©゙" doubtnut

MATHS

BOOKS - UNITED BOOK HOUSE

QUESTION PAPER 2017

Exercise

1. An unbiased die is thrown 3 times. If the first
thrown is a 5, the conditional probability of
A. $\frac{1}{9}$
B. $\frac{1}{18}$
C. $\frac{1}{108}$
D. $\frac{5}{16}$

Answer:

D Watch Video Solution

2. If $\vec{\alpha}=2 \hat{i}+3 \hat{j}-6 \hat{k} \quad$ and
$\vec{\beta}=p \hat{i}-\hat{j}+2 \hat{k}$ are two parallel vectors,
then the value of p is
A. $-\frac{1}{3}$
B. $\frac{2}{3}$
C. $-\frac{2}{3}$
D. $-\frac{3}{2}$

Answer:

- Watch Video Solution

3. The value of $\sin \left(\cos ^{-1} x\right)-\cos \left(\sin ^{-1} x\right)$ is-
A. 1
B. x
C. $-\frac{1}{x}$
D. 0

Answer:

D Watch Video Solution

4. The degree of the differential equation
$\frac{d^{3} y}{d x^{3}}+y=\sqrt[3]{1+\frac{d y}{d x}}$ is
A. 1
B. 2
C. 4
D. 3

Answer:

- Watch Video Solution

5. Let IR be the set of real numbers and the
mapping $f: I R \rightarrow I R$ and $g: I R \rightarrow I R$ be define by $f(x)=5-x^{2}$ and $g(x)=3 x-4$, then the value of $(f \circ g)(-1)$ is
A. 8
B. -44
C. 54
D. 16

Answer:

D Watch Video Solution

6. If $f(x)$ is the probability distribution function of a random variable X and X can assume only
two values x_{1} and x_{2} then the value of $f\left(x_{1}\right)+f\left(x_{2}\right)$ is
A. >1
B. <1
C. $=\frac{1}{2}$
D. $=2$

Answer:
(Watch Video Solution
7. If the direction ratios of a striaght line are proportional, to $0,1,-1$ then its inclination with
z -axis is

> A. $\frac{\pi}{2}$
> B. π
> C. $\frac{3 \pi}{2}$
> D. $\frac{3 \pi}{4}$

Answer:

- Watch Video Solution

8. If $f(x)=|x|+|x-1|$ then $\mathrm{f}(\mathrm{x})$ is-
A. continuous at $\mathrm{x}=0$ and $\mathrm{x}=1$
B. continuous at $x=0$ bur discontinuous at

$$
x=1
$$

C. continuous at $x=1$ but discontinuous at
$x=0$
D. none of these.

Answer:

9. The value of $\int_{-a}^{a} \frac{x e^{x^{4}}}{1+x^{2}} d x$ is
A. 0
B. 1
C. a
D. 2 a

Answer:
(Watch Video Solution
10. If the inverse of the matrix A exists, then
the value of $\operatorname{det}\left(A^{\wedge}-1\right)$
A. 0
B. 1
C. $\frac{1}{\operatorname{det} A}$
D. $\operatorname{det} A$

Answer:

- Watch Video Solution

11. If R is a relation defined as $R=\{$ $(x, y): x, y \in N$ and $\mathrm{x}+3 \mathrm{y}=12\}$. Then find the domain and range of R.

D Watch Video Solution

12.

Evaluate
$\sec ^{2}\left(\tan ^{-1} 2\right)+\operatorname{cosec}\left(\cot ^{-1} 3\right)$.

D Watch Video Solution
13. Show that , $A=\frac{1}{3}\left[\begin{array}{ccc}-1 & 2 & -2 \\ -2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$ is proper orthogonal matrix.

- Watch Video Solution

14. Prove that $\left|\begin{array}{ccc}1 & \log _{x} y & \log _{x} z \\ \log _{y} x & 1 & \log _{y} z \\ \log _{z} x & \log _{z} y & 1\end{array}\right|=0$

- Watch Video Solution

15. If $x=\sqrt{a^{\sin ^{-1} t}}$ and $y=\sqrt{a^{\cos ^{-1} t}}$ show that $\frac{d y}{d x}=-\frac{y}{x}$.

D Watch Video Solution

16. Verify Rolle' theorem for the function

$$
f(x)=x^{2}-4 x+3 \text { in } 1 \leq x \leq 3
$$

D Watch Video Solution
17. Evaluate: $\int \frac{\cos x-\cos 2 x}{1-\cos x} d x$.

- Watch Video Solution

18. A particle starts with the velocity u and moves in a straight line, its acceleration being always equal to its displacement. If v be the velocity when its displacement is x, then show that $v^{2}=u^{2}+x^{2}$.
19. Find the interval where $f(x)=\frac{1}{1+x^{2}}$ decrease.

- Watch Video Solution

20. If $f(x)=f(a+x)$ then prove that the value of $\int_{a}^{a+t} f(x) d x$ is independent of a.
21. If $\vec{a}=3 \hat{i}+\hat{j}+9 \hat{k}$
$\vec{b}=\hat{i}+\lambda \hat{j}+3 \hat{k}$ then find the value of λ for which the vector $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$ are perpendicular to each other.

- Watch Video Solution

22. Find the vector equation of a plane
through the point $\hat{i}+\hat{j}+\hat{k}$ and parallel to the plane $\vec{r} \cdot(2 \hat{i}-\hat{j}+2 \hat{k})=5$.
23. If $P(A)=\frac{2}{3}, P(B)=\frac{1}{2} \quad$ and
$P(A \cap B)=\frac{1}{6}$ then find the value of $P\left(A \cap B^{C}\right)$.

D Watch Video Solution

24.

Solve:
$\tan ^{-1}(x+1)+\tan ^{-1}(x-1)=\tan ^{-1}\left(\frac{8}{31}\right)$
25. If $A=\left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right)$ then show that
$A^{2}-5 A+7 I_{2}=0$ hence find A^{-1}

- Watch Video Solution

26. Solve by Cramer's rule: $x+3 y=4, y+3 z=7$, $4 x+z=6$.
27.

Prove
$2 a b \quad a^{2} \quad b^{2}$
$a^{2} \quad b^{2} \quad 2 a b=-\left(a^{3}+b^{3}\right)^{2}$.
$b^{2} \quad 2 a b \quad a^{2}$

D Watch Video Solution
28. If $f(x)=\left(\frac{a+x}{b+x}\right)^{a+b+2 x}$ then prove
that
$f^{\prime}(0)=\left[2 \log \left(\frac{a}{b}\right)+\frac{b^{2}-a^{2}}{a b}\right]\left(\frac{a}{b}\right)^{a+b}$

- Watch Video Solution

29. Evaluate: $\int \frac{x d x}{x^{4}-x^{2}+1}$

D Watch Video Solution

30. Solve: $y d x-\left(x+2 y^{2}\right) d y=0$.

- Watch Video Solution

31. In a certain culture the rate of increment of
bacterial at any instant is proportional to the
cube root of the number of bacteria present
at that instant. IF the number of bacteria becomes 8 times in 3 hours, in how much time that number becomes 64 times?

D Watch Video Solution

32. The position vectors of four points A, B, C and D
are
$4 \hat{i}+8 \hat{j}+12 \hat{k}, 2 \hat{i}+4 \hat{j}+6 \hat{k}, 3 \hat{i}+5 \hat{j}+4 \hat{k}$
and $5 \hat{i}+8 \hat{j}+5 \hat{k}$ respectively. Using vector method prove that the four points A, B, C and D are coplanar.

Watch Video Solution

33. If a vector $2 i^{+} 3 j+8 k$ is perpendicular to the vector $4 i-4 j^{+} \alpha k$ then the value of α is

- Watch Video Solution

34. Evaluate: $\int_{0}^{\frac{\pi}{4}} \log (1+\tan \theta) d \theta$.

- Watch Video Solution

35. find the value of $\int_{1}^{2} 5 x^{2} d x$.

- Watch Video Solution

36. A man is known to speak the truth 3 out of

4 times. HE throws an unbiased die and reports that it is a six. Find the probability
that it is actually six.

D Watch Video Solution
37. If the sum of the mean and variance of a binomial distribution for 5 random trials is 1.8 then find the binomial distribution.

- Watch Video Solution

38. Solve the following linear programming problem by graphical method and find the maximum value of Z. (Graph sheet is not required): $Z=x+y$

Subject to the constraints
$5 x+10 y \leq 50, x+y \geq 1, y \leq 4, x, y \geq 0$.

Watch Video Solution

39. Using calculus, show that the maximum
value of the function $\left(\frac{1}{x}\right)^{x}$ is $e^{\frac{1}{e}}$.

- Watch Video Solution

40. Using integration, prove that the area of the closed region bounded by the curves $y^{2}=4 x$ and $x^{2}=4 y$ is $\frac{16}{3}$ sq. unit.
41. Solve: $x d y-y d x=\sqrt{x^{2}+y^{2}} d x$.

- Watch Video Solution

42. Find the shortest distance between the straight lines

$$
\begin{aligned}
& \vec{r}=-4 \hat{i}+4 \hat{j}+\hat{k}+\lambda_{1}(\hat{i}+\hat{j}-\hat{k}) \quad \text { and } \\
& \vec{r}=-3 \hat{i}-8 \hat{j}+3 \hat{k}+\lambda_{2}(\hat{i}+3 \hat{j}-3 \hat{k}) .
\end{aligned}
$$

43. A variable plane is at a constant distance p
from the origin and meets the coordinate axes
in A, B and C, show that the locus of the centroid of the tetrahedron $O A B C$ os
$\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{16}{p^{2}}$

- Watch Video Solution

