

PHYSICS

BOOKS - MBD -HARYANA BOARD

CURRENT ELECTRICITY

Very Short Answer Type Questions

1. Explain with a neat circuit diagram how will you determine unknown resistance 'X' by using meter bridge.

2. How many electrons pass in one second when current is 1 A?

Watch Video Solution

3. Explain the Kirchhoff's Junction rule.

OR.

What is Kirchhoff's junction rule?

4. On what factors does the resistivity of a material depend ?

Watch Video Solution

5. What is specific resistance and resistivity of a wire? Is it more for thick or thin wire?

6. Define conductance and conductivity.

Or.

Define electrical conductivity of a conductor and give its S.I. unit.

Watch Video Solution

7. When drift velocity is so small, how is it that an electric bulb lights up as soon as we turn the switch on?

8. Explain the Ohm's law.

Watch Video Solution

9. What happens to the drift velocity (v_d) of electrons and to the resistance (R), if the length of a conductor is doubled (keeping potential difference unchanged)?

10. Draw the circuit diagram for wheatstone bridge to determine unknown resistance. Write condition for balancing of the bridge.

Watch Video Solution

11. Distinguish between resistance and specific resistance.

12. Establish a relation between E.M.F. and potential difference of a cell.

Watch Video Solution

13. Draw the circuit diagram to determine unknown resistance using meter bridge. Write the equation used for determining the unknown resistance.

View Text Solution

14. A wire is drawn into double its length and half its original cross-section. What will be change in its resistance and specific resistance?

Or.

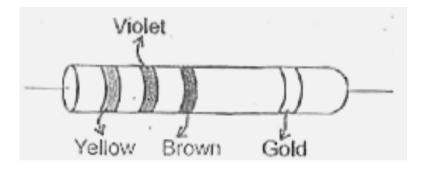
A wire of resistivity ρ is stretched to twice its length. What will be its new resistivity?

15. Internal resistance of a cell depends on

16. A wire of resistance 1Ω is stretched to double its length. What is the new resistance ?

Watch Video Solution

17. Name two conditions when ohm's law fails?



18. Define resistance of a conductor. What is its cause? Explain the factors on which the resistance of a conductor depends.

Watch Video Solution

19. A carbon resistor has coloured strips as shown is figure. What is its resistance?

Watch Video Solution

20. Compare ohmic and non-ohmic conductors.

Watch Video Solution

21. A wire of resistance 2Ω is stretched so that its radius is halved. Determine its new resistance.

22. State the working principle of potentiometer. With the help of the circuit diagram, explain how a potentiometer is used to compare the emf's of two primay cells. Obtain the required expression used for comparing the emfs. Write two possible causes for one sided deflection in a potentiometer experiment.

23. Point out the right statements about the validity of, Kirchhoff's junction rule

Watch Video Solution

24. The SI units of resistivity is

Watch Video Solution

25. The SI unit of electric current is

26. What is Kirchhoff's loop rule.

Watch Video Solution

27. What is Kirchhoff's loop rule.

Watch Video Solution

28. How much current flows through a $2k\Omega$ resistor when a potential difference of 4V is

applied across its ends?

Watch Video Solution

Short Answer Type Questions

1. Deduce Ohm's law using the concept of drift velocity.

2. Using Ohm's law, calculate the resistance of combination of few resistances joined in series.

Watch Video Solution

3. A conductor of length I is connected to a.d.c., source of potential V. if the length of the conductor is tripled by stretching it, keeping V constant, explain how to the following factors vary in the conductor?

- (i) Drift speed of electrons
- (ii) Resistance
- (iii) Resistivity.

Watch Video Solution

4. Drive expression for the total resistance of a circuit in which a few resistors are connected in parallel.

5. What do you mean by internal resistance, e.m.f. (electromotive force) and terminal potential difference of a cell? Derive a relation between the three. How will you determine it?

Watch Video Solution

6. Explain how the cells are grouped in series,

Obtain the condition for maximum current through an external resistor.

7. Explain how the cells are grouped in parallel.

Obtain the condition for maximum current through an external resistor.

View Text Solution

8. Define resistivity of a material and discuss the factors on which it depends.

9. Explain the combination of resistances in series and parallel.

Watch Video Solution

Long Answer Type Questions

1. What is Kirchhoff's loop rule.

2. What is potentiomter? What is its principle? How will you find the internal resistance of a

Watch Video Solution

cell by a potentiometer?

3. Explain the use of potentiometer for comparison of e.m.f. of two cells.

- **4.** (a) Derive a relation between electric current and drift velocity of charge carriers.
- 9b) Deduce the expression for resistivty.
- (c) What is the effect of temperature on resistivity?

5. Explain the use of a metre bridge for finding unknown resistance.

6. Write a note on grouping of cells.

Watch Video Solution

Objective Type Questions

1. One kilowatt hour is equal to

A. $36 imes 10^5 J$

B. $36 imes 10^3 J$

C. $36 imes 10^{-5} J$

D.
$$36 imes 10^{-3} J$$

Answer: A

Watch Video Solution

2. The area of cross-section of a metal wire is doubled, keeping its length same, then its resistance is:

A. No change

B. doubled

C. four times

D. halved

Answer: D

Watch Video Solution

3. With increse in temperature, the conductivity of a conductor

A. remains same

B. decreases

C. increases

D. may increase or decrease

Answer: B

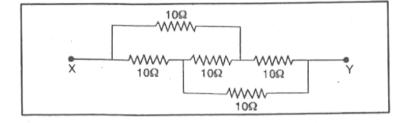
Watch Video Solution

4. The potential difference applied to an X-ray tube is 5 kV and the current through it is 3.2 mA. Then the number of electros striking the target par second is

A.
$$2 imes 10^{16}$$

B.
$$5 imes 10^6$$

$$\text{C.}~1\times10^{17}$$


D.
$$4 imes 10^{15}$$

Answer: A

Watch Video Solution

5. The equivalent resistance between the points X and Y of the following circuit is

- A. 10Ω
- $\mathrm{B.}\,30\Omega$
- $\mathrm{C.}\ 20\Omega$
- $\mathrm{D.}\,50\Omega$

Answer: A

6. Calculate the amount of charge flowing in 2 minutes in a wire of resistance 10Ω when a potential difference of 20 V is applied between its ends

A. 120C

B. 240C

C. 20C

D. 4C

Answer: B

Valcii Video Solution

7. When length of a metal wire is doubled and area of cross-section is reduced to half then the resistance will be

A. Double

B. Four times

C. No change

D. Half

Answer: B

8. For series combination total resistance R will be:

A.
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

$$\mathsf{B.}\,R=R_1R_2R_3.\ldots.$$


$$\mathsf{C.}\,R = rac{1}{R_1} + rac{1}{R_2} + rac{1}{R_3} + \ldots .$$

D.
$$R=R_1+R_2+R_3+\ldots$$

Answer: D

9. The resistance between points A and C in the given figure is:

A. 3Ω

 $\mathsf{B.}\ 4\Omega$

 $\mathsf{C.}\ 2\Omega$

D. 8Ω

Answer: C

Watch Video Solution

10. With increase in temperature, the resistivity of a conductor

- A. Does not change
- B. May increase or decrease
- C. Decreases

D. Increases

Answer: C

Watch Video Solution

11. When length of a metal wire is doubled and area of cross-section is reduced to half, then its resistance becomes

A. half

B. double

C. four times

D. No changes

Answer: C

Watch Video Solution

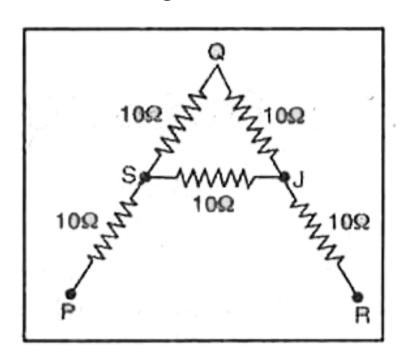
12. The S.I. unit of resistivity is

A. Ω

B. $\Omega-m$

 $\mathsf{C}.\,m$

D. A


Answer: B

Watch Video Solution

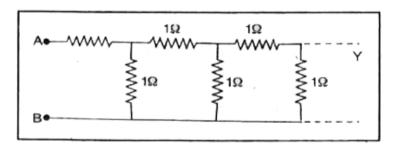
13. The effective resistance (in Ω) between P and R of letter A containing resistances as

shown in the figure is:

A. $\frac{160}{9}$

B. $\frac{80}{3}$

 $\mathsf{C.}\,40$


D. 60

Answer: B

Watch Video Solution

14. What is equivalent resistance between the points A and B of an infinite network of resistance will be

A. infinite

B. zero

 $\mathsf{C}.\,2\Omega$

D.
$$\dfrac{1+\sqrt{5}}{2}\Omega$$

Answer: D

Watch Video Solution

15. With the increase of temperature, the resistivity of a semiconductor

A. Decrease

- B. Increase
- C. My increase or decrease
- D. Does not change

Answer: A

Watch Video Solution

16. How does the resistance of a metallic wire depend on its temperature ?

A. length

- B. temperature
- C. cross-section area
- D. volume

Answer: B

- 17. Kirchhoff's first rule is based on
 - A. Law of conservation of energy
 - B. Law of conservation of momentum

- C. Law of conservation of electric charge
- D. Principle of quantisation of charge

Answer: C

Watch Video Solution

18. UNIT OF ELECTRIC CURRENT

Watch Video Solution

19. The S.I. unit of resistance is ____

20. How much current is flowing through a $1k\Omega$ resistor when a potential difference of 2 V is applied across its end ?

- A. $2\mu A$
- B. 2mA
- C. 2A
- D. 1A

Answer: B

