©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - UNITED BOOK HOUSE

SET 18

Exercise

1. Let us consider a function $\mathrm{f}: R \rightarrow R$, defined by $\mathrm{f}(\mathrm{x})=x^{3}-6$. Show that the mapping f is bijective.

- Watch Video Solution

2. Show that $\sec ^{2}\left(\cot ^{-1}(2)\right)+\operatorname{cosec}\left(\tan ^{-1}(3)\right)=2 \frac{13}{36}$
3. If $A=\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right]$ then show that $\mathrm{A}+\mathrm{A}^{\prime}$ is a symmetric matrix.

Watch Video Solution

4. Without expanding show that the determinant $\left|\begin{array}{ccc}1 & a & a^{2} \\ -1 & 2 & 4 \\ 1 & x & x^{2}\end{array}\right|$ has a factor (X-a)

- Watch Video Solution

5. Examine the applicability of lagrange's Mean value theorem for the function $\mathrm{f}(\mathrm{x})=x^{2}+2$ in the interval $[2,4]$

- Watch Video Solution

6. If $\sin ^{-1}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)=k, \mathrm{k}$ is a constant, then prove that $\frac{d y}{d x}=\frac{y}{x}$.
7. Evaluate: $\int\left(\frac{\cos x+x \sin x}{x(x+\cos x)}\right) d x$.

- Watch Video Solution

8. Using the method of differentail find the approximate value of $\sqrt{0.24}$.

- Watch Video Solution

9. If $\vec{a}=3 \hat{i}-2 \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-3 \hat{j}+\hat{k}$ find $\vec{a} \times \vec{b}$ also find the area of a parallelogram whose adjacent sides area \vec{a} and \vec{b}

- Watch Video Solution

10. If direction ratios of two lines are (a, b, c) and ($b-c, c-a, a-b$), find angle between them.
11. Find the binomial distribution for which the mean and variance are 12 and 4 respectively.

Watch Video Solution

12. If for two events A and $\mathrm{B}, \mathrm{P}(\mathrm{A})=\mathrm{P}\left(\frac{A}{B}\right)=\frac{1}{4}$ and $\mathrm{P}\left(\frac{B}{A}\right)=\frac{1}{2}$, show that A and B are two mutually independent events.

D Watch Video Solution

13. if $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\frac{\pi}{2}$ and $x+y+z=\sqrt{3}$, then show that $\mathrm{x}=\mathrm{y}=\mathrm{z}$.

(Watch Video Solution

14. If $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$, show that $(\mathrm{pA}+\mathrm{qB})(\mathrm{pA}-\mathrm{qB})=$ $\left(p^{2}+q^{2}\right) A$

Watch Video Solution

15. If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are all distinct and if $\left|\begin{array}{lll}x & x^{2} & 1+x^{3} \\ y & y^{2} & 1+y^{3} \\ z & z^{2} & 1+z^{3}\end{array}\right|=0$,show that $\mathrm{xyz}+\mathrm{l}=0$

- Watch Video Solution

16. Solve for x : $\left|\begin{array}{lll}x & a & b \\ a & x & b \\ a & b & x\end{array}\right|=0$

- Watch Video Solution

17. Find the derivation of $\sin ^{-1}\left(x^{2} \sqrt{1-x}-\sqrt{x} \sqrt{1-x^{4}}\right)$ with respect to x .

- Watch Video Solution

18. Evaluate : $\int \frac{x^{2} d x}{(x \sin x+\cos x)^{2}}$

- Watch Video Solution

19. Solve: $\frac{d y}{d x}+x(\sin 2 y)=x^{3} \cos ^{2} y, \mathrm{y}(0)=$ then $\mathrm{y}(1)$ equal to

- Watch Video Solution

20. The temperature T of a cooling object drops at a rate proportional to the difference (T-s) where S is a constant temperature of surrounding medium. If initially $\mathrm{T}=150^{\circ} \mathrm{C}$), find the temperature of the cooling object at any time t .

D Watch Video Solution

21. If \vec{a}, \vec{b} are unit vectors and θ be the angle between them show tat $\sin \left(\frac{\theta}{2}\right)=\frac{1}{2}|\vec{a}-\vec{b}|$

- Watch Video Solution

22. If with reference to the right handed system of mutually perpendicular unit vectors \hat{i}, \hat{j} and $\hat{k}, \vec{\alpha}=3 \hat{i}-\hat{j}, \vec{\beta}=2 \hat{i}+\hat{j}-3 \hat{k}$, then express $\vec{\beta}$ in the form $\vec{\beta}=\vec{\beta}_{1}+\vec{\beta}_{2}$, where $\vec{\beta}_{1}$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_{2}$ is perpendicular to $\vec{\alpha}$.

Watch Video Solution

23. Evaluate :
$\underset{n \rightarrow \infty}{L} t\left[\frac{1}{\sqrt{n^{2}-1^{2}}}+\frac{1}{\sqrt{n^{2}-2^{2}}}+\frac{1}{\sqrt{n^{2}-3^{2}}}+\ldots .+\frac{1}{\sqrt{n^{2}-(n-1)^{2}}}\right]$

- Watch Video Solution

24. Evaluate : $\int_{0}^{\log 5} \frac{e^{x} \sqrt{e^{x}-1}}{e^{x}+3} d x$

- Watch Video Solution

25. A random variable X has the following probability function:

x	-2	-1	0	1	2	3
$p(x)$	$0 \cdot 1$	k	$0 \cdot 2$	$2 \mathrm{~K}^{\circ}$	$0 \cdot 3$	3 k

Calculated K.

Watch Video Solution
26. A random variable X has the following probability function:

x	-2	-1	0	1	2	3
$p(x)$	0.1	k	0.2	$2 k^{\circ}$	0.3	$3 k$

Find $P(x<2), P(x \geq 2), P(-2<x \leq 2)$

- Watch Video Solution

27. A random varible x has the following probability function:
$\begin{array}{lllllll}x & -2 & -1 & 0 & 1 & 2 & 3\end{array}$
$\begin{array}{llllllllllll}p(x) & 0.1 & k & 0.2 & 2 k & 0.3 & 3 k\end{array}$
the value of k and its mean

- Watch Video Solution

28. Six coins are tossed at a time. Find the probability of occring not more than 3 heads.

- Watch Video Solution

29. In a certain culture the number of bacteria at any instant increases at a rate proportional to the cube root of the number present at that instant. If the number becomes 8 times in 3 hours, when the number will be 64 times?

- Watch Video Solution

30. Find the equation of the common tangents to $y^{2}=8 a x$ and $x^{2}+y^{2}=2 a^{2}$
31. Prove that the radius of the right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of that of the cone.

- Watch Video Solution

32. choose the correct alternative :(ii) state which of the foll. Is the value of $\tan \left(\left(\frac{1}{3}\right)\left(\tan ^{-1} x+\tan ^{-1}\left(\frac{1}{x}\right)\right)\right)(x>0)$?
A. $\frac{1}{\sqrt{3}}$
B. $\sqrt{3}$
C. 1
D. 0

Answer:

33. If A^{t} is the transporse of a square matrix A , then,
A. $|\mathrm{A}| \neq\left|A^{t}\right|$
B. $|A|+\left|A^{t}\right|$
C. $|\mathrm{A}|=\left|A^{t}\right|$
D. $|A|=\left|A^{t}\right|$ only when A is symmetric matrix.

Answer:

- Watch Video Solution

34. If $\frac{d}{d x}\left(\frac{1+x^{2}+x^{4}}{1+x+x^{2}}\right)=\mathrm{ax}+\mathrm{b}$, then the values of a and b are
A. $-2,1$
B. 1,-2
C. $2,-1$
D. $-1,2$

Answer:

- Watch Video Solution

35. The rate average change of the function $\mathrm{y}=x^{2}$ between $\mathrm{x}=1$ and $\mathrm{x}=4$ is
A. 1
B. 2
C. 5
D. 3

Answer:

36. $\vec{a}=3 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=2 \hat{i}+6 \hat{j}+m \hat{k}$ are perpendicular to each other, then the value of m is
A. 0
B. 10
C. 24
D. -24

Answer:

- Watch Video Solution

37. The straihgt line $\frac{x-4}{3}=\frac{y-2}{1}=\frac{z-1}{0}$ is
A. Parallel to the axis
B. parallel to the y axis
C. Parallel to the z axis
D. perpendicualr to the z axis.

Answer:

- Watch Video Solution

38. A and B give examination for two empty posts. If the probability of their getting selected by $\frac{1}{4}$ and $\frac{1}{6}$ respectively then the probability of neither getting selected will be
A. $\frac{5}{6}$
B. $\frac{5}{8}$
C. $\frac{23}{24}$
D. $\frac{5}{12}$

Answer:

Watch Video Solution
39. The variance of a binomial distribution with parameters n and p is-
A. $>n^{2} \frac{)}{4}$
B. $>\frac{n}{4}$
C. $\geq \frac{n}{4}$
D. $\leq \frac{n}{4}$

Answer:

- Watch Video Solution

