

MATHS

BOOKS - UNITED BOOK HOUSE

SET 18

1. Let us consider a function f : R
ightarrow R, defined by f(x) $= x^3 - 6$. Show

that the mapping f is bijective.

Watch Video Solution

2. Show that
$$\sec^2 \left(\cot^{-1}(2) \right) + \cos ec^2 \left(\tan^{-1}(3) \right) = 2 \frac{13}{36}$$

5. Examine the applicability of lagrange's Mean value theorem for the function f(x) = $x^2 + 2$ in the interval [2,4]

Watch Video Solution

6. If
$$\sin^{-1} \left(\frac{x^2 - y^2}{x^2 + y^2}
ight) = k$$
, k is a constant, then prove that $\frac{dy}{dx} = \frac{y}{x}$.

7. Evaluate:
$$\int \left(\frac{\cos x + x \sin x}{x(x + \cos x)}\right) dx.$$

Watch Video Solution
8. Using the method of differentail find the approximate value of $\sqrt{0.24}$.

Watch Video Solution

9. If
$$\overrightarrow{a} = 3\hat{i} - 2\hat{j} + \hat{k}$$
 and $\overrightarrow{b} = \hat{i} - 3\hat{j} + \hat{k}$ find $\overrightarrow{a} \times \overrightarrow{b}$ also find the area of a parallelogram whose adjacent sides area \overrightarrow{a} and \overrightarrow{b}

Watch Video Solution

10. If direction ratios of two lines are (a,b,c)and (b-c,c-a,a-b), find angle between them.

11. Find the binomial distribution for which the mean and variance are 12

and 4 respectively.

Watch Video Solution

12. If for two events A and B, P(A) = P $\left(\frac{A}{B}\right) = \frac{1}{4}$ and P $\left(\frac{B}{A}\right) = \frac{1}{2}$, show

that A and B are two mutually independent events.

Watch Video Solution

13. if
$$\tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \frac{\pi}{2}$$
 and $x + y + z = \sqrt{3}$, then

show that x=y=z.

14. If
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, show that (pA + qB) (pA - qB) = $(p^2 + q^2)A$

15. If x,y,z are all distinct and if $\begin{vmatrix} x & x^2 & 1+x^3 \\ y & y^2 & 1+y^3 \\ z & z^2 & 1+z^3 \end{vmatrix}$ =0,show that xyz+1=0

Watch Video Solution

16. Solve for x :
$$\begin{vmatrix} x & a & b \\ a & x & b \\ a & b & x \end{vmatrix} = 0$$

Watch Video Solution

17. Find the derivation of $\sin^{-1} \left(x^2 \sqrt{1-x} - \sqrt{x} \sqrt{1-x^4} \right)$ with respect

to x.

18. Evaluate :
$$\int rac{x^2 dx}{\left(x \sin x + \cos x
ight)^2}$$

19. Solve:
$$rac{dy}{dx} + x(\sin 2y) = x^3 \cos^2 y$$
, y(0) = then y(1) equal to

20. The temperature T of a cooling object drops at a rate proportional to the difference (T-s) where S is a constant temperature of surrounding medium. If initially T = 150° C), find the temperature of the cooling object at any time t.

Watch Video Solution

21. If \overrightarrow{a} , \overrightarrow{b} are unit vectors and θ be the angle between them show tat $\sin\left(\frac{\theta}{2}\right) = \frac{1}{2} |\overrightarrow{a} - \overrightarrow{b}|$

22. If with reference to the right handed system of mutually perpendicular unit vectors \hat{i} , \hat{j} and \hat{k} , $\overrightarrow{\alpha} = 3\hat{i} - \hat{j}$, $\overrightarrow{\beta} = 2\hat{i} + \hat{j} - 3\hat{k}$, then express $\overrightarrow{\beta}$ in the form $\overrightarrow{\beta} = \overrightarrow{\beta}_1 + \overrightarrow{\beta}_2$, where $\overrightarrow{\beta}_1$ is parallel to $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}_2$ is perpendicular to $\overrightarrow{\alpha}$.

Watch Video Solution

23. Evaluate :

$$L_{n \to \infty} t \left[\frac{1}{\sqrt{n^2 - 1^2}} + \frac{1}{\sqrt{n^2 - 2^2}} + \frac{1}{\sqrt{n^2 - 3^2}} + \dots + \frac{1}{\sqrt{n^2 - (n - 1)^2}} \right]$$
Watch Video Solution

24. Evaluate :
$$\int\limits_{0}^{\log 5} rac{e^x \sqrt{e^x-1}}{e^x+3} dx$$

25. A random variable X has the following probability function:

x	-2	-1	0,	1	2	3
p(x)	0.1	k	0.5	2k°	0.3	3k

Calculated K.

Watch Video Solution

26. A random variable X has the following probability function:

x	-2	-1	0,	1	2	3
p(x)	0.1	k	0.5	2k°	0.3	3k

Find $P(x < 2), P(x \geq 2), P(-2 < x \leq 2)$

Watch Video Solution

-2

x

27. A random varible x has the following probability function:

-1 0 1 2

 $0.1 \ k \ 0.2 \ 2k \ 0.3 \ 3k$

-3

Watch Video Solution

28. Six coins are tossed at a time. Find the probability of occring not more

than 3 heads.

Watch Video Solution

29. In a certain culture the number of bacteria at any instant increases at a rate proportional to the cube root of the number present at that instant. If the number becomes 8 times in 3 hours, when the number will be 64 times?

30. Find the equation of the common tangents to $y^2 = 8ax$ and $x^2 + y^2 = 2a^2$

31. Prove that the radius of the right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of that of the cone.

Watch Video Solution

32. choose the correct alternative :(ii) state which of the foll. Is the value

of
$$\tan\left(\left(\frac{1}{3}\right)\left(\tan^{-1}x + \tan^{-1}\left(\frac{1}{x}\right)\right)\right)$$
 (x>0)?
A. $\frac{1}{\sqrt{3}}$
B. $\sqrt{3}$
C. 1

D. 0

Answer:

33. If A^t is the transporse of a square matrix A, then,

A. $|\mathsf{A}| \,
eq |A^t|$

- $\mathsf{B.}\left|A\right|+\left|A^{t}\right|$
- C. $|\mathsf{A}| = |A^t|$
- D. $|A| = \left|A^t \right|$ only when A is symmetric matrix.

Answer:

Watch Video Solution

34. If
$$rac{d}{dx} igg(rac{1+x^2+x^4}{1+x+x^2} igg)$$
 = ax + b , then the values of a and b are

A. -2, 1

B. 1,-2

C.2, -1

D. -1, 2

Answer:

35. The rate average change of the function $y = x^2$ between $x = 1$ and $x = 4$
is
A. 1
B. 2
C. 5
D. 3

Answer:

36. $\overrightarrow{a}=3\hat{i}+3\hat{j}-\hat{k}$ and $\overrightarrow{b}=2\hat{i}+6\hat{j}+m\hat{k}$ are perpendicular to each

other , then the value of m is

A. 0

B. 10

C. 24

 $\mathsf{D.}-24$

Answer:

Watch Video Solution

37. The straingt line
$$rac{x-4}{3}=rac{y-2}{1}=rac{z-1}{0}is$$

A. Parallel to the axis

B. parallel to the y axis

C. Parallel to the z axis

D. perpendicualr to the z axis.

Answer:

38. A and B give examination for two empty posts. If the probability of their getting selected by $\frac{1}{4}$ and $\frac{1}{6}$ respectively then the probability of neither getting selected will be

Answer:

Watch Video Solution

39. The variance of a binomial distribution with parameters n and p is-

$$\begin{array}{l} \mathsf{A.} \ > n^2 \frac{)}{4} \\ \\ \mathsf{B.} \ > \frac{n}{4} \\ \\ \mathsf{C.} \ \geq \frac{n}{4} \\ \\ \\ \mathsf{D.} \ \leq \frac{n}{4} \end{array}$$

Answer: