© 'doubtnut

MATHS

BOOKS - UNITED BOOK HOUSE

SET 2

Exercise

1. The binary operation * define on N by $\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}+\mathrm{ab}$
for all $a, b \in N$ is
A. commutative only
B. associative only
C. commutative and associative both
D. none of these

Answer:

- Watch Video Solution

2. The value of $\tan \cot ^{-1}\left(-\frac{4}{3}\right)$ is
A. $-\frac{3}{4}$
B. $\frac{3}{4}$
C. $\frac{4}{3}$
D. $-\frac{4}{3}$

Answer:

- Watch Video Solution

3. If the matrix A is both symmetric and skew symmetric then
A. A is a diagonal matrix
B. A is a zero matrix
C. A is a square matrix
D. None of these,

Answer:

D Watch Video Solution

4. If $f(x)=x^{\frac{3}{2}}$ then
A. $f^{\prime}(0)$ and $f^{\prime \prime}(0)$ both exist
B. none of $f^{\prime}(0)$ and $f^{\prime \prime}(0)$ exists
C. $\mathrm{f}^{\prime}(0)$ exists but $\mathrm{f}^{\prime \prime}(0)$ does not exists

D. none of these

Answer:

5. If $\mathrm{f}(\mathrm{x})$ is an add function then $\stackrel{a}{u}$ ndert $(-a) f(x) d x$ is equal to
A. 0
B. $\int_{0}^{a} f(x) d x$
C. $2 \int_{0}^{a} f(x) d x$
D. none of these

Answer:
(D) Watch Video Solution
6. The value of $\int_{0}^{\pi}, \cos x \mid d x$ is
A. 0
B. 1
C. 2
D. none of these

Answer:

D Watch Video Solution
7. If $|m \vec{a}|=1$ then which of the following is true?
A. $m=\frac{1}{|a|}$
B. $m= \pm \frac{1}{|\vec{a}|}$
C. $m=\frac{1}{a}$

D. none of these

Answer:

- Watch Video Solution

8. The lines $\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k} \quad$ and

$$
\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1} \text { are coplaner if }
$$

A. $k=1$ or -1
B. $k=0$ or -3
C. $k=3$ or -3
D. $k=0$ or -1

Answer:

D Watch Video Solution

9. The probability of getting 11 when an ordinary die is thrown twice is
A. $\frac{1}{18}$
B. $\frac{1}{9}$
C. $\frac{1}{12}$
D. $\frac{5}{36}$

Answer:

- Watch Video Solution

10. If in a biomial distribution $\mathrm{n}=4, \mathrm{P}(\mathrm{x}=0)=\frac{16}{81}$ then the value of $P(x=4)$ is
A. $\frac{1}{16}$
B. $\frac{1}{81}$
C. $\frac{1}{27}$
D. $\frac{1}{8}$

Answer:

- Watch Video Solution

11. Prove that , $2 \tan ^{-1} x=\frac{\cos ^{-1}\left(1-x^{2}\right)}{1+x^{2}}$.

- Watch Video Solution

12. Evaluate: $\left|\begin{array}{ccc}1 & a & b c \\ 1 & b & c a \\ 1 & c & a b\end{array}\right|$
13. Show that function $f(x)=2 x-|x|$ is continous at $x=0$.

- Watch Video Solution

14. Evaluate: $\int_{1}^{2} \log x d x$

D Watch Video Solution

15. Find the order of the differential equation
$\left(\frac{d^{4} y}{d x^{4}}\right)^{3}-\frac{d^{3} y}{d x^{3}}=\sqrt{1+\frac{d y}{d x}}$

- Watch Video Solution

16. Prove that the function $f(x)=x+\frac{1}{x}(x \neq 0)$ is decreasing for all x in $(-1,0) \cup(0,1)$.

- Watch Video Solution

17. Determine the area bounded by rectangular hyperbola $x y=c^{2}$ the x-axis and the two ordinated $x=c, x=2 c$.

- Watch Video Solution

18. The direction agnles of a straight line are
$120^{\circ}, 45^{\circ}, 30^{\circ}$. Is the statement true? Give reason.
19. Find K, for which the two planes $x+k y+5 z+2=0$ and $3 x-2 y+k z-1=0$ are perpendicular to one another.

- Watch Video Solution

20. Prove that, if $P(A / B)=P(A)$ then $P\left(A^{c} / B\right)=P\left(A^{c}\right)$.

21. Find the probability of guessing correctly at least

 5 of the eight answwers in a true false objective test.
- Watch Video Solution

22.

$\tan ^{-1}(x-1)+\tan ^{-1} x+\tan ^{-1}(x+1)=\tan ^{-1} 3 x$.

- Watch Video Solution

23. If $A=[[1,2,5]$. [$-1,3,-4]] \quad$ and
$B=\left[\begin{array}{ccc}3 & -2 & 1 \\ 0 & -1 & 4 \\ 5 & 2 & -1\end{array}\right]$ show that $(A B)^{T}=B^{T} A^{T}$
were A^{T} is the transpose of A .

- Watch Video Solution

24. If $A=\left[\begin{array}{cc}3 & -1 \\ 1 & 2\end{array}\right], B=\left[\begin{array}{l}3 \\ 1\end{array}\right], C=\left[\begin{array}{c}1 \\ -2\end{array}\right]$ find the matrix X such that $A X=3 B+2 C$.

- Watch Video Solution

25.

Prove
that
$\left[\begin{array}{ccc}a^{2} & b c & c^{2}+c a \\ a^{2}+a b & b^{2} & c a \\ a b & b^{2}+b c & c^{2}\end{array}\right]=4 a^{2} b^{2} c^{2}$.
26. If $x^{2}+y^{2}=t-\frac{1}{t}$ and $x^{4}+y^{4}=t^{2}+\frac{1}{t^{2}}$,show that , $x^{3} y \frac{d y}{d x}=1$.

- Watch Video Solution

27. If $2 x=y^{\frac{1}{5}}+y^{-\frac{1}{5}}$ prove that
$\left(x^{2}-1\right) y_{2}+x y_{1}=25 y$

- Watch Video Solution

28. Solve: $(2 x+4 y+3) \frac{d y}{d x}=2 y+x+1$
29. Solve: $x\left(1-x^{2}\right) d y+\left(2 x^{2} y-y-5 x^{3}\right) d x=0$.

- Watch Video Solution

30. If the magnitude of difference of two unit vectors
is $\sqrt{3}$, then show that the sum of the vectors is also a unit vector.

- Watch Video Solution

31. If the vector $a \hat{i}+a \hat{j}+c \hat{k}, \hat{i}+\hat{k}$ and $c \hat{i}+c \hat{j}+b \hat{k}$ be coplanar, show that $c^{2}=a b$.
32.

Evaluate
$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}[f(x)+f(-x)][g(x)+g(-x)] d x$

- Watch Video Solution

33. Using the definition of difinite integral as the
limit of sum, evaluate $\int_{a}^{b} 2^{x} d x$.
34. There are three coins, One is two headed coin, another is a biased coin that comes up head 75% of the time and thrid is an unbaised coin. One of the three coins is chosen at random and tossed. If its hows head, what is the probability that it was the two headed coin?

D Watch Video Solution

35. If X follows a binomial distribution with mean 3
and variance $\frac{3}{2}$ find and $\mathrm{P}(X \leq 5)$.
36. A 5 ft long man walks away from the foot of a $12 \frac{1}{2} \mathrm{ft}$ high lamp post at the rate of $3 \mathrm{mile} / \mathrm{h}$. Find the rate at which his shadow is increasing.

- Watch Video Solution

37. Mark the area bounded by the curves $y^{2}=4 x$ and $x^{2}=4 y$ and find the marked area.

- Watch Video Solution

