©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - UNITED BOOK HOUSE

SET 13

Exercise

1. Let Z be the set of integers and the mapping
$f: Z \rightarrow Z$ be defined by, $f(x): x^{2}$. State which
of the following is equal to $f^{-1}(-4)$?
A. $\{2\}$
B. $\{-2\}$
C. $\{2,-1\}$
D. ϕ

Answer:

D Watch Video Solution

2. Solve: $\sin ^{-1} x-\cos ^{-1} x=\frac{\pi}{6}$
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{\sqrt{2}}$
D. $\frac{\sqrt{3}}{2}$

Answer:

D Watch Video Solution

3. Martices A and B will be inverse of each other only if

$$
\text { A. } A B=B A \neq 1
$$

B. $A B=B A=0$
C. $A B=0, B A=1$
D. $A B=B A=1$.

Answer:

D Watch Video Solution

4. If $y=\log _{10} x$, then $\frac{d y}{d x}$ is equal to

$$
\begin{aligned}
& \text { А. } \frac{1}{x} \log _{10}^{e} \\
& \text { В. } \frac{1}{x} \log _{e}^{10}
\end{aligned}
$$

C. $\frac{1}{x} \log _{10}^{e}$
 D. $\frac{1}{10} x$

Answer:

- Watch Video Solution

5. If $\int_{a}^{b} f(x) d x=\int_{a}^{b} \phi(x) d x$, then
A. $f(x)=\phi(x)$
B. $f(x)-\phi(x)=c$
C. $f(x)+\phi(x)=c$
D. none of these

Answer:

- Watch Video Solution

6. In a given interval a function
A. can have two consecutive maxima
B. can have two consecutive minima
C. possesses maximum and minimum
values alternately
D. cannot have more than two extreme

values

Answer:

D Watch Video Solution

7. If $\overrightarrow{O A}=\hat{i}-2 \hat{k}$ and $\overrightarrow{O B}=3 \hat{i}-2 \hat{j}$ then the direction cosines of the vectore $\overrightarrow{A B}$ are

$$
\text { A. } \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}
$$

B. 2,2,2
C. $\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$
D. $-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}$

Answer:

- Watch Video Solution

8. CHOOSE the correct answer from the following alternative : $P(A)=\frac{3}{7}, P(B)=\frac{4}{7}$
and $P(A \cap B)=\frac{2}{9}$, then the value of $\mathrm{P}(\mathrm{A} / \mathrm{B})$ is equal to-
A. $\frac{7}{18}$
B. $\frac{14}{21}$
C. $\frac{5}{18}$
D. $\frac{4}{9}$

Answer:
(Watch Video Solution
9. If X follows a binomial distribution with
parameter $\mathrm{n}=101$ and $p=\frac{1}{3}$ then $\mathrm{P}(\mathrm{x}=\mathrm{r})$ is maximum if r equal to
A. 34
B. 30
C. 32
D. 31

Answer:

D Watch Video Solution
10. Prove that,
$\left\{\cos \left(\sin ^{-1} x\right)\right\}^{2}=\left\{\sin \left(\cos ^{-1} x\right)\right\}^{2}$.

D Watch Video Solution

11. Find the real values of K for which the following system of linear equations has nontrival solutions:
$x-k y+z=0, k x+3 y-k z=0,3 x+y-z=0 `$

D Watch Video Solution
12. If $A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$ then prove that, $\mathrm{AA}=\mathrm{I}$. Hence find A^{-1}.

D Watch Video Solution

13. Examine whether $\mathrm{f}(\mathrm{x})=|x|$ has a derivative at $x=0$.

D Watch Video Solution
14. State Lagrange's mean value theorem.
15. Evaluate: $\int \frac{\sin x d x}{\cos 2 x}$

- Watch Video Solution

16. Find the integrating factor of the differential equation $(x+y+1) \frac{d y}{d x}=1$.
17. Prove that the function $\frac{\sin (x+\alpha)}{\sin (x+\beta)}$ has neither a maximum nor a minimum value.

- Watch Video Solution

18. Using the method of differentail find the approximate value of $\sqrt{0.24}$.
19. A variable plane moves in such a way that
the sum of the reciprocals of its intercepts on
the three coordinate axes is constant. Prove that the plane passes through a fixed point.

- Watch Video Solution

20. If A and B are two independent events, prove that A^{C} and B are also independent events.
21. Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. What is the probability that all the five cards are spades?

- Watch Video Solution

22. If $\sin (\alpha+\beta)=\frac{4}{5}$ and $\sin (\alpha-\beta)=\frac{5}{13}$,
find the value of $\tan 2 \alpha$.
23. If A and B are tow matrices such that $A B=O$,
can we deduce that either A or B is a zero matrix ? Illustrate by an example.

D Watch Video Solution

24. $(A B)^{-1}=B^{-1} A^{-1}$ where A and B are invertible matrices satisfying commutative property with respect to multiplication. Write true or false.
25. Answer the foll. Question : 2.show that $\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|$
$a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right),(a b c \neq 0)$

D Watch Video Solution

26. Evaluate: $\int \frac{d x}{\sqrt{\sin ^{3} x \sin (x+\alpha)}}$
(D) Watch Video Solution
27. Evaluate: $\int\left(\log (\log x)+\frac{1}{(\log x)^{2}}\right) d x$

D Watch Video Solution

28.

Solve:
$\cos ^{2} x \frac{d y}{d x}+y=\tan x\left(0 \leq x \leq \frac{\pi}{2}\right)$.

D Watch Video Solution

29. Prove, by vector method or otherwise, that
the point of intersection of the diagonals of a
trapezium lies on the line passing through the midpoint of the parallel sides (you may assume that the trapezium is not a parallelogram).

- Watch Video Solution

30. Find the value of λ if three vectors
$\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-3 \hat{k} \quad$ and
$\vec{c}=3 \hat{i}+\lambda j+5 \hat{k}$ are coplanar.

D Watch Video Solution

31. A candidate is selected for interview for the
three posts. For the first post there are 3
candidates, for the second there are 4 and for the third there are 2 . what is the probability that the candidate getting at least one post?

D Watch Video Solution

32. For a random variable X, it is given, $E(x)=10$
and $\operatorname{var}(x)=25$. Find the positive values of a
and b such that $Y=a X-b$ have expectation 0
and variance 1.

- Watch Video Solution

33. A stone is dropped into a quiet lake and waves moves in circles at a speed of $4 \mathrm{~cm} / \mathrm{sec}$.

At the instant when the radius of the circular wave is 10 cm , how fast is the enclosed area increasing?

- Watch Video Solution

34. If the sum of the lengths of the hypotenuse and another side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between these sides is $\frac{\pi}{3}$.

D Watch Video Solution

35. Find the equations of the tangents to the ellipse $2 x^{2}+3 y^{2}=30$, which are parallel to the straight line $x+y+18=0$.
36. Find the foot of the perpendicular drawn from the point $(2 \hat{i}-\hat{j}+5 \hat{k})$ to the line $\vec{r}=(11 \hat{i}-2 \hat{j}-8 \hat{k})+t(10 \hat{i}-4 \hat{j}-11 \hat{k})$
. Find also the length of the perpendicular.

D Watch Video Solution

37. Show that the equation of the plane passing through the point $(1,2,3)$ and parallel
to the plane. $3 x+4 y-5 z=3$ is given by $3 x+4 y$
$-5 z=-4$.

- Watch Video Solution

