

MATHS

BOOKS - UNITED BOOK HOUSE

SET 16

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, \text{ where } I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } 0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix},$$

Watch Video Solution
4. Evaluate $\lim_{x \to 0} \frac{e^{px} - e^{-qx}}{x}$
Watch Video Solution

5. Find
$$rac{dy}{dx}$$
, whne $y = \log \Bigl(x + \sqrt{x^2 - a^2} \Bigr)$

6. Examine whether Rolle's theorem is applicable to the following function in the given $f(x) = \cos x \in -rac{\pi}{2} \leq x \leq rac{\pi}{2}$

Watch Video Solution

7. Evaluate:
$$\int \frac{x dx}{\sqrt{3x^2+1}}$$

8. Find the intervals in which the function $f(x) = rac{x}{x^2+1}$ is decreasing.

Watch Video Solution

9. Using differentials, find the approximate value of $(82)^{\frac{1}{4}}$.

10. If the vectors $3\hat{i} - 2\hat{j} + m\hat{k}$ and $-2\hat{i} + \hat{j} + 4\hat{k}$ are perpendicular to each other, find the value of m.

Watch Video Solution

11. Can the numbers $\frac{1}{2}$, $-\frac{1}{\sqrt{2}}$, $-\frac{1}{2}$ be the direction cosines of a straight line? Give

reason.

12. Prove that, if P(A/B) = P(A) then $P(A^c/B) = P(A^c)$. Watch Video Solution

13. If the probability of success in a single trials is 0.05, how many Bernoulli trials must be performed in, order that the probability of at least one success is $\frac{2}{3}$ or more.

Watch Video Solution

prove that,
$$\begin{vmatrix} -1 & \cos C & \cos B \\ \cos C & -1 & \cos A \\ \cos B & \cos A & -1 \end{vmatrix}$$
=0

16. Solve:
$$\begin{vmatrix} a+x & a-x & a-x \\ a-x & a+x & a-x \\ a-x & a-x & a+x \end{vmatrix}$$
=0

17. If A =
$$\begin{vmatrix} 1 & 2 & -3 \\ 2 & 3 & 2 \\ 3 & -3 & -4 \end{vmatrix}$$
, find A^{-1}

Watch Video Solution

18. If f(x) =
$$x\sqrt{x^2 + a^2} + a^2 \log \left(x\sqrt{x^2 + a^2}\right)$$

then find the value of f(0).

19. If $y = a\cos(\log x) + b\sin(\log x)$, show

that,
$$x^2rac{d^2y}{dx^2}+xrac{dy}{dx}+y=0$$

Watch Video Solution

20. Integrate:
$$\int \! rac{2x^2-3x+9}{x^2+4x-5} dx$$

Watch Video Solution

21. Evaluate:
$$\int rac{(x-l)(x-m)}{(x-a)(x-b)} dx$$

22. Solve:
$$ig(1+x^2ig)rac{dy}{dx}+2xy=\sqrt{x^2+4}$$

23. Solve:
$$\log \frac{dy}{dx} = 4x - 2y-2$$
': given y = 1, when x = 1.

24. (d) answer any one question : (i) if three vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} of magnitudes 3,4and5 are such that each vector is perpendicular to the sum of the other two vectors,then prove that $\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right| = 5\sqrt{2}$.

Watch Video Solution

25. The position vectors of the points A,B,C and D are $6\hat{i} - 7\hat{j}$, $16\hat{i} - 29\hat{j} - 4\hat{k}$, $3\hat{i} - 6\hat{k}$ and $2\hat{i}+5\hat{j}+10\hat{k}$ respectively. Show that the

points A,B,C and D are non coplanar.

28. The probability that three is at least one error in an accounts statements prepared by A is 0.2 and for B and C they are 0.25 and 0.4 respectively A,B and C prepared 10,16,20 startment respectively. Find the expected number of correct statements in all.

29. A normal to the parabola $y^2 = 5x$ makes an angle 45° with line x-axis.

Find the equation of the normal and the coordinates of its foot.

Watch Video Solution

30. Show that, the function f(x) = |x - 1| is

not differentiable at x = 1

31. Prove that the volume of the largest cone

that can be inscribed in a sphere of radius R is

8 $\frac{-}{27}$ of the volume of the sphere.

32. Find the distance of the point (1,2,3) from

the line

$$rac{x-6}{2} = rac{y-7}{2} = rac{z-7}{-3}.$$

33. ©answer any one question: (i) find the vector equation of the plane at a distance $\frac{6}{\sqrt{29}}$ unit from the origin and perpendicular to the vector $2\hat{i} - 3\hat{j} + 4\hat{k}$. Also convert this

equation in cartesian form.