

PHYSICS

BOOKS - UNITED BOOK HOUSE

MODEL PAPER SET-04

Exercise

1. The electric potential at any point in 3 dimensional coordinate (x,y, z) space is V = $4x^2$ volt. The electric field at (1m, 0m, 2m) point in V/m will be

 $A.-8\hat{i}$

- B. $8\hat{i}$
- C. $-16\hat{i}$
- D. $16\hat{i}$

Watch Video Solution

2. If the charge on a capacitor is increased by 2 coulomb, the energy stored in it increases by 21%. The original charge on the capacitor is

A. 10 C

B. 20C

- C. 30 C
- D. 40 C

Watch Video Solution

3. A thin wire of resistance 4Ω is bent to form a circle. The resistance across any diameter is

- A. 4Ω
- B. 1Ω
- C. $\frac{1}{4}\Omega$ D. $\frac{1}{16}\Omega$

Watch Video Solution

4. A galvanometer of resistance 8Ω . is shunted with 2Ω resistance. If total current is 1 A, then what will be the shunt current?

A. 1.2 A

B. 0.8 A

C. 0.5 A

D. 0.3 A

Answer:

5. A bar magnet of magnetic moment M is suspended in a uniform magnetic field (B). The work done to rotate 180° from its equlibrium position will be —

A. MB

B. 2MB

c.
$$\frac{MB}{2}$$

D. 4MB

Answer:

6. If Q is the dimenstion of charge then which quantity of

the following is dimensionally equivalent to $\lceil ML^2Q^{-2}
ceil$

- A. Henry
- B. $Henry.\ meter^{-1}$
- C.Wb
- D. Tesla

Answer:

Watch Video Solution

7. The number of turns of a coil in an a.c. generator is

2000 . Area of the coil is $0.1m^2$ and angular speed is

 $200 rad/{
m sec.}$ What will be the peak value of the induced e.m.f. when the magnetic field is 0.2T ?

- A. 1000 V
- B. 2000 V
- C. 4000 V
- D. 8000 V

Answer:

Watch Video Solution

8. An electromagnetic wave is propagating along X-axis.

The magnitude of its electric vector $\overset{
ightarrow}{E}=6v/m$ at x = 1

m and t = 10 sec. The magnitude of its magnetic vector is

A.
$$2 \times 10^{-8}$$

B.
$$3 imes 10^{-7}$$

$$\mathsf{C.}\,6 imes10^8$$

D.
$$5 imes10^{-7}$$

Answer:

Watch Video Solution

9. The angle of minimum deviation is the same as the angle of a glass prism of refractive index $\mu=\sqrt{3}$. What is the angle of the prism?

- A. 30^2
- B. 45°
- C. 60°
- D. 90°

Watch Video Solution

10. Two periodic waves of intensities I_1 and I_2 are travelling through a region in a same direction at the same time. What is the summation of maximum and minimum intensities?

A. $I_1 + I_2$

B.
$$\left(\sqrt{I}_1+\sqrt{I}_2\right)$$

C.
$$\left(\sqrt{I}_1-\sqrt{I}_2
ight)$$

D.
$$2(I_1 + I_2)$$

Watch Video Solution

11. If the electron in a hydrogen atom jumps from an orbit with level $n_1=2$ to an orbit with level $n_2=1$ the emitted radiation has a wavelength given by

A.
$$\lambda=rac{5}{3R}$$

B.
$$\lambda = \frac{4}{3R}$$

$$\operatorname{C.}\lambda = \frac{R}{4}$$

$$\mathrm{D.}\,\lambda = \frac{3R}{4}$$

Watch Video Solution

12. Find the current through an ideal p- n junction diode

- A. zero
- B. 10 mA
- C. 20 mA
- D. 50 mA

Watch Video Solution

13. In A.M. the maximum and minimum amplitude are 25 V and 5Vrespectively. The modulation index will be

- A. $\frac{1}{3}$
- B. $\frac{1}{5}$

D.
$$\frac{2}{3}$$

Watch Video Solution

14. The horizontal and vertical comporient-of earth's magnetic field at a plane are same. What is the angle of dip at that location?

15. Which quantity' corresponds to J/T? Define that quantity?

Watch Video Solution

16. When the current in a coil changes form +2A to-2A in 0.5 sec then the induced e.m.f. is 8V, Find self inductance of the coil.

Watch Video Solution

17. The real object distance and real image distance from a concave mirror are p and q respectively. Draw a graph between $\frac{1}{p}$ and $\frac{1}{q}$.

18. Convert this into binary number $(17.625)_{10}$.

19. If 1Ω shunt be connected across a galvanometer of 99Ω resistance, what fraction of the main current does the flow through the galvanometer?

20. The potential difference between two ends of an electric bulb is reduced 2%. What should be the change

of dissipated power?

Watch Video Solution

21. Name the physical quantity whose S.I. unit is J/C. Is it a scalar or a vector quantity?

Watch Video Solution

22. Two protons P and Q moving with the same speed enter magnetic fields B_1 and B_2 respectively at right angles to the field directions. If B_2 is greater than B_1 , for which of the protons P and Q,the circular path in the magnetic will be a smaller radius?

watak walan calawa

watch video Solution

23. What is microwave? Why Is this wave used in RADAR?

Watch Video Solution

24. Derive the expression of 1st Bohr orbit applying Bohr's 'theory.

Watch Video Solution

25. The half life of radium is 1600 years. In how many years will $8 imes 10^{-3} kg$ of radium become $1 imes 10^{-3} kg$?

26. What is modulation? Write down it utility.

Watch Video Solution

27. What is quantization of charge? Establish the expression of electric potential at a point for at point charge.

Watch Video Solution

28. The electric field in a region is radially outward with a magnitude E=Ar where E = electric field, A is a constant = $100V/m^2$ and r denotes the distance from the origin in

meters. Find the charge contained in a sphere of radius 0.20 m centred as the origin.

Watch Video Solution

29. The equivalent capacitance are C_s and C_n when two.capacitors are connected in series and parallel respectively. Find each of the capacitance of the two capacitors.

Watch Video Solution

30. The cyclotron frequency of a cyclotron is 10 MHz. What will be the effective magnetic field to accelerate proton?

31. The focal length of a-convex lens is f. Show that if the object distance is $\left(f+\frac{f}{N}\right)$ then the images will form N times magnified in both cases.

Watch Video Solution

32. Calculate energy of an electromagentic wave of wave length $0.0242\overset{\circ}{A}$ in eV unit.

33. What is the originÿof characteristics X-ray? When an electron of a hydrogen atom'jurnps from n=3 to n=2 orbit, then what should be the wavelength of the emitted photon? Does it corresponds to visible range? Rydberg const $R=1.1\times 10^7 m^{-1}$.

Watch Video Solution

34. There is no electrons, in the nucleus but how does it emitt β particles? What is nuclear fusion?

Watch Video Solution

35. What is OR gate? Give its truth table.

36. Sum in binary. $(10110)_2 + (10111)_2$.

Watch Video Solution

37. Define $lpha_{dc}$ and eta_{dc} of a transistor. Write the relation between these.

Watch Video Solution

38. Prove $V_{r.m.s}=rac{V_0}{\sqrt{2}}$ in an a.c. circuit. Where V_0 = the peak value of voltage.

39. Derive the relation among apparent depth, real depth and refractive index of a medium.

