

MATHS

BOOKS - UNITED BOOK HOUSE

QUESTION PAPER 2016

Exercise

1. If the probability of success of a binomial distrubiton

is $\frac{1}{4}$ and the standard deviation is 3, then the value of

its mean is

A. 6

- B. 8
- C. 12
- D. 15

Answer:

Watch Video Solution

2. IR is a set of real number. If the realtion R over a set A is defined such that R= {(a,b):a-b< 3, $a,b,\in IR$ }, then relation R is

- A. transitive
- B. equivalence

C. reflexive

D. symmetric

Answer:

Watch Video Solution

3. If $P(A)=\frac{3}{7}, P(B)=\frac{4}{7}, P(A\cap B)=\frac{2}{9}$ then the value of P(A/B) is

A. $\frac{7}{18}$

B. $\frac{14}{27}$

c. $\frac{5}{18}$

 $\mathsf{D.}\;\frac{4}{9}$

Answer:

Watch Video Solution

4. Is $\sec^{-1}x=\cos ec^{-1}y$, then the value of $\cos^{-1}\left(\frac{1}{x}\right)+\cos^{-1}\left(\frac{1}{y}\right)$ will be

A.
$$\pi$$

$$\mathrm{B.}\;\frac{2\pi}{3}$$

C.
$$\frac{5\pi}{3}$$

D.
$$\frac{\pi}{2}$$

Answer:

5. The solution of the differenbtial equation

$$rac{dy}{dx}=e^{x+y}$$
is

$$A. e^x + e^y = c$$

$$B. e^x - e^{-y} = c$$

C.
$$e^x + e^{-y} = c$$

D. none of these.

Answer:

6. If A is square matric and $A^2=A, \left(I+A\right)^3-7A$ will

be

A. A

B. I

C. I-A

D. 3A

Answer:

Watch Video Solution

7. The line $\frac{x-1}{2}=\frac{y-2}{-3}=\frac{z+5}{4}$ meets the plane

2x+4y-z= 3 at the point whose coordinates are

B. (3,-1,1)

C. (3,-1,-1)

D. none of these.

Answer:

Watch Video Solution

8. If $f(x)=rac{x^2}{1+x^2}$ then the range of f is

A. $[1,\infty)$

B. [0,1)

C. [-1,1]

Answer:

- **9.** If $\left|\overrightarrow{a}\right|=4,\left|\overrightarrow{b}\right|=2\sqrt{3}$ and $\left|\overrightarrow{a}\times\overrightarrow{b}\right|=12$ then the angle between the vectors \overrightarrow{a} and \overrightarrow{b} is
 - A. $\frac{\pi}{3}$
 - B. $\frac{\pi}{6}$
 - C. $\frac{\pi}{4}$
 - $\mathsf{D.}\;\frac{\pi}{2}$

Answer:

Watch Video Solution

10. IF $f(x) = \log_x(\log x)$ then the value of f'(e) is

A. e

$$\operatorname{B.}\frac{2}{e}$$

$$\mathsf{C.}\;\frac{1}{e}$$

D. 0

Answer:

11. Evaluate:
$$4\left(2 an^{-1}\left(rac{1}{3}
ight)+ an^{-1}\left(rac{1}{7}
ight)
ight)$$

Watch Video Solution

12. Evaluate:
$$\begin{vmatrix} \alpha & \beta & \gamma \\ \alpha^2 & \beta^2 & \gamma^2 \\ \beta + \gamma & \gamma + \alpha & \alpha + \beta \end{vmatrix}$$

Watch Video Solution

13. IF
$$A=\left(egin{array}{cc} 2 & -1 \ -1 & 2 \end{array}
ight)$$
 and $A^2-4A+3I=0$, where

I is the unit matric or order 2, then find A^{-1} .

14. If
$$f(x) = \left\{egin{array}{ll} rac{|\sin x|}{x} & when x = 0 \ 1 & when x
eq 0 \end{array}
ight.$$

then examine the continuity of the function at x=0.

Watch Video Solution

15. Find the differential coefficient of $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$ with respect to $\tan^{-1}\left(\frac{2x}{1-x^2}\right)$.

Watch Video Solution

16. Evaluate: $\iint \left\{ \frac{1}{\log_e x} - \frac{1}{(\log_e x)^2} \right\} dx$

17. Find the differential equation of all circles which touch the x-axis at the origin.

Watch Video Solution

18. Evaluate: $\lim_{x o 0} \left(\frac{\log_e (1 + \alpha x)}{e^{2x} - 1} \right)$

Watch Video Solution

19. IF the projection of $\overrightarrow{a}=\lambda \hat{i}+\hat{j}+4\hat{k}$ or $\overrightarrow{b}=2\hat{i}+6\hat{j}+3\hat{k}$ is 4 units, then find λ .

20. Find the angle between the planes x-y+2z=9 and 2x+y+z=7.

Watch Video Solution

21. If

 $P(A/B)=0.75, P(B/A)=0.6 \,\, ext{and} \,\, P(A)=0.4$ find the value of $Pig(\overline{A}\,/\overline{B}ig)$

22. If the number of heads obtained is denoted by X when two unbiased coins are tossed then find the mean value of X.

23. A relation R is defined on the set of all natural numbers IN by: $(x,y)\in R\Rightarrow (x-y)$ is divisible by 5 for all $x,y\in IN$. Prove that R is an equivalence relation on IN.

24. If $\sin^{-1}x+\sin^{-1}y+\sin^{-1}z=\pi$ then prove that $x\sqrt{1-x^2}+y\sqrt{1-y^2}+z\sqrt{1-z^2}=2xyz.$

25. Express the matric $A=\left[\begin{array}{ccc|c} -3 & 4 & 1 \\ 2 & 3 & 0 \\ 1 & 4 & 5 \end{array}\right]$ as the sum of

a symmetric matrix and a skex symmetric matrix.

Watch Video Solution

26. If p,q,r are not in geometric progression and

27. Prove that,
$$\begin{vmatrix} a^2+1 & ab & ac \\ ab & b^2+1 & bc \\ ca & cb & c^2+1 \end{vmatrix}$$
 =1+ $a^2+b^2+c^2$.

Watch Video Solution

28. If $\sin y = x \sin(a+y)$ then show that

$$rac{dy}{dx} = rac{\sin a}{1 - 2x\cos a + x^2}$$

Watch Video Solution

29. $pv^a=c$ (a and c are constants) then show that

$$v^2 rac{d^2 p}{dv^2} = a(a+1)p.$$

30. Evaluate: $\int e^x \frac{x-3}{(x-1)^3} dx$

Watch Video Solution

31. Evaluate: $\int \sqrt{1+\cos e c x dx}$

Watch Video Solution

32. Solve: $\Big(1+3e^{y/x}\Big)dy+3e^{y/x}\Big(1-rac{y}{x}\Big)dx=0$

33. If the area of a circle increases uniformly, then show that the rate of increment of its circumference is inversely proportional to its radius.

Watch Video Solution

34. The vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are such that $\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=\overrightarrow{0}$, If $\left|\overrightarrow{a}
ight|=3$, $\left|\overrightarrow{b}
ight|=4$ and $\left|\overrightarrow{c}
ight|=5$, then show that \overrightarrow{a} . \overrightarrow{b} + \overrightarrow{b} . \overrightarrow{c} + \overrightarrow{c} . \overrightarrow{a} = -25

$$\overrightarrow{\alpha}$$

$$\overrightarrow{lpha} = \lambda \hat{i} + \hat{j} + 3\hat{k}, \overrightarrow{eta} = -\hat{i} + 2\hat{j} + \hat{k}, \overrightarrow{\gamma} = 3\hat{i} + \hat{j} + 2\hat{k}$$

If

- - and $\left|\overrightarrow{\alpha}\overrightarrow{\beta}\overrightarrow{\gamma}\right|=-10$ find the value of λ .

- Watch Video Solution
- - 36. Evaluate (with the help of definite integral):
- $\lim_{n o\infty}\ \left\{ \left(1+rac{1}{n}
 ight)\!\left(1+rac{2}{n}
 ight)\!\ldots\!\left(1+rac{n}{n}
 ight)
 ight\} ^{rac{1}{n}}$

 - Watch Video Solution

 - **37.** Evaluate: $\int\limits_{\pi}^{3\frac{1}{4}} \frac{ heta}{1+\sin heta} d heta$

38. if a and b are any two constants, then prove that $Var(aX + b) = a^2 Var(X).$

Watch Video Solution

Minimize the following objective function Z graphically: (Graph sheet is not required):

Z = 3x + 2y

subject to 2x + y > 14

2x + 3y > 22

x+yge5 and xge0,yge0.

40. If the normal at any point to the curve $x^{2/3}+y^{2/3}=a^{2/3}$ makes an angle ϕ with the x-axis then prove that the equation of the normal is $y\cos\phi-x\sin\phi=a\cos2\phi$.

Watch Video Solution

41. find the volume of the largest cylinder inscribed in the sphere of radius r cm.

42. SolvE: $x^2 dy + y(x+y) dx = 0$

Watch Video Solution

43. Find the equation of the plane passing through the points (-1,1,1) and (1,-1,1) and is perpendicular to the plane x+2y+2z=5.

