show that
$$\sin^{-1}\left(\frac{12}{13}\right) + \cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{63}{16}\right) = \pi.$$

Watch Video Solution

If

$$A = \left[egin{array}{ccc|c} 0 & 6 & 7 \ -6 & 0 & 8 \ 7 & 8 & 0 \end{array}
ight], B = \left[egin{array}{ccc|c} 0 & 1 & 1 \ 1 & 0 & 2 \ 1 & 2 & 0 \end{array}
ight], C = \left[egin{array}{ccc|c} 2 \ -2 \ 3 \end{array}
ight]$$

Calculate AC. BC and (A+B)C. Also show

that(A+B)C=AC+BC.

$$A = \left(-\sin \theta\right)$$

23. If
$$A=egin{pmatrix}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$
 show that $A=egin{pmatrix}\cos n \theta & \sin n \theta \\ -\sin n \theta & \cos n \theta \end{pmatrix}$ n= positive integer.

24. show that
$$\begin{vmatrix} 1 & x & x^2 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{vmatrix} = \left(1 - x^3\right)^2$$

Watch Video Solution

25. If $(\cos x)^y = (\cos y)^x$ then show that

$$rac{dy}{dx} = rac{y \tan x + \log \cos y}{x \tan y + \log \cos x}$$

26. If
$$y=\left(\tan^{-1}x\right)^2,$$
 then show that $\left(1+x^2\right)^2 \frac{d^2y}{dx^2} + 2x \left(1+x^2\right) \frac{dy}{dx} = 2.$

27. Evaluate:
$$\int \frac{2dx}{(1-x)(1+x^2)}$$

28. Evaluate:
$$\int (\sqrt{\tan x} + \sqrt{\cot x}) dx$$

29. Solve:
$$xy\frac{dy}{dx}=(x+2)(y+2)$$
, given x= 1, when y =-1.

30. Solve:
$$x^2dy+\left(xy+y^2\right)dx=0$$
, given x=1 and y = 1.

31. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be three vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$, $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 5$ and $|\overrightarrow{c}| = 7$ find the angle between the vectors \overrightarrow{a} and $|\overrightarrow{b}|$.

32. Show that the points A=(2,-1,1),B=(1,-3,-5) and C= (3,-4,-4) are vertices of a right angled triangle (using vector method).

33. Show that:
$$\int\limits_0^1 \left(\frac{\log(1+x)}{1+x^2} \right) dx = \frac{\pi}{8} \log 2.$$

Watch Video Solution

34. Let A and B be two events such that

 $P(A)=rac{1}{3}, P(B)=rac{1}{4}$ and $P(A\cap B)=rac{1}{4}$.

Find
$$P(A/B), P(B/A), P(A \cup B)$$
.

35. Prove that all points of the curve $y^2=4a\left[x+arac{\sin x}{a}
ight]$ at which the langent is

parallel to the axis of x, lie on a parabola.

Watch Video Solution

36. Solve: $\dfrac{dy}{dx} - 3y\cot x = \sin 2x$, given y=2 when

$$x = \frac{\pi}{2}$$

37. Find two positive numbers x and y such that x

+ y = 60 and xy^3 is maximum.

Watch Video Solution

39. A variable plane which is at a constant distance 3p from origin cuts the coordinate axes at A,B,C respectively. Show that locus of the centroid of the $\triangle ABC$ is $\begin{bmatrix} 1 & 1 & 1 & 1 \\ & & 1 & 1 & 1 \end{bmatrix}$

$$riangle ABC$$
 is $rac{1}{x^2}+rac{1}{y^2}+rac{1}{z^2}=rac{1}{p^2}.$

40. Find the equation of the plane which passes through the points (3,4,1) and (0,1,0) and parallel to the line $\frac{x+3}{2}=\frac{y-3}{7}=\frac{z-2}{5}$

