d'doubtnut

CHEMISTRY

BOOKS - MODERN PUBLICATION CHEMISTRY

(KANNADA ENGLISH)

CHEMICAL KINETICS

Multiple Choice Questions Rate Of A Reaction

1. The concentration of a reactant changes from 0.03 M to
0.02 M in 25 minutes. The average rate of reaction using time in seconds is :
A. $0.4 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$
B. $0.024 \mathrm{~mol} L^{-1} s^{-1}$
C. $0.24 \mathrm{~mol} L^{-1} s^{-1}$
D. $0.66 \times 10^{-4} \mathrm{~mol} L^{-1} s^{-1}$.

Answer: D

- Watch Video Solution

2. For the reaction,
$2 \mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}+\mathrm{O}_{2}$
rate is expressed as :

$$
\begin{aligned}
& \text { A. }-\frac{1}{2} \frac{d\left[N O_{2}\right]}{d t}=-\frac{1}{2} \frac{d[N O]}{d t}=\frac{d\left[O_{2}\right]}{d t} \\
& \text { B. }-\frac{2 d\left[N O_{2}\right]}{d t}=\frac{2 d[N O]}{d t}=\frac{d\left[O_{2}\right]}{d t}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. }-\frac{1}{2} \frac{d\left[N O_{2}\right]}{d t}=\frac{1}{2} \frac{d[N O]}{d t}=\frac{d\left[O_{2}\right]}{d t} \\
& \text { D. }-\frac{d\left[N O_{2}\right]}{d t}=d \frac{[N O]}{d t}=\frac{2 d\left[O_{2}\right]}{d t}
\end{aligned}
$$

Answer: C

- Watch Video Solution

3. The rate of a reaction may be expressed by the following different ways :

$$
\frac{1}{2} \frac{d[X]}{d t}=-\frac{1}{3} \frac{d[Y]}{d t}=-\frac{d[Z]}{d t}
$$

The reaction is :
A. $3 Y+Z \rightarrow 2 X$
B. $2 X+Y \rightarrow Z$
C. $3 X+2 Y \rightarrow 6 Z$
D. $2 Y+6 Z \rightarrow 3 X$

Answer: A

- Watch Video Solution

4. For the reaction :
$2 O_{3} \rightarrow 3 O_{2}$
the rate of reaction is correctly given by the expression
A. $-\frac{2}{3} \frac{d\left[O_{3}\right]}{d t}$
B. $-\frac{1}{3} \frac{d\left[O_{3}\right]}{d t}$
C. $-\frac{1}{2} \frac{d\left[O_{3}\right]}{d t}$
D. $\frac{1}{2} \frac{d\left[O_{3}\right]}{d t}$

- Watch Video Solution

5. The rate of a reaction depends on all factors except :
A. reaction temperature
B. concentration of reactants
C. magnitude of equilibrium constant
D. specific rate constant.

Answer: C

6. For the reaction
$2 A+B+C \rightarrow A_{2} B+C$
the rate law has been found to be
Rate $=\mathrm{k}[\mathrm{A}][B]^{2}$ with $k=2.0 \times 10^{-6} \mathrm{~mol}^{-2} L^{2} \mathrm{~s}^{-1}$.
The initial rate of reaction with
$[\mathrm{A}]=0.1 \mathrm{~mol} L^{-1}$
$[\mathrm{B}]=0.2 \mathrm{~mol}^{-1}$ and
$[\mathrm{C}]=0.8 \mathrm{~mol} L^{-1} s^{-1}$
A. $6.4 \times 10^{-8} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$
B. $4 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
C. $8.0 \times 10^{-9} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$
D. $4.0 \times 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$
7. The rate of the reaction
$2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$
may be expressed as :
$-\frac{d\left[O_{2}\right]}{d t}=2.5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{sec}^{-1}$
The rate of reaction when expressed in terms of SO_{3} will be :
A. $-5.0 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{sec}^{-1}$
B. $-1.25 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{sec}^{-1}$
C. $3.75 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{sec}^{-1}$
D. $5.0 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{4} \mathrm{sec}^{-1}$

- Watch Video Solution

8. For the reaction
$2 A+B \rightarrow 3 C+D$
Which of the following does not express reaction rate?
A. $-\frac{d[B]}{d t}$
B. $\frac{d[D]}{d t}$
C. $-\frac{d[A]}{2 d t}$
D. $-\frac{d[C]}{3 d t}$

Answer: D

9. Consider the reaction :
$\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$
The equality relationship between $\frac{d\left[N H_{3}\right]}{d t}$ and $-\frac{d\left[H_{2}\right]}{d t}$ is
A. $+\frac{d\left[N H_{3}\right]}{d t}=-\frac{2}{3} \frac{d\left[H_{2}\right]}{d t}$
B. $+\frac{d\left[N H_{3}\right]}{d t}=-\frac{3}{2} \frac{d\left[H_{2}\right]}{d t}$
C. $\frac{d\left[N H_{3}\right]}{d t}=-d\left(H_{2}\right] \frac{)}{d t}$
D. $\frac{d\left[N H_{3}\right]}{d t}=-\frac{1}{3} \frac{d\left[H_{2}\right]}{d t}$

Answer: A
10. Consider the chemical reaction
$N_{2}(g)+3 H_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$. The rate of this reaction
can be expressed in terms of time derivative of concentration of $\mathrm{N}_{2}(\mathrm{~g}), \mathrm{H}_{2}(\mathrm{~g})$ or $\mathrm{NH}_{3}(\mathrm{~g})$. Indentify the correct relationship amongst the rate expressions :
A. Rate

$$
=-d\left[N_{2}\right] / d t=-1 / 3 d\left[H_{2}\right] / d t=1 / 2 d\left[N H_{3}\right] / d t
$$

B. Rate

$$
=-d\left[N_{2}\right] / d t=-3 d\left[H_{2}\right] / d t=2 d\left[N H_{3}\right] / d t
$$

C. Rate

$$
=d\left[N_{2}\right] / d t=1 / 3 d\left[H_{2}\right] / d t=1 / 2 d\left[N H_{3}\right] / d t
$$

D. Rate $=-d\left[N_{2}\right] / d t=-d\left[H_{2}\right] / d t=d\left[N H_{3}\right] / d t$

- Watch Video Solution

11. Which of the following statements is not correct for the reaction :
$4 A+B \rightarrow 2 C+2 D$
A. the rate of disappearance of B is one - fourth the rate of disappearance of A .
B. the rate of appearance of C is one - half the rate of disappearance of B.
C. the rate of formation of D is one -half the rate of consumption of A .
D. the rate of formation of C and D are equal .

Answer: B

- Watch Video Solution

12. Nitrogen tetraoxide $\left(\mathrm{N}_{2} \mathrm{O}_{4}\right)$ decomposes as :
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
If the pressure of $\mathrm{N}_{2} \mathrm{O}_{4}$ falls from 0.50 atm to 0.32 atm is
30 minutes the rate of appearance of $\mathrm{NO}_{2}(\mathrm{~g})$ is:
A. $0.006 \mathrm{~atm} \mathrm{~min}^{-1}$
B. $0.003 \mathrm{~atm} \mathrm{~min}^{-1}$
C. $0.012 \mathrm{~atm} \mathrm{~min}^{-1}$
D. $0.024 \mathrm{~atm} \mathrm{~min}^{-1}$

Answer: C

- Watch Video Solution

Multiple Choice Questions Order And Molecularity Of

 Reactions1. For the reaction :
$3 \mathrm{CIO}^{-} \rightarrow \mathrm{CIO}_{3}^{-}+2 \mathrm{CI}^{-}$various steps are :
$\mathrm{CIO}^{-}+\mathrm{CIO}^{-} \rightarrow \mathrm{CIO}_{2}^{-}+\mathrm{CI}^{-}$(slow)
$\mathrm{CIO}_{2}^{-}+\mathrm{CIO}^{-} \rightarrow \mathrm{CIO}_{3}^{-}+\mathrm{CI}^{-}$(fast)
the order of the reaction is :
A. 1
B. 2

C. 0

D. 3

Answer: B

- Watch Video Solution

2. A reaction $A+B \rightarrow C$ is second order with respect to A and independent of B.The rate expression for the reaction is :
A. rate $=k[A][B]$
B. rate $=\mathbf{k}[A]^{2}[B]$
C. rate $=k[A]^{2}[B]^{2}$
D. rate $=k[A]^{2}$

Answer: D

- Watch Video Solution

3. The specific rate constant for a fist order reaction depends on the :
A. concentration of the reactant
B. concentration of the product
C. time
D. temperature .

D Watch Video Solution

4. The possible mechanism for the reaction :
$2 \mathrm{NO}_{2} \mathrm{CI} \rightarrow 2 \mathrm{NO}_{2}+\mathrm{CI}_{2}$ is
$\mathrm{NO}_{2} \mathrm{CI} \xrightarrow{\text { slow }} \mathrm{NO}_{2}+\mathrm{CI}$
$\mathrm{NO}_{2} \mathrm{CI}+\mathrm{CI} \xrightarrow{\text { Fast }} \mathrm{NO}_{2}+\mathrm{CI}_{2}$
The order of the reaction is :
A. 1.5
B. 1
C. 2
D. 3
5. For a chemical reaction $\mathrm{A}+\mathrm{B} \rightarrow C$ it has been found that :
(i) rate becomes double when the concentrations of A is doubled
(ii) rate becomes 16 times when the concentrations of both A and B are doubled. The rate expression is :
A. rate $=k[A]^{2}[B]$
B. rate $=k[A][B]^{2}$
C. rate $=k[A][B]^{3}$
D. rate $=k[A]^{2}$.

- Watch Video Solution

6. For the reaction $2 \mathrm{NO}_{2}+\mathrm{F}_{2} \rightarrow 2 \mathrm{NO}_{2} \mathrm{~F}$ which is proposed to occur as :
$\mathrm{NO}_{2}+\mathrm{F}_{2} \rightarrow \mathrm{NO}_{2} \mathrm{~F}+\mathrm{F}$ (slow)
$\mathrm{NO}_{2}+\mathrm{F} \rightarrow \mathrm{NO}_{2} \mathrm{~F}$ (fast)
the rate law can be written as :
A. rate $=k\left[N O_{2}\right][F]^{2}$
B. rate $=k\left[N O_{2}\right]\left[F_{2}\right]$
C. rate $=k\left[N O_{2}\right]\left[F_{2}\right]$
D. rate $=k\left[\mathrm{NO}_{2} F\right]$
7. A zero order reaction is one :
A. whose rate is not affected by concentration
B. in which the reactants do not react
C. in which one of the reactants is in large excess
D. in which concentration of reactants changes with time .

Answer: A
8. The rate law for a reaction is :

Rate $=k[A]^{n}$
The rate of reaction remains same on doubling the concentration of A. The value of \boldsymbol{n} is :
A. 0
B. 1
C. 2
D. 3

Answer: A
9. A lump of coal burns slowly in air while coal dust burns explosively. This is because of :
A. less mass of powdered coal
B. large surface area of coal dust
C. lower ignition temperature of coal dust
D. nature of coal dust.

Answer: B

- Watch Video Solution

10. The rate constant is numerically same for three reactions of first second and third order respections of
first second and third order respectively .Which of the following is true for the rate of these three reactions if concentration of the reactant is same and larger than 1 M ?
A. $r_{1}=r_{2}=r_{3}$
B. $r_{1}<r_{2}<r_{3}$
C. $r_{1}>r_{2}>r_{3}$
D. no definte relation

Answer: B

- Watch Video Solution

11. The hydrolysis of ethyle acetate in dilute aqueous solution in the presence of a mineral acid is represented by the equation :
$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{H}^{+}} \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

The reaction is :
A. trimolecular
B. second order
C. pseudo first order
D. zero order

Answer: C
12. The units of rate constant and rate of reaction are identical for :
A. zero order reaction
B. first order reaction
C. second order reaction
D. pseudo -first order reaction

Answer: A

- Watch Video Solution

13. The rate law experession for four reactions are give below . In which case the percentage increase in the rate
of reaction would be maximum when the concentration of
A is doubled ?
A. rate $=k[A]$
B. rate $=k[A]^{3 / 2}$
C. rate $k[A]^{\circ}$
D. rate $=k[A]^{2}$

Answer: D

- Watch Video Solution

14. The rate constant of a reaction is $1.2 \times 10^{-5} \mathrm{~mol}^{-2} \mathrm{litre}^{2} s^{-1}$ the order of the reaction is :
A. zero
B. 1
C. 2
D. 3

Answer: D

- Watch Video Solution

15. For the chemical reaction $A \rightarrow B$ it is found that the

rate of the reaction doubles when the concentration of A
is increased four times. The order in terms of \mathbf{A} for this reaction is :
A. Two

B. One

C. Zero
D. Half

Answer: D

D Watch Video Solution

16. The rate constant for the reaction :
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
is $3.0 \times 10^{-5} \mathrm{sec}^{-1}$. If the rate is $2.40 \times 10^{-5} \mathrm{~mol}$
litre ${ }^{-1} \mathrm{sec}^{-1}$ then the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ (in mol
litre ${ }^{-1}$) is :
A. 1.4
B. 1.2
C. 0.02
D. 0.8

Answer: D

D Watch Video Solution

17. Which of the following statements for order of reaction is not correct ?
A. Order can be determined experimentally
B. Order of a reaction is equal to the sum of the powers of concentration terms in differential rate
law
C. It is not effected with the stoichiometric coefficient of the reactants
D. Order cannot be fractional .

Answer: D

- Watch Video Solution

18. The rate of the reaction $\mathrm{A} \rightarrow$ Products at the initial concentration of $3.24 \times 10^{-2} \mathbf{M}$ is nine times its rate at another initial concentration of $1.2 \times 10^{-3} \mathbf{M}$. The order of the reaction is
A. $\frac{1}{2}$
B. $\frac{3}{4}$
C. $\frac{2}{3}$
D. $\frac{3}{2}$

Answer: D

- Watch Video Solution

19. If the concentrations are expressed in mole litre $^{-1}$ and time in sec then the units of the rate constant for the first order reaction are :
A. mol litre ${ }^{-1} \sec ^{-1}$
B. mol^{-1} litre sec ${ }^{-1}$
C. $\sec ^{-1}$
D. mol^{2} litre ${ }^{-2} \mathrm{sec}^{-1}$

Answer: C

- Watch Video Solution

20. The units for the rate constant for the second order
reaction (concentration : mol litre ${ }^{-1}$ time sec) are:
A. mol^{-1} litre sec^{-1}
B. mol litre $\mathrm{e}^{-2} \mathrm{sec}^{-1}$
C. $\sec ^{-1}$
D. $\mathrm{mol} \mathrm{litre}^{-1} \mathrm{sec}^{-1}$

Answer: A

- Watch Video Solution

21. For a reaction $X \rightarrow Y$ the rate of the reaction has been found to be third order with respect to X . What happens when the concentration of X is doubled :
A. rate becomes double
B. rate becomes three times
C. rate becomes six times
D. rate becomes eight times

Answer: D

Multiple Choice Questions Measuring Order Of A Reaction Integrated Rate Equation Half Life Period

1. For a zero order reaction :

$A \rightarrow B$
a graph of rate vs. Time has slope equal to :
A. k
B. $-k / 2.303$
C. -2.303 k
D. zero

Answer: D

D Watch Video Solution

2. For a first order reaction :
$R \rightarrow P$
$t_{1 / 2}$ is proportional to :
A. $[A]^{1 / 2}$
B. $[A]^{0}$
C. [A]
D. $1 /[A]$

Answer: B

- Watch Video Solution

3. For the first order reaction the half life period is (if k is rate constant and a is initial concentration):
A. $\frac{\ln 2}{k}$
B. $\frac{l}{k a}$
C. $\frac{I n k}{2}$
D. $\frac{\log \mathrm{k}}{2}$

Answer: A

- Watch Video Solution

4. If $\left[A_{0}\right]$ is the initial concentration and $[\mathrm{A}]$ is the concentration at time t then :

$$
\begin{aligned}
& \text { A. }[A]=[A]_{0} e^{k / t} \\
& \text { B. }[A]=[A]_{0} e^{-k t} \\
& \text { C. }[A]_{0}=[A] e^{-k / t} \\
& \text { D. }[A]=[A]_{0} e^{-k / t}
\end{aligned}
$$

Answer: B

- Watch Video Solution

5. If a is the initial concentration of a isubstance which reacts according to zero order kinetics and \mathbf{k} is rate constant the time for the reaction to go to completion is :
A. k/a
B. ak
C. a/2k
D. a / k

Answer: D
(D) Watch Video Solution
6. The ration of the time required for $3 / 4$ of the reaction and half of the reaction is :
A. $4: 3$
B. $3: 2$
C. 2:1
D. 1: 2

Answer: C

- Watch Video Solution

7. For the half life period of a first order reaction which one of the following statements is generally false?
A. It is independent of initial concentration .
B. It decreases with the introduction of a catalyst .
C. It increases with increase of temperature .
D. It is inversely proportional to rate constant.
8. The rate constant for a fist order reaction is $k=7 \times 10^{-4} s^{-1}$.The time taken for the reactant to be reduced to $1 / 2$ of the initial concentration is :
A. 990 s
B. 1980 s
C. 445 s
D. 2970 s

Answer: B

- Watch Video Solution

9. The following rate date were obtained at 313 K for the

 reaction :$2 A+2 B \rightarrow C+D$

Expt.	[A]	$[\mathrm{B}]$	Initial rate of formation of D $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~min}^{-1}\right)$
I	0.1	0.1	6.0×10^{-3}
II	0.3	0.2	7.2×10^{-2}
III	0.3	0.4	2.88×10^{-1}
IV	0.4	0.1	2.4×10^{-2}

The rate law for the reaction is :
A. Rate $=\mathbf{k}[A]^{2}[B]$
B. Rate $=k[A]^{2}[B]^{2}$
C. Rate $=k[A][B]^{2}$
D. Rate $=k[A]^{2}$
10. The half life period of a reaction is 100 min . In 400 min the intitial concentration of 2.0 g will become :
A. $0.25 g$
B. 0.75 g
C. $0.125 g$
D. $0.1 g$

Answer: C

11. A radioactive substance is reduced to $1 / 8$ of its original

 concentration in 24 s . The rate constant of the reaction isA. $\frac{0.69}{16} s^{-1}$
B. $\frac{1}{8} s^{-1}$
C. $\frac{1}{24} s^{-1}$
D. $\frac{\operatorname{In} 2}{8} s^{-1}$

Answer: D
12. The rate for the first order reaction is 0.0069 mol
$L^{-1} \mathrm{~min}^{-1}$ and the initial concentration is $0.2 \mathrm{~mol} L^{-1}$.

The half life period is

A. 638 s

B. 1205 s
C. 690 s
D. 0.635 s

Answer: B

- Watch Video Solution

13. The half life period of the reaction :
$\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2}$
is 24 hrs at $30^{\circ} \mathrm{C}$. Starting with 10 g of $N_{2} \mathrm{O}_{5}$ how many grams of $\mathrm{N}_{2} \mathrm{O}_{5}$ will remain after a period of 96 hours ?
A. $1.25 g$
B. $0.63 g$
C. $1.75 g$
D. $0.5 g$

Answer: D
14. If the initial concentration of reactants in a certain reaction is doubled the half life period of the reaction doubles. The order of the reaction is :
A. zero
B. First
C. Second
D. Third

Answer: A
15. The conversion of A to B follows second order kinetics.

Doubling the concentration of A will increases the rate of formation of B by a factor of
A. a factor of 2
B. a factor of 4
C. a factor of $\frac{1}{2}$
D. a factor of $\frac{1}{4}$

Answer: B
16. For an nth order reaction the half life period $t_{1 / 2}$ is proportional to (initial conc $=C_{0}$) :
A. $\frac{1}{C_{0}^{n}}$
B. C_{0}^{n-1}
C. $\frac{1}{C_{0}^{n-1}}$
D. $\frac{0.693}{C_{0}^{n}}$

Answer: C

- Watch Video Solution

17. The rate of a first order reaction is $1.5 \times 10^{-2} \mathrm{~mol}$
$L^{-1} \min ^{-1}$ at 0.5 M concentration of the reactant. The
half life of the reaction is :
A. 23.1 min
B. 8.73 min
C. 7.53 min
D. 0.383 min

Answer: A

- Watch Video Solution

18. In a first order reaction $A \rightarrow B$ if \mathbf{k} is rate constant and initial concentration of the reactant A is 0.5 M then the half-life is :
A. $\frac{\log 2}{k}$
B. $\frac{\log 2}{k \sqrt{0.5}}$
C. $\frac{\operatorname{In} 2}{k}$
D. $\frac{0.693}{0.5 k}$

Answer: C

- Watch Video Solution

19. The half life of a reaction is inversely proportionaly to the square of the initial concentration of the reactant . Then the order of the reaction is :
A. 0
B. 1
C. 2
D. 3

Answer: D

- Watch Video Solution

20. Half the period of a first order reaction is 1386 seconds
. The specific rate constant of the reaction is :
A. $0.5 \times 10^{-2} s^{-1}$
B. $0.5 \times 10^{-3} s^{-1}$
C. $5.0 \times 10^{-2} s^{-1}$
D. $5.0 \times 10^{-3} s^{-1}$

Answer: B

- Watch Video Solution

21. The rate law for reaction between the substances A and \mathbf{B} is given by : $\mathbf{R a t e}=\mathbf{k}[A]^{n}[B]^{m}$
on doubling the concentration of A and halving the cocentration of B the ratio of the new rate to the earlier rate of reaction will be :
A. $m+n$
B. $\mathrm{n}-\mathrm{m}$
C. 2^{n-m}
D. $2^{\frac{1}{m+n}}$

Answer: C

- Watch Video Solution

22. A reaction was found to be second order with respect to the concentration of carbon monoxide. If the concentration of carbon monoxide is doubled with everything else kept the same the rate of reaction will :
A. triple
B. increase by a factor of 4
C. double
D. reamain unchanged

- Watch Video Solution

23. The rate law for the chemical reaction :
$2 \mathrm{NO}_{2} \mathrm{Cl} \rightarrow 2 \mathrm{NO}_{2}+\mathrm{Cl}_{2}$
is: The rate determining step is :

$$
\begin{aligned}
& \text { A. } 2 \mathrm{NO}_{2} \mathrm{Cl} \rightarrow 2 \mathrm{NO}_{2}+2 \mathrm{Cl} \\
& \text { B. } \mathrm{NO}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{NO}_{2} \mathrm{Cl}+\mathrm{Cl} \\
& \text { C. } \mathrm{NO}_{2} \mathrm{Cl}+\mathrm{Cl} \rightarrow \mathrm{NO}_{2}+\mathrm{Cl}_{2} \\
& \text { D. } \mathrm{NO}_{2} \mathrm{Cl} \rightarrow \mathrm{NO}_{2}+\mathrm{Cl}
\end{aligned}
$$

24. For a zero order reaction linear plot was obtained for
[A] vs t. The slope of the line is equal to:
A. k_{0}
B. $-k_{0}$
C. $\frac{0.693}{k_{0}}$
D. $-\frac{k_{0}}{2.303}$

Answer: B

- Watch Video Solution

25. The reaction :

$X \rightarrow$ Product
follows first order kinetics . In 40 minutes the concentration of X changes from 0.1 to 0.025 M . Then the rate of reaction when concentration of X is 0.01 M is
A. $1.73 \times 10^{-4} \mathrm{M} \mathrm{min}^{-1}$
B. $3.47 \times 10^{-5} \mathrm{M} \mathrm{min}^{-1}$
C. $3.47 \times 10^{-4} \mathrm{M} \mathrm{min}^{-1}$
D. $1.73 \times 10^{-5} \mathrm{M} \mathrm{min}^{-1}$

Answer: C
26. The rate constant for a first order reaction is $60 s^{-1}$.

The time required to reduce the concentration of the reactant to $1 / 10$ th of its initial value is
A. 380 s
B. $7.6 \times 10^{-2} \mathrm{~s}$
C. $3.8 \times 10^{-2} \mathbf{s}$
D. 760

Answer: C
27. If the initial concentration of reactants in a certain reaction is doubled the half life period of the reaction doubles. The order of the reaction is :
A. zero
B. fraction
C. three
D. one

Answer: A

- Watch Video Solution

Multiple Choice Questions Effect Of Temperature Catalyst
And Radiation On Rate Of Reaction

1. If k_{1} and k_{2} are rate constants at temperatures T_{1} and T_{2} respectively then according to Arrhenius equation :

$$
\begin{aligned}
& \text { A. } \log \frac{k_{2}}{k_{1}}=\frac{2.303 R}{E_{a}}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right] \\
& \text { B. } \log \frac{k_{2}}{k_{1}}=\frac{E_{a}}{2.303 R}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right] \\
& \text { C. } \log \frac{k_{1}}{k_{2}}=\frac{E_{a}}{2.303 R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right] \\
& \text { D. } \log \frac{k_{2}}{k_{1}}=\frac{E_{a}}{2.303 R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]
\end{aligned}
$$

Answer: B

- Watch Video Solution

2. The influence of temperature on the rate of reaction is given by :
A. Gibbs Helmholtz equation
B. Clausius Clapeyron equation
C. Arrhenius equation
D. van der Waals equation.

Answer: C

- Watch Video Solution

3. The effect of catalyst in a chemical reaction is to change
the :
A. heat of reaction
B. equilibrium concentration

C. activation energy

D. final products

Answer: D

- Watch Video Solution

4. The temperature coefficient for most of the reactions
lies between :
A. 2 and 3
B. 1 and 2
C. 3 and 4
D. 10 .

- Watch Video Solution

5. An exothermic reaction $A \rightarrow B$ has an activation energy of 17 kJ per mole of A . The heat of reaction is 40 kJ
.The activation energy for the reverse reaction $B \rightarrow A$ is
A. 23 kJ
B. 97 kJ
C. 57 kJ
D. 17 kJ

Answer: C
6. Which of the followig statements is true ?
A. The reaction is fast if the activation energy is low
B. The activation energy of forward reaction can never
be greater than that of the backward reaction .
C.A catalyst increases the rate of a reaction by
decreasing the rate of backward reaction
D. Reaction rates increase with temperature because
the activation energy decreases at high temperature .
7. Which one of the following statements is not true regarding catalyst ?
A. A catalyst remains unchanged at the end of the reaction.
B. A catalyst can initiat a rection .
C. A catalyst does not alter the equilibrium in a reversible reaction
D. Catalysts are sometimes very specific in terms of reactions
8. The activation energy of a reaction is zero . The rate constant of the reaction :
A. a) increases with increase in temperature
B. b) decreases with increase in temperature
C. c) decreases with decrease in temperature
D. d) is nearly independent of temperature

Answer: D

9. The activation energy of a reaction is 56.2 kJ mole . The ratio of rate constants at 305 K and 300 K is ($R=8 \mathrm{~J}$ $\operatorname{mol}^{-1} K^{-1}$) about :
A. 1.25
B. 1.47
C. 1.10
D. 1.60

Answer: B
10. Reaction $A+B \rightarrow C+D+38$ kcal has activation energy 20 kcal . Activation energy for reaction $C+D \rightarrow A+B$ is :
A. 20 kcal
B. -20 kcal
C. 58 kcal
D. 18 kcal

Answer: C

11. The reaction

$A+B \rightarrow C+D \Delta H=30 \mathrm{kJmol}^{-1}$
should have activation energy
A. a) $\mathbf{3 0} \mathrm{kJ} \mathrm{mol}^{-1}$
B. b) $-30 \mathrm{~kJ} \mathrm{~mole}^{-1}$
C. c) $>30 \mathrm{~kJ} \mathrm{~mole}{ }^{-1}$
D. d) $\leq 30 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: C
12. Two reactions $A \rightarrow$ Products and $B \rightarrow$ products have rate constants k_{A} and k_{B} respectively at temperature T and activation energies E_{A} and E_{B} respectively. If $k_{A}>K_{B}$ and $E_{A}<E_{B}$ and assuming that A for both the reactions is same then :
A. at higher temperature k_{A} will be greater than k_{B}
B. at lower temperature k_{A} and k_{B} will be close to
each other in magnitude
C. as temperature increases k_{A} and k_{B} will become close to each other in magnitude .
D. at lower temperature $k_{b}>k_{A}$
13. Rate of reaction can be expressed by Arrhenius equation as $\mathbf{k}=A e^{-E / R T}$. In this reaction E represents
A. The energy below which colliding molecules will not
react
B. The total enegy of the reacting molecules at a temperature T .
C. The fraction of molecules with energy greater than
activation energy of the reaction
D. The energy above which the colloiding molecules

D Watch Video Solution

Multiple Choice Questions Level li

1. A first order reaction is carried out starting with 10 mol
L^{-1} of the reactant. It is $\mathbf{4 0 \%}$ complete in 50 min . If the
same reaction is carried out with an initial concentration
of $5 \mathrm{~mol} L^{-1}$ the percentage of reaction that is completed in 50 min is
A. 40%
B. 80%
C. 20\%
D. 36.8\%

Answer: A

- Watch Video Solution

2. A substance decomposes according to zero order
kinetics . If the rate constant is k and initial concentration is a then half life period is :
A. 1/ak
B. $0.693 / \mathrm{k}$
C. k/2a
D. $a / 2 k$

Answer: D

- Watch Video Solution

3. In the reaction $P \rightarrow Q$ if the concentration of \mathbf{P} is increased by four times the rate of reaction is increased by two times. The order of reaction is :
A. 1
B. 0.5
C. Zero
D. 2

- Watch Video Solution

4. The rate law of a reaction is :

Rate $=k[A]^{2}[\mathrm{~B}]$

On doubling the concentration of both A and B the rate x
will become :
A. $4 x^{2}$
B. 8 x
C. x^{3}
D. 9 x
5. The ezyme catalysed reaction is faster than a metal catalysed reaction because its activation energy is :
A. greater than that of metal catalysed reaction
B. same as that of metal catalysed reaction
C. less than thart of metal catalysed reaction
D. none of the above

Answer: C

6. In 1.2 year half of 160 mg of a radioactive isotope decays
. The amount present after 6 years is :
A. a) 0 mg
B. b) $\mathbf{4} \mathbf{m g}$
C. c) 5 mg
D. d) 16 mg

Answer: C

D Watch Video Solution

7. Starting with one mole of a compound X it is found that the reaction is $3 / 4$ complete in 1 min. What is the rate

constant if the reaction follows first order ?

A. $0.213 \mathrm{sec}^{-1}$
B. $2.31 \mathrm{sec}^{-1}$
C. $0.0231 \mathrm{sec}^{-1}$
D. $2.31 \times 10^{-3} \mathrm{sec}^{-1}$

Answer: C

- Watch Video Solution

8. The rate of a first order reaction is $0.69 \times 10^{-2} \mathrm{~min}^{-1}$
and the initial concentration is $0.5 \mathrm{~mol} L^{-1}$. The half life
period is
A. 3000 s
B. 0.33 s
C. 50 s
D. 100 s

Answer: A

- Watch Video Solution

9. The rate of a first order reaction is $1.8 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$
when the initial concentration is $0.3 \mathrm{~mol} L^{-1}$. The rate constant in the units of second is :
A. $1 \times 10^{-2} s^{-1}$
B. $1 \times 10^{-4} s^{-1}$
C. $6 \times 10^{-2} s^{-1}$
D. $6 \times 10^{2} s^{-1}$

Answer: B

- Watch Video Solution

10. The rate of a first order reaction has been found to be
$2.45 \times 10^{-6} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$ at concentration C_{1}. The value of C_{1} is (rate constant $=3.5 \times 10^{-5}$):
A. $7.0 \mathrm{~mol} L^{-1}$
B. $0.7 \mathrm{~mol} L^{-1}$

C. $0.07 \mathrm{~mol} L^{-1}$

D. $2.1 \mathrm{~mol} L^{-1}$

Answer: C

- Watch Video Solution

11. The half life period for the first order reaction $X Y_{2} \rightarrow X+Y_{2}$ is 10 minutes. In what period would the concentration of $X Y_{2}$ be reduced to 10% of the original concentration ?
A. 33.2 min
B. 90 min
C. 120 min

D. 26.3 min

Answer: A

- Watch Video Solution

12. If the half life period for a reaction in A is 100 min . How long will it take [A] to reach 25% of its initial concentration ?
A. 50 min
B. 250 min
C. 200 min
D. 500 min

Answer: C

- Watch Video Solution

13. The experimental data for the reaction :
$2 \mathrm{NO}(\mathrm{g})+\mathrm{CI}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NOCI}(\mathrm{g})$ are given below:
Expt $\left[C I_{2}\right] \quad[N O]$ Initial rate
$1 \quad 0.020 \quad 0.010 \quad 2.40 \times 10^{-4}$
2
$\begin{array}{lll}0.020 & 0.030 & 2.16 \times 10^{-3}\end{array}$
3
$\begin{array}{lll}0.040 & 0.030 & 4.32 \times 10^{-3}\end{array}$
What is the order the reaction?
A. 1
B. 2
C. 3
D. 0

Answer: C

- Watch Video Solution

14. The rate of a first order reaction :
$R \rightarrow P$
is $7.5 \times 10^{-4} \mathrm{~mol} L^{-1} \mathrm{~s}^{-1}$. The rate concentration of R is
$0.5 \mathrm{~mol} L^{-1}$. The rate constant is :
A. $2.5 \times 10^{-5} s^{-1}$
B. $1.5 \times 10^{-3} s^{-1}$
C. $4.16 \times 10^{-7} s^{-1}$
D. $1.50 \times 10^{5} s^{-1}$

- Watch Video Solution

15. The decomposition of ozone proceeds as :
$O_{3} \rightarrow O_{2}+O$ (fast)
$O+O_{3} \rightarrow 2 O_{2}$ (slow)
The rate expression should be :
A. Rate $=k\left[O_{3}\right]^{2}$
B. Rate $=k\left[O_{3}\right]^{2}\left[O_{2}\right]^{-1}$
C. Rate $=k\left[O_{3}\right]\left[O_{2}\right]$
D. Rate $=k\left[O_{3}\right]\left[O_{2}\right]^{-1}$

Answer: B

16. In a gaseous reaction $2 P+Q \rightarrow$ Products :

Rate $=k[P]^{2}[Q]$
The volume of the reaction vessel is suddenly reduced to
half of its initial volume. The rate of eaction as compared
to original rate becomes :
A. $\frac{1}{4}$ times
B. $\frac{1}{8}$ times
C. 4 times
D. 8 times

Answer: D
17. A first order reaction is 25% complete in one hour . At the end of two hours the extent of reaction is :
A. 0.5
B. 0.3125
C. 0.4375
D. 0.75

Answer: C

- Watch Video Solution

18. For a reaction : A \rightarrow Products it is found that the rate of reaction increases by a factor of 6.25 when the
concentration of A is increased by a factor of 2.5. The order of the reaction with respect to A is :
A. 2.5
B. 3
C. 2
D. 0.5

Answer: C

- Watch Video Solution

19. Two reactions proceed at $25^{\circ} \mathrm{C}$ at the same rate. The temperature coefficient of the rate of first reaction is 2
and the that of second reaction is 2.5 . The ratio of rates of these reactions at $95^{\circ} \mathrm{C}$ is :
A. 5.6
B. 9.85
C. 4.768
D. 70

Answer: C

- Watch Video Solution

20. A gaseous reaction $\mathbf{A}(\mathrm{g}) \rightarrow 2 B(g)+C(g)$ is found to be of first order. If the reaction is started with $p_{A}=90 \mathrm{~mm}$

Hg the total pressure after 10 min is found to be 180 min
Hg. The rate constant of the reaction is :
A. $4.60 \times 10^{-3} s^{-1}$
B. $6.9 \times 10^{-3} s^{-1}$
C. $1.15 \times 10^{-3} s^{-1}$
D. $4.90 \times 10^{-3} s^{-1}$

Answer: C

- Watch Video Solution

21. The ratio of the time taken for 99.9% reaction and half life of the reaction is :
A. 100
B. 49.95
C. 10
D. 1000

Answer: C

- Watch Video Solution

22. One litre of $\mathbf{2} \mathbf{M}$ acetic acid is mixed with one litre of 2

M ethyl alcohol to form ester as :
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Oh} \rightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$

The decrease in initial reaction rate if each solution is diluted by an equal volume of water would be :
A. $\frac{1}{2}$ time
B. $\frac{1}{4}$ times
C. 2 times

D. 4 times

Answer: B

- Watch Video Solution

23. The following plot of $t_{1 / 2}$ vs. concentration corresponds to :

A. second order
B. Third order
C. First order
D. zero order

Answer: B

- Watch Video Solution

24. For a reaction :
$A \rightarrow B$

If k_{1} and k_{-1} are the rate constants for the forward and the backard reactions respectively then equilibrium constant of the reaction is given as :
A. $k=\frac{k_{1}}{k_{-1}}$
B. $K=k_{-1} / k_{1}$
C. $K_{k_{1}} \times k_{-1}$
D. $K=k_{1}+k_{-1}$

Answer: A
25. The reaction : $A \rightarrow B$ follows first order kinetics. The time taken for 0.8 mol of A to produce 0.6 mol of B is 1 hour . What is the time taken for conversion of 0.9 mol of A to produce 0.675 mol of B ?
A. 1 hour
B. 0.5 hour
C. 0.25 hour
D. 2 hours

Answer: A
26. If $\mathbf{6 0 \%}$ of a first order reaction was completed in $\mathbf{6 0}$ minutes 50% of the same reaction would be completed in approximately :
A. 45 minutes
B. 60 minutes
C. 40 minutes
D. 50 minutes .

Answer: B
27. For a radioactive decay the value of $\mathrm{k}=2.7 \times 10^{-3} s^{-1}$ and initial concentration is $\mathbf{1 6 0}$ moles /L. After 100s the concentration of radioactive element is :
A. $76 \mathrm{~mol} / \mathrm{L}$
B. $122 \mathrm{~mol} / \mathrm{L}$
C. $\mathbf{5 0 ~ m o l} / \mathrm{L}$
D. $80 \mathrm{~mol} / \mathrm{L}$

Answer: A

- Watch Video Solution

28. The time taken for 10% completion of a first order reaction is $\mathbf{2 0} \mathbf{~ m i n}$. Then for 19% completion the reaction will take :
A. 40 mins
B. 60 mins
C. 30 mins
D. 50 mins

Answer: B
29. For a chemical raction $A \rightarrow B$ the rate of the reaction is $2 \times 10^{-3} \mathrm{~mol} d m^{-3} \mathrm{~s}^{-1}$, when the initial concentration is $0.05 \mathrm{~mol} d m^{-3}$. The rate of the same reaction is $1.6 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$ when the initial concentration is $0.1 \mathrm{~mol} d m^{-3}$. The order of the reaction is
A. 0
B. 3
C. 1
D. 2

Answer: C
30. For the decomposition of a compound $A B$ at 600 K the following data were obtained :
$[\mathrm{AB}] \mathrm{mol} / \mathrm{dm}^{3} \quad$ Rate of decomposition of AB

	in $\mathrm{mol} / \mathrm{dm}^{3} / \mathrm{s}$
0.20	2.75×10^{-8}
0.40	11.0×10^{-8}
0.60	24.75×10^{-8}.

The order for the decomposition of $A B$ is
A. 0
B. 1
C. 2
D. 1.5

Answer: C
31. For a fist order reaction the rate constant is 6.909 $\min ^{-1}$. The time taken for 75% conversion in minutes is:
A. $\frac{3}{2} \log 2$
B. $\frac{2}{3} \log 3$
C. $\frac{2}{3} \log 2$
D. $\frac{3}{2} \log \frac{3}{4}$

Answer: B

- Watch Video Solution

32. The activation energies of two reactions are E_{1} and
$E_{2}\left(E_{1}>E_{2}\right)$. If the temperature of the system is increased from T_{1} to T_{2}, the rate constant of the reaction changes from k_{1} to k_{1} in the first reaction and k_{2} to k_{2} in second reaction predict which of the following expression is correct ?
A. $\frac{k_{1}}{k_{1}}=\frac{k_{2}}{k_{2}}$
B. $\frac{k_{1}}{k_{1}}>\frac{k_{2}}{k_{2}}$
C. $\frac{k_{1}}{k_{1}}<\frac{k_{2}}{k_{2}}$
D. $\frac{k_{1}}{k_{1}}=\frac{k_{2}}{k_{2}}=\mathbf{0}$

Answer: D
33. In the reaction
$\mathrm{BrO}_{3}^{-}(\mathrm{aq})+5 \mathrm{Br}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
the rate of appearance of bromine is related to the rate of disappearance of bromide ions as :
A. $\frac{d\left[B r_{2}\right]}{d t}=-\frac{5}{3} \frac{d\left[B r^{-}\right]}{d t}$
B. $\frac{d\left[B r_{2}\right]}{d t}=\frac{5}{3} \frac{d\left[B r^{-}\right]}{d t}$
C. $\frac{d\left[B r_{2}\right]}{d t}=\frac{3}{5} \frac{d\left[B r^{-}\right]}{d t}$
D. $\frac{d\left[B r_{2}\right]}{d t}=-\frac{3}{5} \frac{d\left[B r^{-}\right]}{d t}$

Answer: A

D Watch Video Solution

34. Consider the chemical reaction :
$\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$
The rate of this reaction can be expressed in terms of time derivative of concentration of
$N_{2}(g), H_{2}(g)$ or $N H_{3}(g)$. Identify the correct relationship amongst the rate expressions :
A. Rate $=-\frac{d\left[N_{2}\right]}{d t}=-1 / 3 d\left[H_{2}\right] / d t=\frac{1}{2} d \frac{N H_{3}}{d t}$
B. Rate

$$
=-d\left[N_{2}\right] / d t=-3 d\left[H_{2}\right] / d t=\frac{2 d\left[N H_{3}\right]}{1}
$$

C. Rate $=d\left[N_{2}\right] / d t=1 / 3 d\left[H_{2}\right] / d t=\frac{1}{2 d\left[N H_{3}\right] d t}$
D. Rate

$$
=-d\left[N_{2}\right] / d t=-d\left[H_{2}\right] / d t=d\left[N H_{3}\right] / d t
$$

35. In a first order reaction the concentration of the reactant decreases from $800 \mathrm{~mol} / d m^{3}$ to $50 \mathrm{~mol} / d m^{3}$ in $2 \times 10^{4} \mathrm{sec}$. The rate constant of the reaction in sec^{-1} is
A. 2×10^{4}
B. 3.45×10^{-5}
C. 1.386×10^{-4}
D. 2×10^{-4}

Answer: C

36. The reaction :

$X \rightarrow$ Product
follows first order kinetics . In 40 minutes the concentration of X changes from 0.1 to 0.025 M . Then the rate of reaction when concentrartion of X is 0.01 M is :
A. $1.73 \times 10^{-4} \mathrm{M} \mathrm{min}^{-1}$
B. $3.47 \times 10^{-5} \mathrm{M} \mathrm{min}^{-1}$
C. $3.47 \times 10^{-4} \mathrm{M} \mathrm{min}^{-1}$
D. $1.73 \times 10^{-5} \mathrm{M} \mathrm{min}^{-1}$

Answer: C

37. In a first order reaction the concentration of the reactant decreases from 0.8 to 0.4 M in 15 minutes. The
time taken for the concentration to change from 0.1 M to 0.025 M is :
A. a) 7.5 mins
B. b) $\mathbf{1 5} \mathbf{m i n s}$
C. c) 30 mins
D. d) $\mathbf{6 0} \mathbf{~ m i n s}$

Answer: C
38. A schematic plot of $\ln k_{e q}$ versus inverse of temperature for a reaction is shown below : The reaction must be :

A. exothermic
B. endothermic
C. one with negligible enthalpy change highly spontaneous at ordinary temperature.
D. high spontaneous at ordinary temperature .

Answer: A

- Watch Video Solution

39. Consider an endothermic reaction :
$X \rightarrow Y$
with activation energies E_{b} and E_{f} for the backward and
forward reactions respectively . In general
A. $E_{b}<E_{f}$
B. $E_{b}>E_{f}$
C. $E_{b}=E_{f}$
D. there is no definite relation between E_{b} and E_{f}
40. Consider a reaction a G + bH \rightarrow Products. When concentration of both the reactants \mathbf{G} and H is doubled the rate increases by eight times. However when the concentration of \mathbf{G} is doubled keeping the concentration of H fixed the rate is doubled. The overall order of the reaction is :
A. 0
B. 1
C. 2
D. 3

Answer: D

- Watch Video Solution

41. The energies of activation for forward and reverse reactions for $A_{2}+B_{2} \rightarrow 2 A B$ are $180 \mathbf{~ k ~ m o l}^{-1}$ and 200 kJ mol^{-1} respectively. The presence of a catalyst lowers the activations by $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The enthalpy change of the reaction $\left(A_{2}+B_{2} \rightarrow 2 A B\right)$ in the presence of catalyst will be (in $\mathrm{kJ} \mathrm{mol}{ }^{-1}$) :
A. 120
B. 280
C. 20
D. 300

Answer: C

- Watch Video Solution

42. For reaction $A \rightarrow B$ the rate of reaction incrases by a
factor of 1.857 when the concentration of A is increased by 1.5 times. The order of reaction with respect to A is
A. 1
B. 1.5
C. 2
D. 2.5

(Watch Video Solution

43. For a reaction $\mathrm{NO}_{g}+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g)$

Rate $=k\left[N O^{2}\right]\left[O_{2}\right]$ if the volume of the reaction vessel
is doubled the rate of the reaction :
A. will diminish to $1 / 4$ of initial value
B. will diminish to $1 / 8$ of initial value will grow 4 times
C. will grow 4times
D. will grow 8 times

Answer: B
44. For a first order reaction involving decomposition of
$\mathrm{N}_{2} \mathrm{O}_{5}$ the following information is available :
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
Rate $=\mathbf{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$
$\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$
Rate $=\mathbf{k}\left[N_{2} O_{5}\right)$
Which of the following expressions is true?
A. $k=k$
B. $k=2 k$
C. $\mathrm{k}=1 / 2 \mathrm{k}$
D. $\mathrm{k}>k$

Answer: B

- Watch Video Solution

45. Which of the following graphs correspond to first order reaction ?

Answer: A

D Watch Video Solution

46. For a second order reaction rate at a particular time is
x. If the initial concentration is tripled, the rate will
become :
A. $3 x$
B. $9 x^{2}$
C. 9 x
D. 27 x

Answer: C

- Watch Video Solution

47. For a reaction having rate law expression :

Rate $=k[A]^{3 / 2}[B]^{-1 / 2}$
If the concentration of both A and B become four times
the rate of reaction
A. become four times
B. becomes 16 times
C. decreases four times
D. reamains same .

Answer: A

- Watch Video Solution

48. A chemical reaction was carried out at 300 K and 280
K. The rate constants were found to be k_{1} and k_{2} respectively. Then
A. $k_{2}=4 k_{1}$
B. $k_{2}=2 k_{1}$
C. $k_{2}=0.25 k_{1}$
D. $k_{2}=0.5 k_{1}$

Answer: C

49. The time taken for 90% of a first order reaction to complete is approximately
A. 1.1 times that of half life
B. 2.2 times that of half life
C. 3.3 times that of half life
D. 4.4 times that of half life

Answer: C

- Watch Video Solution

50. The rate law for reaction between the substances A and \mathbf{B} is given by: Rate $=\mathbf{k}[A]^{n}[B]^{m}$
on doubling the concentration of A and halving the cocentration of B the ratio of the new rate to the earlier rate of reaction will be :
A. $m+n$
B. $\mathrm{n}-\mathrm{m}$
C. 2^{n-m}
D. $\frac{1}{2^{m-n}}$

Answer: C

Multiple Choice Questions Level Iii

1. The half life period of a first order chemical reaction is
6.93 minutes . The time required for the completion of
99% of the chemical reaction will be ($\log 2=0.301$) :
A. 230.3 minutes
B. 23.03 minutes
C. 46.06 minutes
D. 460.6 minutes

Answer: C

2. Consider the reaction

$C I_{2}(a q)+H_{2} S(a q) \rightarrow S(s)+2 H^{+}(a q)+2 C I^{-1}(a q)$
The rate equation for this reaction is rate $=k\left[C I_{2}\right]\left[H_{2} S\right]$
Which of these mechanisms is /are consistent with this

rate equation?

$\mathrm{CI}_{2}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{H}^{+}+\mathrm{CI}^{-}+\mathrm{CI}^{+} \mathrm{HS}^{-}$(slow)
$C I^{+}+H S^{-}+C I^{-}+S$ (fas)
$H_{2} S \rightarrow H^{+}+H S^{-}$(fast equilibrium)
$\mathrm{CI}_{2}+\mathrm{HS}^{-} \rightarrow 2 \mathrm{CI}^{-}+\mathrm{H}^{+}+S$ (slow)
A. Neither (i) nor (ii)
B. (i) only
C. (ii) only
D. Both (i) and (ii)

- Watch Video Solution

3. The time for half life period of a certain reaction $\mathrm{A} \rightarrow$

Products is $\mathbf{1}$ hour. When the initial concentration of the
reactant A is $2.0 \mathrm{~mol} L^{-1}$ how much time does it take for its concentration to come from 0.50 to $0.25 \mathrm{~mol} L^{-1}$ if it is a zero order reaction ?
A. 0.25 h
B. 1 h
C. 4 h
D. 0.5 h

Answer: A

- Watch Video Solution

4. The rate of a chemical reaction doubles for every $10^{\circ} \mathrm{C}$ rise of temperature. If the temperature is raised by $50^{\circ} \mathrm{C}$ the rate of the reaction increases by about :
A. 32 times
B. 64 times
C. 10 times
D. 24 times

Answer: A

5. A reactant (A) forms two products :

$A \xrightarrow{k_{1}} B$ Activation Energy $E_{a_{1}}$
$A \xrightarrow{k_{2}} C$ Activation Energy $E_{a_{2}}$
If $E_{a_{1}}$ then k_{1} and k_{2} are related as:
A. $k_{2}=k_{1} e^{E_{a_{1}} / R T}$
B. $k_{1}=k_{2} e^{E_{a_{1}} / R T}$
C. $k_{1}=A k_{2} e^{E_{a_{1}} / R T}$
D. $k_{1}=2 k_{2} e^{E_{a_{2}} / R T}$

Answer: C

6. For a first order reaction $(A) \rightarrow$ products the concentration of A changes from 0.1 M to 0.025 M in 40 minutes. The rate of reaction when the concentration of A is 0.01 M is :
A. $1.73 \times 10^{-4} M / \min$
B. $1.73 \times 10^{-5} \mathrm{M} / \mathrm{min}$
C. $3.47 \times 10^{-4} \mathrm{M} / \mathrm{min}$
D. $3.47 \times 10^{-5} \mathrm{M} / \mathrm{min}$

Answer: C
7. a) The rate of a particular reaction doubles when the temperature changes from 300 K to 310 K . Calculate the energy of activation of the reaction. [Given : $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \mathrm{]}$.
A. $53.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $48.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $58.5 \mathrm{kJmol}^{-1}$
D. $60.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: A

- Watch Video Solution

8. For the non -stoichiometric reaction :

$2 A+B \rightarrow C+D$
the following data were obtained in three separate experiments experiments all at 298 K

Initial conc. $[\mathrm{A}]$	Initial conc. $[\mathrm{B}]$	Initial rate of formation of C $(\mathrm{mol} \mathrm{Ls})$
0.1 M	0.1 M	1.2×10^{-3}
0.1 M	0.2 M	1.2×10^{-3}
0.2 M	0.1 M	2.4×10^{-3}

The rate law for the formation of C is
A. $\frac{d C}{d t}=k[A][B]$
B. $\frac{d C}{d t}=k[A]^{2}[B]$
C. $\frac{d C}{d t}=k[A][B]^{2}$
D. $\frac{d C}{d t}=k[A]$

- Watch Video Solution

9. Higher order (>3) reactions are rare due to :
A. low probability of simultaneous collision of all the reacting species .
B. increase in entropy and activation energy as more
molecules are involed
C. shifting of equilibrium towards reactants due to
elastic collisions
D. loss of active species on collision .

D Watch Video Solution

Recent Examination Questions
1.2 g of a radioactive sample having half life of 15 days
was synthesised on 1st Jan 2009. The amount of the smaple left behind on 1st March, 2009 (including btoh the days)
A. 0.124 g
B. 1 g
C. 0.5 g
D. 0 g

Answer: A

- Watch Video Solution

2. For a chemical raction $A \rightarrow B$ the rate of the reaction is $2 \times 10^{-3} \mathrm{~mol} d m^{-3} s^{-1}$, when the initial concentration is $0.05 \mathrm{~mol} d m^{-3}$. The rate of the same reaction is $1.6 \times 10^{-2} \mathrm{~mol} d m^{-3} s^{-1}$ when the initial concentration is $0.1 \mathrm{~mol} d m^{-3}$. The order of the reaction is
A. 0
B. 3

C. 1

D. 2

Answer: B

- Watch Video Solution

3. Match the Column

Column A	Column B
(1) Carl Correns	(a) Theory of Natural selection
(2) Mendel	(b) Use and Disuse of Organ
(3) Darwin	(c) Four O' Clock plant
(4) Lamarck	(d) Laws of Inheritance

A. 0
B. 1
C. 2
D. 1.5

Answer: C

- Watch Video Solution

4. The rate equation for a reaction $A \rightarrow B$ is $r=k[A]^{0}$. If the initial concentration of the reactant is a mol $d m^{-3}$, the half life period of the reaction is
A. k/a
B. a / k
C. 2a/k
D. $\mathrm{a} / 2 \mathrm{k}$

Answer: D
5. The activation energy for a reaction at the temperature T K was found to be 2.303 RT J mol^{-1}. The ratio of the rate constant to Arrhenius factor is :
A. 10^{-1}
B. 10^{-2}
C. 2×10^{-3}
D. $2 x 10^{-2}$

Answer: A
6. The time required for 100% completion of a zero order reaction is
A. $\frac{2 k}{a}$
B. $\frac{a}{2 k}$
C. $\frac{a}{k}$
D. ak.

Answer: B

- Watch Video Solution

7. The following data is obtained during the first order thermal decomposition of $2 A_{(g)} \rightarrow B_{(g)}+C_{(s)}$ at
constant volume and temperature .

S.No.	Time	Total pressure in Pascal
1.	At the end of 10 minutes	300
2.	After completion	200

The rate constant in min^{-1} is :
A. 0.0693
B. 6.93
C. 0.00693
D. 69.3

Answer: A

- Watch Video Solution

8. A first order reaction is $\mathbf{6 0 \%}$ complete in 20 minutes .How long will the reaction take to be 84% complete?
A. 54 mins
B. 68 mins
C. 40 mins
D. 76 mins

Answer: C

D Watch Video Solution

9. A given sample of milk turns sour at room temperature
$\left(27^{\circ} \mathrm{C}\right)$ in 5 hours. In a refrigerator at $-3^{\circ} \mathrm{C}$, it can be
stored 10 times longer. The energy of activation for the souring of milk is
A. $2.303 \times 10 \mathrm{RkJ} \mathrm{mol}^{-1}$
B. $2.303 \times 5 \mathrm{RkJ} \mathrm{mol}^{-1}$
C. $2.303 \times 3 \mathrm{R} \mathrm{kJ} \mathrm{mol}^{-1}$
D. $2.303 \times 2.7 \mathrm{RkJ} \mathrm{mol}^{-1}$

Answer: D

- Watch Video Solution

10. At 300 K a gaseous reaction $A \rightarrow B+C$ was found to follow first order kinetics. Starting with pure A the total pressure at the end of 20 minutes was 100 mm of Hg
. The total pressure after the completion of the reactionn
is 180 mm of Hg . The partial pressure of A (in mm of Hg)
is :
A. 100
B. 90
C. 180
D. 80

Answer: B
(Watch Video Solution
11. For a reaction : $A+B \rightarrow$ Products the rate of the reaction of various concentrations are given below :

Expt No.	$[A]$	$[B]$	Rate $\left(\mathrm{mol} \mathrm{dm}^{-3} s^{-1}\right.$
1	0.2	0.2	2
2	0.2	0.4	4
3	0.6	0.4	36

The rate law for the above reaction is :
A. $r=k[A]^{2}[B]$
B. $r=k[A][B]^{2}$
C. $r=k[A]^{3}[B]$
D. $r=k[A]^{2}[B]^{2}$

Answer: A

- Watch Video Solution

12. If 50 \% of the reactant is converted into a product in
react in 100 minutes?
A. 93.75%
B. 87.5%
C. 75%
D. 100%

Answer: A

- Watch Video Solution

13. The rate of reaction increases with rise in temperature because of
A. increases in number of activated molecules
B. increase in energy of activation
C. decrease in energy of activation
D. increase in the number of effective collisions .

Answer: D

D Watch Video Solution

14. The temperature coefficient of a reaction is 2 . When the temperature is increased from $30^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$, the rate of reaction is increased by
A. 60 times
B. 64 times

C. 150 times

D. 400 times

Answer: B

- Watch Video Solution

15. A plot of $\frac{1}{T}$ Vsk for a reaction gives the slope
$-1 \times 10^{4} K$. The energy of activation for the reaction is
(Given $R=8.314 J K^{-1} \mathrm{~mol}^{-1}$)
A. $8314 \mathrm{~J} \mathrm{~mol}^{-1}$
B. $1.202 \mathrm{kJmol}^{-1}$
C. $12.02 \mathrm{Jmol}^{-1}$
D. $83.14 \mathrm{kJmol}^{-1}$

Answer: A

- Watch Video Solution

16. $A_{(g)} \xrightarrow{\Delta} P_{(g)}+\mathrm{Q}_{(g)}+R_{(g)}$, follows first order kinetics with a half life of 69.3 s at $500^{\circ} \mathrm{C}$. Starting from the gas ' A ' enclosed in a container at $500^{\circ} C$ and at a pressure of 0.4 atm , the total pressure of the system after 230 s will be
A. 1.15 atm
B. 1.32 atm
C. 1.22 atm

D. 1.12 atm

Answer: D

- Watch Video Solution

17. In the first order reaction, the concentration of the reactant is reduced to 12.5% in one hour. The half-life period of the reaction is:
A. 30 min
B. 3 hr
C. 15 min
D. 20 min

- Watch Video Solution

18. Half life period of a first order reaction is 10 min .

Starting with initial concentration 12 M. The rate after 20 \min is
A. $0.0693 \times 3 \mathrm{~min}^{-1}$
B. $0.0693 M \mathrm{~min}^{-1}$
C. $0.0693 \times 4 \mathrm{M} \mathrm{min}^{-1}$
D. $0.693 \times 3 \mathrm{M} \mathrm{min}^{-1}$

Answer: A
19. $100 \mathrm{~cm}^{3}$ of 1 M CH COOH was mixed with $100 \mathrm{~cm}^{3}$ of 2 M CH 3 OH to form an ester. The change in the initial rate if eachsolution is diliuted with equal volume of water would be
A. 0.5 times
B. 2 times
C. 0.25 times
D. 4 times

Answer: C
20. For the reaction $\mathrm{A}+\mathrm{B} \rightarrow$ products. The rate becomes doubled when concentration of only A is increased by two times, the rate is increased by four times, when the concentration of B alone is doubled what is the order of the reaction?
A. 1
B. 2
C. 3
D. 4

Answer: B

