

MATHS

BOOKS - UNITED BOOK HOUSE

MODEL QUESTION PAPER SET 10

Exercise

1. CHOOSE the correct answer from the following alternative : the domain for which the functions $f(x)=3x^2 - 2x$ and g(x)=3(3x-2) are equal, will be -

A. {1,2/3}

B. {1,3}

C. {2/3,3}

D. {2/3,0}

Answer:

Watch Video Solution

2. choose the correct alternative :(ii) state which of the foll. Is the

value of
$$\tan\left(\left(\frac{1}{3}\right)\left(\tan^{-1}x + \tan^{-1}\left(\frac{1}{x}\right)\right)\right)$$
 (x>0)?

A.
$$\frac{1}{\sqrt{3}}$$

B.
$$\sqrt{3}$$

C. 1

D. 0

Answer:

3. choose the correct answer from the given alternative : if A ia a square matrixof oreder 3 x 3, then the value of |KA| will be-

A. k|A|

 $\mathsf{B.}\,K^2|A|$

 $\mathsf{C}.\,K^3|A|$

D. 3K|A|

Answer:

Watch Video Solution

4. choose the correct alternative : (iv) the deriavtive of x^2 w.r.t log

x is

B. 2

C. 2x

D. $2x^3$

Answer:

5. choose the correct alternative : (v) the value of $\int_{-1}^1 |x| dx$ is

A. 1

B. 2

C. 4

D. 44228

Answer:

6. choose the correct alternative :(viii) the perpendicular distance

of the point(1,2,3,) from the x-axis is -

A. $\sqrt{5}$ units

B. $\sqrt{13}$ units

C. 9 units

D. 13 units

Answer:

7. Three events A,B and C are mutually exclusive and exhaustive ,

if P(A)=3/5 and P(B)=1/6, then the value of P(C) is

A. 23/30

B.
$$\frac{7}{30}$$

C. $\frac{1}{10}$
D. $\frac{9}{10}$

Answer:

8. If f(x) is the probability distribution function of a random variable X and X can assume only two values x_1 and x_2 then the value of $f(x_1) + f(x_2)$ is

A. ≥ 1

B. ≤ 1

 $\mathsf{C}. \ \geq 0$

Answer:

Watch Video Solution

9. answerer any one of the foll. :(ii) if two angles of a triangle are

$$\tan^{-1}\left(\frac{1}{2}\right)$$
 and $\tan^{-1}\left(\frac{1}{3}\right)$, then find the third angle.

Watch Video Solution

10. (b) answer any one of the foll.: (i) prove without expanding

$$egin{array}{c|c} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{array} = 0$$
 wher w is an imaginary cube root of unity.

11. answer any three of the foll. : (i) evaluate :

$$\lim_{x \to \infty} \frac{e^{ax} + e^{\beta x} - 2}{x}$$
Watch Video Solution

12. find dy/dx, when $e^{xy} - 4xy = 4$

Watch Video Solution

13. evaluate: $\int \frac{dx}{\sin^2 x \cos^2 x}$

Watch Video Solution

() Watch Video Solution

14. Show that , the equation of all circles touchung the y -axis at the origin is $2xy\frac{dy}{dx}=y^2-x^2.$

15. Find the interval in which the function $f(x) = x^x (x > 0)$ is

decreasing.

Watch Video Solution

16. if a and b are any two constants, then prove that $Var(aX+b) = a^2 Var(X).$

Watch Video Solution

17. prove that ,
$$an \left(2 an^{-1} \sqrt{rac{1+\cos heta}{1-\cos heta}}
ight) + an heta$$
 =0

18. answer the following : (ii) prove that, $\begin{vmatrix} 2ab & a^2 & b^2 \\ a^2 & b^2 & 2ab \\ b^2 & 2ab & a^2 \end{vmatrix}$ =- $(a^3 + b^3)^2$

Watch Video Solution

19. answeer the following : (i) if $y\sqrt{x^2+1}=\log\Bigl(\sqrt{x^2+1}-x\Bigr)$, show that , $\bigl(x^2+1\bigr)rac{dy}{dx}+xy+1=0$

Watch Video Solution

20.

$$x=a(heta-\sin heta),y=a(1-\cos heta),showt,\ 2yrac{d^2y}{dx^2}+\cos ec^2rac{ heta}{2}=0$$

21. answer the following: (ii)evaluate:

$$\int\!\!rac{e^x(x-4)}{\left(x-2
ight)^3}dx$$

Watch Video Solution

22. evaluate :
$$\int \frac{dx}{x^4 + x^2 + 1}$$

Watch Video Solution

23. answer the following : (iii) solve: $rac{dy}{dx} = 1 + e^{2x-y}$, given y=2

when x=2

24. evaluate :
$$\int_{-1}^{2} \left|1-x^{2}\right| dx$$

25. Evaluate (with the help of definite integral): $\lim_{n \to \infty} \left\{ \left(1 + \frac{1}{n} \right) \left(1 + \frac{2}{n} \right) \dots \left(1 + \frac{n}{n} \right) \right\}^{\frac{1}{n}}$ Watch Video Solution

26. a problem on mathematics is given to three students A,B,C whose probabilities of solving it are 1/3,2/5and 3/4 . Find the probability that the problem is solved.

Watch Video Solution

27. the overall percentage of failures in a certain examination is 40 what is the probability that out of a group of 6 candidates at least 4 passed the examination ?

28. Prove that the equation of the palne which passes through the point (-1,3,2) and is perpendicular to the planes x+2y+2z=5 and 3x+3y+2z=8 is 2x-4y+3z+8=0.

