

MATHS

BOOKS - UNITED BOOK HOUSE

SET 14

1. The mapping $f\colon A o B$ is invertible if it is

A. injective

B. surjective

C. bijective

D. none of these.

Answer:

2. If $\sec^{-1} x = \csc ec^{-1} y$ state which of the following is the value of $\left(\cos^{-1}\left(\frac{1}{x}\right) + \cos^{-1}\left(\frac{1}{y}\right)\right)$?

Α.	π
----	---

B.
$$\frac{2\pi}{3}$$

C. $\frac{5\pi}{3}$
D. $\frac{\pi}{2}$

Answer:

Watch Video Solution

3. If $A = ig[a_{ij}ig]$ is a 2 imes 2 matrix such that $a_{ij} = i+2j$, then A will be

$$\begin{array}{c} \mathsf{A}. \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \\ \mathsf{B}. \begin{bmatrix} 2 & 4 \\ 3 & 5 \end{bmatrix} \end{array}$$

- $\mathsf{C}. \begin{bmatrix} 3 & 5\\ 4 & 6 \end{bmatrix}$
- D. none of these.

Answer:

Watch Video Solution

4. The greatest integer fuction f(x) = [x] is

A. continuous for all real values of x

B. continuous only at non integral values of x

C. continuous at intgral values of x

D. none of these.

Answer:

5. The value of
$$\int e^{5\log x} dx$$
 is

A.
$$\frac{e^{5\log x}}{5} + c$$

B.
$$\frac{e^{5\log x}}{5\log x} + c$$

C.
$$\frac{x^5}{5} + c$$

D.
$$\frac{x^6}{6} + c$$

Answer:

Watch Video Solution

6. The slope of the tangent to the curve xy= c^2 at $\left(ct, \frac{c}{t}\right)$ is

$$A. -\frac{1}{t}$$

$$B. \frac{1}{t^2}$$

$$C. \frac{1}{t}$$

$$D. \frac{1}{t^2}$$

Answer:

7.
$$\hat{i}+2\hat{j}$$
 and $-\hat{i}+m\hat{j}$ are given as collinear vectors, then the value of m

is

A. 2 B. $\frac{1}{2}$ C. -2 D. $-\frac{1}{2}$

Answer:

8. The line joining the points (1,1,2) and (3,-2,1) meets the plane 3x + 2y + z =

A. (-3,-2,1)

B. (3,-2,1)

C. (-3,2,1)

D. (3,2,1)

Answer:

Watch Video Solution

9. If the odds in favour of an event are 9:4, then its probability of occurrence is

A.
$$\frac{9}{13}$$

B. $\frac{4}{13}$
C. $\frac{4}{9}$
D. $\frac{5}{13}$

Answer:

10. The S.D. of a binomial distribution with parameteres n and p is

A. np

B. \sqrt{np}

C.
$$\sqrt{(np)(1-p)}$$

D. $2\sqrt{np}$

Answer:

Watch Video Solution

11. Let $S = N \times N$ and * is a binary operation on S defined by $(a, b)^*(c, d) = (a+c, b+d)$ for all $a, b, c, d \in N$. Prove that * is an associate binary operation on S.

12. Prove that, $2\sin^{-1}x = \sin^{-1}\Bigl(2x\sqrt{1-x^2}\Bigr)$

Watch Video Solution

13. prove without expanding,
$$\begin{vmatrix} (a-b) & 1 & a \\ b-c & 1 & b \\ c-a & 1 & c \end{vmatrix} = \begin{vmatrix} a & 1 & b \\ b & 1 & c \\ c & 1 & a \end{vmatrix}$$

Watch Video Solution

14. If two matrices A and B of orders $2 \times m$ and $3 \times n$ respectively are conformable for the product AB of order $p \times 4$, find the values of m, n and p.

15. Evaluate:
$$\lim_{x o 0} \, rac{\log(1+lpha x)}{\sineta x}$$

16. If
$$y=\log_x an x$$
, find $\displaystyle rac{dy}{dx}.$

18. Form the diffential equation of family of parabolas having vertex at

the origin and axis along positive y-axis.

19. If f(x) = $(x - 1)e^x + 1$, show that f(x) is positive for all positive values

of x.

20. Using direction ratios show that the points (2,6,3),(1,2,7) and (3,10,-1) are collinear.

Watch Video Solution

Watch Video Solution

22. For three mutually exclusive events X,Y and Z it is given that P(x) = 2P(Y) = 3P(Z) and XUYUZ = s, where S denotes sure events, find the value of P(X).

23. A discrete random variable X has the following distribution:

X	-1	0	1	-2	3	4	5	6
p(x)	0.1	a	• 2a	0.5	3a	4a	0.5	.5a

find a.

Watch Video Solution

24. If xy = $1 + a^2$ then show that,

$$an^{-1}igg[rac{1}{a+x}igg]+ an^{-1}igg[rac{1}{a+y}igg]= an^{-1}igg[rac{1}{a}igg],x+y+2a
eq 0.$$

Watch Video Solution

25. By using properties of determinants. Show that:
$$|1 + a^2 - b^2; 2ab; -2b: 2ab; 1 - a^2 + b^2; 2a: 2b; -2a; 1 - a^2 - b^2| = (1 - b^2)$$

26. If
$$y=fig(x^2ig)$$
 and $f'(x)=\sqrt{3x^2+1}$, find $\left[rac{dy}{dx}
ight]_{x=2}$

27. If
$$y = \left(\tan^{-1}x\right)^2$$
, then show that $\left(1+x^2\right)^2 \frac{d^2y}{dx^2} + 2x\left(1+x^2\right)\frac{dy}{dx} = 2.$

28. Prove that,
$$\int \frac{\cos 5x + \cos 4x}{1 - 2\cos 3x} dx = -\left(rac{1}{2} \sin 2x + \sin x
ight) + c$$

Watch Video Solution

29. Solve:
$$\displaystyle rac{dy}{dx} = \displaystyle rac{3x+4y+1}{-4x+2y-3}$$

30. Solve:
$$ig(x^2-1ig)rac{dy}{dx}+2xy=rac{2}{x^2-1}$$

31. $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$ and $\overrightarrow{b} = -2\hat{i} + \hat{j} + 2\hat{k}$ represent two adjacent sides of a parallelogram. Find unit vectors in directions parallel to the diagonals of the parallelogram.

32. Find the vector α which is perpendicular to both $4\hat{i} + 5\hat{j} - \hat{k}$ and $\hat{i} - 4\hat{j} + 5\hat{k}$ and which satisfies the relation α . β = 21 where $\beta = 3\hat{i} + 5\hat{j} - \hat{k}$.

33. Show that:
$$\int\limits_{0}^{1} \left(rac{\log(1+x)}{1+x^2}
ight) dx = rac{\pi}{8} \log 2$$

34. Evaluate:
$$\lim_{n \to \infty} \frac{1}{n} \left[\sin\left(\frac{\pi}{2n}\right) + \sin\left(\frac{2\pi}{2n}\right) + \sin\left(\frac{3\pi}{2n}\right) + \dots + \sin\left(\frac{n\pi}{2n}\right) \right]$$

35. A random variable X has the following probability function:

x	-2	-1	0, .	1	2	3
p(x)	0.1	k	0.5	2k°	0.3	3k

Calculated K.

Watch Video Solution

36. A random variable X has the following probability function:

x	-2	-1	0,	1	2	3
p(x)	0.1	k	0.5	2k°	0.3	3k

Find $P(x < 2), P(x \geq 2), P(-2 < x \leq 2)$

Watch Video Solution

37. A random variable X has the following probability function:

x	-2	-1	0,	1	2	3
p(x)	0.1	k	0.5	2k°	0.3	3k

Calculate the minimum value of K.such that $P(x \leq 1) > 0.36$.

Watch Video Solution

38. Show that the maximum value of $2x + \frac{1}{2x}$ is less than its minimum

value.

D Watch Video Solution

39. answer any one question : (ii) find the equation of the line which is

perpendicular to both of the lines

$$\frac{x}{2} = \frac{y}{1} = \frac{z}{3}$$
 and $\frac{x-3}{-1} = \frac{y-2}{3} = \frac{z+5}{5}$ and passing through the point (1,2,3)