

MATHS

BOOKS - UNITED BOOK HOUSE

SET 19

1. Number of relations of a set having 5 elements are

A. 5

B. 25

 $\mathsf{C}.\,2^5$

 $\mathsf{D.}\,2^{25}$

Answer:

2. If a matrix A = $\left(lpha_{i_j}
ight)_{3 imes 4}$ and $lphaig(i_jig)$ = $(-1)^{\hat{i}\,+\,\hat{j}}$, then the element fo 3rd

row and 2nd column will be

A. 1 B. — 1 C. 2

D. 0

Answer:

Watch Video Solution

3. If f(x) =
$$\log_e \left(\frac{1-x}{1+x} \right)$$
, then f'(0) is

A. 2

 $\mathsf{B.}-2$

C. 0

D. -1/2

Answer:

4. Find the interval of the function $f(x) = x^3$ in which it is increasing

- A. ($-\infty, \propto$)
- $\mathsf{B.}\left(0,\ \infty\\right)$
- $\mathsf{C.}\,(\,-\,\,\propto\,,\,0)$
- D. (\propto , 0)

Answer:

5. A and B are two independent events P(A) = $\frac{1}{3}$ and $P(A \cap B) = \frac{1}{6}$, then $P(A^C \cap B^C)$ will be

A.
$$\frac{1}{6}$$

B. $\frac{2}{3}$
C. $\frac{1}{3}$
D. $\frac{2}{9}$

Answer:

6. The value of
$$\int_{-1}^{1} |2x+1| dx$$
 is
A. $\frac{5}{2}$
B. $\frac{9}{2}$
C. $\frac{3}{2}$

Answer:

7. find the length of the perpendicular drawn from the point (2,1,-1) on the

line x - 2y + 4z = 9

A.
$$\frac{\sqrt{13}}{21}$$

B. $\frac{13}{21}$
C. $\frac{13}{\sqrt{21}}$
D. $\frac{\sqrt{13}}{21}$

Answer:

8. If $\sin^{-1}x - \cos^{-1}x = \frac{\pi}{6}$ then x is

B.
$$\frac{1}{2}$$

C. $\frac{1}{\sqrt{2}}$
D. $\frac{\sqrt{3}}{2}$

Answer:

- **9.** The I.F. of the differential equation x log x $rac{dy}{dx}+2y=\log x$ is
 - A. $(\log x)^2$ B. x^2 C. $\log x$ D. $\frac{1}{\log x}$

Answer:

10. Let * be a binary operations on Z and is defined by , a * b = a + b + 1,

 $a,b\in Z$. Find the identity element.

Watch Video Solution

11. Evaluate:
$$4\left(2 an^{-1}\left(rac{1}{3}
ight)+ an^{-1}\left(rac{1}{7}
ight)
ight)$$

Watch Video Solution

12. Prove that (a+b+c+x) is a factor of
$$\begin{vmatrix} x+a & b & c \\ b & x+c & a \\ c & a & x+b \end{vmatrix}$$

13. If P =
$$\begin{pmatrix} 1 & 2 & 1 \\ 1 & 3 & 1 \end{pmatrix}$$
 and Q = PP^T , then find Q

Watch Video Solution

14. Verify Rolle's theorem for the function $f(x) = \sin x + \cos x$ in the interval

$$o\leq x\leq \pi/2$$

15. Evaluate :
$$\underset{x
ightarrow 0}{L} t rac{\log_e \cos x}{\sin^2 x}$$

Watch Video Solution

16. Evaluate:
$$\int \left(\frac{\cos x + x \sin x}{x(x + \cos x)} \right) dx.$$

17. If $x > \frac{1}{2}$, show that the function f(x) = $x(4x^2 - 3)$ is steadily increasing.

18. If $|\overrightarrow{a}| = \sqrt{3}$, $|\overrightarrow{b}| = 2$ and \overrightarrow{a} . $\overrightarrow{b} = \sqrt{6}$, then find the angle between \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

19. If the line $\frac{x-2}{6} = \frac{y-1}{\lambda} = \frac{z+5}{-4}$ is perpendicular to the straight

line 3x - y - 2z = 7, then find the value of λ

Watch Video Solution

20. The probability that A hits a target is $\frac{1}{3}$ and the probability that B hits it is $\frac{2}{5}$. What is the probability that the target will be hit if both A

least 6 heads by binomial distribution.

Watch Video Solution

22. answer any one question : (ii) prove that $\tan\left(\frac{\pi}{4} + \frac{1}{2}\left(\cos^{-1}\left(\frac{a}{b}\right)\right) + \tan\left(\frac{\pi}{4} - \frac{1}{2}\left(\cos^{-1}\left(\frac{a}{b}\right)\right) = \frac{2b}{a}.$

Watch Video Solution

23. Solve : $\begin{vmatrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix}$ = 0

24. By using properties of determinants. Show that:
$$|1 + a^2 - b^2; 2ab; -2b: 2ab; 1 - a^2 + b^2; 2a: 2b; -2a; 1 - a^2 - b^2| = (1 - a^2)$$

25. If
$$y^{rac{1}{3}}+y^{-rac{1}{3}}$$
 = 2x, prove that $ig(x^2-1ig)y_2+xy_1=9y.$

D Watch Video Solution

26. Evaluate :
$$\int rac{\log_e(x+1)}{\left(x+1
ight)^2} dx$$

Watch Video Solution

27. Evaluate :
$$\int (5^{5^{5^x} \cdot 5^{5^x} \cdot 5^x}) dx$$

28. Solve the differential equation: $\left(1+y^2
ight)+\left(x-e^{ an^{-1}y}
ight)rac{dy}{dx}=0$

Watch Video Solution

29. Find the unit vector which is perpendicular to both $\overrightarrow{a} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\overrightarrow{b} = 3\hat{i} - \hat{j} + \hat{k}$ and also find the angle between them.

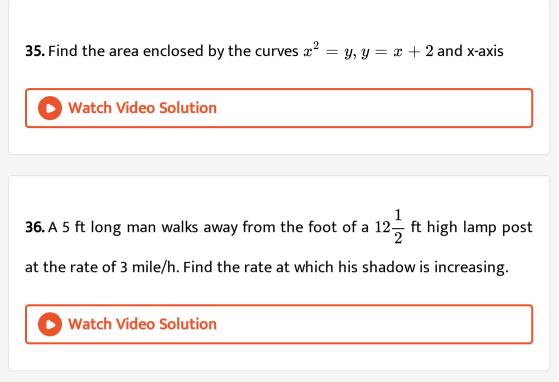
Watch Video Solution

30. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\overrightarrow{b} = \hat{j} - \hat{k}$ then find a vector \overrightarrow{c} , such that $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b}$ and $\overrightarrow{a} \cdot \overrightarrow{c} = 3$.

Watch Video Solution

31. Evaluate:
$$\underset{n \to \alpha}{L} t \left[\frac{1}{\sqrt{2n-1^2}} + \frac{1}{\sqrt{4n-2^2}} + \frac{1}{\sqrt{6n-3^2}} + \ldots + \frac{1}{n} \right]$$

32. Evaluate :
$$\int_0^{\frac{\pi}{4}} \frac{\sin^2 x \cos^2 x dx}{\left(\sin^3 x + \cos^3 x\right)^2}$$


Watch Video Solution

33. A discreate random variable x has the following probability distribution:

Find mean and standard deviation.

Watch Video Solution

34. answer any two questions :(iii) if the straight line lx+my=n be a normal to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then by the application of calculus prove that $\frac{a^2}{l^2} - \frac{b^2}{m^2} = \frac{(a^2 + b^2)^2}{n^2}$.

