

MATHS

BOOKS - UNITED BOOK HOUSE

SET 13

1. Let Z be the set of integers and the mapping $f\colon Z o Z$ be defined by, $f(x)\colon x^2$. State which

of the following is equal to $f^{-1}(-4)$?

A. {2}

B. {-2}

C. {2,-1}

D. ϕ

Answer:

2. Solve:
$$\sin^{-1} x - \cos^{-1} x = \frac{\pi}{6}$$

B.
$$\frac{1}{2}$$

C. $\frac{1}{\sqrt{2}}$
D. $\frac{\sqrt{3}}{2}$

Answer:

Watch Video Solution

3. Martices A and B will be inverse of each other only if

A. $AB = BA \neq 1$

 $\mathsf{B.}\,AB=BA=0$

C.
$$AB = 0, BA = 1$$

D. AB = BA = 1.

Answer:

4. If
$$y = \log_{10} x$$
, then $rac{dy}{dx}$ is equal to

A.
$$\frac{1}{x} \log_{10}^{e}$$

B. $\frac{1}{x} \log_{e}^{10}$

C.
$$\frac{1}{x} \log_{10}^{e}$$

D. $\frac{1}{10} x$

Answer:

Watch Video Solution

5. If
$$\int\limits_{a}^{b} f(x) dx = \int\limits_{a}^{b} \phi(x) dx$$
, then

A. $f(x)=\phi(x)$

B.
$$f(x) - \phi(x) = c$$

 $\mathsf{C}.\,f(x)+\phi(x)=c$

D. none of these

Answer:

6. In a given interval a function

A. can have two consecutive maxima

B. can have two consecutive minima

C. possesses maximum and minimum

values alternately

D. cannot have more than two extreme

values

Answer:

7. If
$$\overrightarrow{OA} = \hat{i} - 2\hat{k}$$
 and $\overrightarrow{OB} = 3\hat{i} - 2\hat{j}$ then the direction cosines of the vectore \overrightarrow{AB} are

A. $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}$

B. 2,2,2

Answer:

Watch Video Solution

8. CHOOSE the correct answer from the following alternative $:P(A) = \frac{3}{7}, P(B) = \frac{4}{7}$

and
$$P(A \cap B) = rac{2}{9}$$
 , then the value of P(A/B)

is equal to-

A.
$$\frac{7}{18}$$

B. $\frac{14}{21}$
C. $\frac{5}{18}$
D. $\frac{4}{9}$

Answer:

9. If X follows a binomial distribution with parameter n = 101 and $p = \frac{1}{3}$ then P(x=r) is maximum if r equal to

- A. 34
- B. 30
- C. 32
- D. 31

Answer:

10. Prove that, $\left\{\cos\left(\sin^{-1}x\right)\right\}^2 = \left\{\sin\left(\cos^{-1}x\right)\right\}^2.$ Watch Video Solution

11. Find the real values of K for which the following system of linear equations has non-trival solutions:

13. Examine whether f(x) = |x| has a derivative

at x = 0.

14. State Lagrange's mean value theorem.

15. Evaluate:
$$\int \frac{\sin x dx}{\cos 2x}$$

Watch Video Solution

16. Find the integrating factor of the differential equation $(x + y + 1) \frac{dy}{dx}$ =1.

17. Prove that the function $rac{\sin(x+lpha)}{\sin(x+eta)}$ has

neither a maximum nor a minimum value.

Watch Video Solution

18. Using the method of differentail find the approximate value of $\sqrt{0.24}$.

19. A variable plane moves in such a way that the sum of the reciprocals of its intercepts on the three coordinate axes is constant. Prove that the plane passes through a fixed point.

20. If A and B are two independent events, prove that A^C and B are also independent events. **21.** Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. What is the probability that all the five cards are spades?

Watch Video Solution

22. If
$$\sin(lpha+eta)=rac{4}{5}$$
 and $\sin(lpha-eta)=rac{5}{13}$,

find the value of $\tan 2\alpha$.

23. If A and B are tow matrices such that AB =O, can we deduce that either A or B is a zero

matrix ? Illustrate by an example.

24. $(AB)^{-1} = B^{-1}A^{-1}$ where A and B are

invertible matrices satisfying commutative property with respect to multiplication. Write true or false.

25. Answer the foll. Question : 2.show that

$$\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = abc\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right), (abc \neq 0)$$
Watch Video Solution

26. Evaluate:
$$\int \frac{dx}{\sqrt{\sin^3 x \sin(x+lpha)}}$$

27. Evaluate:
$$\int \left(\log(\log x) + \frac{1}{(\log x)^2} \right) dx$$

Watch Video Solution
28. Solve:

$$\cos^2 x \frac{dy}{dx} + y = \tan x \left(0 \le x \le \frac{\pi}{2} \right).$$

Watch Video Solution

29. Prove, by vector method or otherwise, that

the point of intersection of the diagonals of a

trapezium lies on the line passing through the midpoint of the parallel sides (you may assume that the trapezium is not a parallelogram).

Watch Video Solution

31. A candidate is selected for interview for the three posts. For the first post there are 3 candidates, for the second there are 4 and for the third there are 2. what is the probability that the candidate getting at least one post?

Watch Video Solution

32. For a random variable X, it is given, E(x) = 10 and var(x) = 25. Find the positive values of a and b such that Y = aX-b have expectation 0 and variance 1.

33. A stone is dropped into a quiet lake and waves moves in circles at a speed of 4 cm/sec. At the instant when the radius of the circular wave is 10 cm, how fast is the enclosed area increasing?

34. If the sum of the lengths of the hypotenuse and another side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between these sides is $\frac{\pi}{3}$.

Watch Video Solution

35. Find the equations of the tangents to the ellipse $2x^2 + 3y^2 = 30$, which are parallel to the straight line x + y + 18 = 0.

36. Find the foot of the perpendicular drawn from the point $(2\hat{i} - \hat{j} + 5\hat{k})$ to the line $\overrightarrow{r} = (11\hat{i} - 2\hat{j} - 8\hat{k}) + t(10\hat{i} - 4\hat{j} - 11\hat{k})$

. Find also the length of the perpendicular.

Watch Video Solution

37. Show that the equation of the plane passing through the point (1,2,3) and parallel

to the plane. 3x + 4y - 5z = 3 is given by 3x + 4y