©゙" doubtnut

CHEMISTRY

BOOKS - MODERN PUBLICATION CHEMISTRY (KANNADA ENGLISH)

STRUCTURE OF ATOM

Multiple Choice Questions Level I

1. Which of the following statements is not correct regarding cathode rays?
A. The rays carry negative charge
B. The charge/ mass of these rays is considerably
smaller than for positive rays
C. The rays produce mechanical effect
D. The charge /mass ratio is independent of the nature of the gas taken in the discharge tube.

Answer: B

- Watch Video Solution

2. The number of protons, electrons and neutrons in
${ }_{17}^{35} \mathrm{Cl}^{-}$are respectively
A. $17,18,18$
B. $17,17,18$
C. 17,18,17
D. $17,18,38$

Answer: A

- Watch Video Solution

3. The nucleides X and Y are isotonic to each other with mass numbers 70 and 72 respectively. If the atomic number of X is 34 , then that of Y would be
A. 32
B. 34
C. 36
D. 38

Answer: C

- Watch Video Solution

4. Neutron was discovered by:
A. J.J Thomson
B. Chadwick

C. Rutherford

D. Millikan

Answer: B

- Watch Video Solution

5. Isobars have same numbers of
A. protons

B. electrons

C. nucleons
D. neutorns.

Answer: C

- Watch Video Solution

6. Which one of the following conclusions could not
be derived from Rtherford's α - particle scattering experiments?
A. Most of the space in the atom is empty.
B. The radius of the atom is about $10^{10} \mathrm{~m}$ while
that of nucleus is $10^{-15} \mathrm{~m}$
C. Electrons move in a circular path of fixed energy called orbits.
D. Electrons and the nucleus are held together by electrosatic forces of attraction.

Answer: C

- Watch Video Solution

7. Which of the following statements is not correct about the characteristics of cathode rays?
A. They start from the cathode and move towards the anode.
B. They travel in straight line in the absence of an external electricla or magnetic field.
C. Characteristics of cathode rays do not depend upon the material of electrodes in cathode ray tube.
D. Characteristics of cahode rays depend upon
the nature of gas present in the cathode ray tube.

Answer: D

- Watch Video Solution

8. Which of the following statement about the electron is incorrect?
A. It is a negatively charged particle
B. The mass of elecron is equal to the mass of neutron.
C. It is a basic consitituent of all atoms
D. It is a constituent of cathode rays.

Answer: B
9. Which of the following properties of atom could be explained correctly by Thomson model of atom?
A. Overal neutrality of atom.
B. Spectra of hydrogen atom.
C. Positioni of electons, protons and neutrons in
atom.
D. Statbility of atom.

Answer: A

- Watch Video Solution

10. Two atoms are said be isobars if
A. they have same atomic number but different mass number.
B. they have same number of elecrons but different number of neutrons.
C. they have same number of neutrons but different number of electrons.
D. sum of the number of protons and neutrons is
same but the number of protons is different.

Answer: D
11. Which of the following statement is not correct regarding electromagnetic spectrum?
A. the velocity of X-rays ismore than that of microwaves
B. Infra-red radiations have larger wavelength
than cosmic rays
C. The frequency of microwaves is less than that of ultra violet rays

D. X-rays have larger wave number than

micorwaves.

Answer: A

- Watch Video Solution

12. The wave number of a wave of light is
$2.0 \times 10^{14} \mathrm{~cm}^{-1}$. The frequency of this light is
A. $6.6 \times 10^{3} s^{-1}$
B. $6.6 \times 10^{-3} e^{-1}$
C. $6.0 \times 10^{24} s^{-1}$
D. $6.0 \times 10^{-14} s^{-1}$

Answer: C

- Watch Video Solution

13. The energy of photon of reddish light having wavelength 660 nm is ($h=6.6 \times 10^{-34} \mathrm{Js}$)
A. $1 \times 10^{-19} J$
B. $3.0 \times 10^{-18} J$
C. $1 \times 10^{19} \mathrm{~J}$
D. $3.0 \times 10^{-19} J$

- Watch Video Solution

14. The wavelength of radiation having frequency 1000 Hz is
A. $3 \times 10^{13} \mathrm{~cm}$
B. $3.0 \times 10^{7} \mathrm{~cm}$
C. $3000 \AA$
D. 300 nm

Answer: B
15. The wave length of a beam of light is 25.0 m m. Its wave number is
A. $4.0 \times 10^{1} m^{-1}$
B. $4.0 \times 10^{6} \mathrm{~cm}^{-1}$
C. $4.0 \times 10^{6} \mathrm{~m}^{-1}$
D. $25.0 \times 10^{4} \mathrm{~cm}^{-1}$

Answer: A

- Watch Video Solution

16. The ratio of energy of a photon of $2000 \AA$ wavelengt radiation to that $4000 \AA$ radiation is
A. 43834
B. 4
C. 43832
D. 2

Answer: D

- Watch Video Solution

17. The photoelectric emission from a surface starts only when the light incident upon the surface has certain minimum
A. intensity
B. wavelength
C. frequency
D. velocity

Answer: C

- Watch Video Solution

18. The kinetic energy of the photoelectrons depends upon:
A. intensity of radiation
B. frequency of radiation
C. the intensity and frequency of radiation

D. None of these

Answer: B

- Watch Video Solution

19. Which of the following metal exhibits photoelectric effect readily?
A. Cs
B. Na
C. Li
D. Mg

Answer: A

- Watch Video Solution

20. The number of photons of light having wave number x in 1J of energy source is (Plank's constant=h, velocity of light =c)
A. hcx
B. hc / x
C. $\frac{x}{h c}$
D. $\frac{1}{h c x}$

Answer: D
21. The kinetic energy of electrons ejected by using
light having frequency equal to threshold frequency
$\left(v_{0}\right)$ is
A. $h v_{0}$
B. Almost zero
C. very large
D. h / v_{0}

Answer: B

22. A photon of radiation of wavelength 600 nm has

an energy E. The wavelength of photon of radiation having energy 0.25 E is
A. 600 nm
B. 2400 nm
C. 150 nm
D. 300 nm

Answer: B
23. The threshold wavelength for the ejection of electron for metal X is 330 nm . The work function for photoelectric emission from metal X is

$$
\left(h=6.6 \times 10^{-34} J s\right)
$$

A. $1.2 \times 10^{-18} J$
B. $1.2 \times 10^{20} J$
C. $6 \times 10^{-19} J$
D. $6 \times 10^{-12} J$

Answer: C

24. In a photoelectric effect, the energy of the photon striking a metallic surface is $5.6 \times 10^{-19} \mathrm{~J}$.

The kinetic energy of the ejected electron is $12.0 \times 10^{-20} J$. The work function is
A. $6.4 \times 10^{-19} J$
B. $6.8 \times 10^{-19} \mathrm{~J}$
C. $4.4 \times 10^{-19} J$
D. $6.4 \times 10^{-20} J$

Answer: C
25. The value of Planck's constant is $6.63 \times 10^{-34} \mathrm{Js}$.

The velocity of light is $3.0 \times 10^{8} \mathrm{~ms}^{-1}$. Which value is closest to the wave length in nanometers of a quantum of light with frequency $8 \times 10^{15} s^{-1}$?
A. 4×10^{1}
B. 3×10^{7}
C. 2×10^{-25}
D. 5×10^{-18}

Answer: A
26. The electron level which allows the hydrogen to absorb photons but not to emit is
A. 3 s
B. $2 p$
C. 1s
D. 3d

Answer: C

- Watch Video Solution

27. Bohr's model can explain
A. the spectrum of hydrogen atom only
B. the spectrum of atom or ion containing one electron only
C. the spectrum of hydrogen molecule
D. the solar spectrum.

Answer: B

- Watch Video Solution

28. The limiting line in Paschen series corresponds to

$$
\text { A. } n_{1}=2, n_{2}=3
$$

$$
\begin{aligned}
& \text { B. } n_{1}=3, n_{2}=4 \\
& \text { C. } n_{1}=3, n_{2}=10 \\
& \text { D. } n_{1}=3, n_{2}=\infty
\end{aligned}
$$

Answer: D

- Watch Video Solution

29. A spectral line obtained when an electron jumps
from sixth energy level to first energy level in
spectrum of hydrogen atom falls in:
A. visible region

B. ultra violet region

C. infra red region

D. None of these

Answer: B

- Watch Video Solution

30. The energy of the elecron in an orbit of hydrogen atom is given by

$$
E_{n}=-\frac{1311.8}{n^{2}} k J \mathrm{~mol}^{-1}
$$

The ionisation energy of hydrogen atom is:

A. $1311.8 \mathrm{kJmol}^{-1}$

B. $-327.9 k \mathrm{Jmol}^{-1}$
C. $145.7 \mathrm{kJmol}^{-1}$
D. $-1311.8 k \mathrm{Jmol}^{-1}$

Answer: A

- Watch Video Solution

31. Which of the following transition in H -atom corresponding to absorption line of highest
frequency?
A. $n=1$ to $n=2$
B. $n=3$ to $n=4$
C. $n=2$ to $n=1$
D. $n=2$ to $n=3$

Answer: A

- Watch Video Solution

32. The energy of the second Bohr orbit of H atom is
-3.41 eV . The energy of the second Bohr orbit of He^{+} ion is
A. -0.85 eV

$$
\begin{aligned}
& \text { B. }-1.70 \mathrm{eV} \\
& \text { C. }-6.82 \mathrm{eV} \\
& \text { D. }-13.64 \mathrm{eV}
\end{aligned}
$$

Answer: D

- Watch Video Solution

33. The wave number of the shortest wavelength of absorption specturm of H -atom is (Rydberg constant
$=109700 \mathrm{~cm}^{-1}$)
A. $109700 \mathrm{~cm}^{-1}$
B. $3 / 4 \times 109700 \mathrm{~cm}^{-1}$
C. $1 / 2 \times 109700 \mathrm{~cm}^{-1}$
D. $9 / 10 \times 109700 \mathrm{~cm}^{-1}$

Answer: A

D Watch Video Solution

34. The wave number of the series limiting line for the Lyman series for hydrogen atom is (R $=109678 \mathrm{~cm}^{-1}$)
A. $82259 \mathrm{~cm}^{-1}$
B. $109678 \mathrm{~cm}^{-1}$
C. $1.2157 \times 10^{5} \mathrm{~cm}$
D. $9.1176 \times 10^{-6} \mathrm{~cm}$

Answer: B

- Watch Video Solution

35. In H -atom electron jumps form 3 to 2 energy level, the energy released is
A. $3.03 \times 10^{-19} \mathrm{~J} /$ atom
B. $1.03 \times 10^{-19} \mathrm{~J} /$ atom

C. $3.03 \times 10^{-12} \mathrm{~J} /$ atom

D. $6.06 \times 10^{-19} \mathrm{~J} /$ atom

Answer: A

- Watch Video Solution

36. When monochromatic X-rays are allowed to fall on some lighter element, the scattered X -rays have wavelengths larger than incident rays. This effect is know as:
A. Photoelectric effect
B. Zeeman effect

C. Stark effect

D. Compton effect

Answer: D

D Watch Video Solution

37. The ratio of the radius of Bohr first orbit for the electron orbiting the hydrogen nucleus to that of the electron orbiting the deuterium nucleus (mass nearly twice that of H nucleus) is approximately
A. 1:1
B. 1:2
C. $2: 1$
D. 1:4

Answer: A

- Watch Video Solution

38. The ratio of radii of the first three Bohr orbits of H -atom is :
A. $1: 2: 3$
B. 1:4:9
C. $1: 3: 27$
```
D. \(1: \sqrt{2}: \sqrt{3}\)
```


Answer: B

- Watch Video Solution

39. The wavelength of the first line of Balmer series of H -atom of $6561 \AA$. The wavelength of the second
line of the series is
A. $13122 \AA$
B. $3280 \AA$
C. $4860 \AA$

Answer: C

- Watch Video Solution

40. The energy of an electron in the second Bohr orbit of H -atomis -E . The enrgy of the electron in the Bohr's first orbit is
A. $-E / 4$
B. $-4 E$
C. $4 E$
D. $-2 E$

Answer: B

- Watch Video Solution

41. The transition of electron in hydrongen atom having minimum wavelength is:
A. $n_{3} \rightarrow n_{2}$
B. $n_{4} \rightarrow n_{3}$
C. $n_{5} \rightarrow n_{4}$
D. All have the same wavelength

- Watch Video Solution

42. What transition in He^{+}ion shall have the same
wave number as the first line in Balmer series of hydrogen atom?
A. $4 \rightarrow 3$
B. $6 \rightarrow 4$
C. $6 \rightarrow 3$
D. $6 \rightarrow 2$

Answer: B

- Watch Video Solution

43. The wave number of the shortest wavelength transition in the Balmer series of H atom is
A. $27419.5 \mathrm{~cm}^{-1}$
B. $219356 \mathrm{~cm}^{-1}$
C. $12186.2 \mathrm{~cm}^{-1}$
D. $24372.4 \mathrm{~cm}^{-1}$
44. The ratio of ionisation energy of H and Li^{2+} is
A. 1: 4
B. 1:3
C. 1:9
D. 9:1

Answer: C

- Watch Video Solution

45. The wavelength of a spectral line for an electronic transition is inversely related to:
A. velocity of electron undergoing transition
B. number of electrons undergoing transition
C. the difference in energy levels involved in the
transition.
D. None of these

Answer: C

- Watch Video Solution

46. The energy of second Bohr orbit of the hydrogen atom is $-328 \mathrm{kJmol}^{-1}$ hence the energy of fourth Bohr orbit would be

$$
\begin{aligned}
& \text { A. }-41 k \mathrm{Jmol}^{-1} \\
& \text { B. }-82 k \mathrm{Jmol}^{-1} \\
& \text { C. }-164 k J \mathrm{~mol}^{-1} \\
& \text { D. }-1312 k \mathrm{~mol}^{-1}
\end{aligned}
$$

Answer: B
47. The energy of an electron in te first Bohr orbit of

H atom is -13.6 eV . The possible energy values(s) of
the excited state(s) for electrons in Bohr orbits of hydrogen is (ar)

$$
\begin{aligned}
& \text { A. }-3.4 \mathrm{eV} \\
& \text { B. }-4.2 \mathrm{eV} \\
& \text { C. }-6.8 \mathrm{eV} \\
& \text { D. }+6.8 \mathrm{eV}
\end{aligned}
$$

Answer: A

48. What is the dimension of Planck's constant?

A. Force \times time
B. energy \times distance
C. energy/frequency
D. energy/time

Answer: C

- Watch Video Solution

49. According to Bohr's theory the energy required for the transition of H atom from $\mathrm{n}=6$ to $\mathrm{n}=8$ state is
A. equal to the energy required for the transition from $n=5$ to $n=7$ state
B. larger than in (A)
C. less than in (A)
D. equal to the energy required for the transition from $n=7$ to $n=9$ state.

Answer: C

- Watch Video Solution

50. How many spectral lines are produced in the spectrum of hydrogen atom from 5th energy level?
A. 5
B. 10
C. 15
D. 4

Answer: B

- Watch Video Solution

51. For each value of I, the number of m value is
A. 21
B. nl
C. $2 l+1$
D. $2 l^{2}$

Answer: C

- Watch Video Solution

52. The number of orbitals in $n=4$ is
A. 2
B. 8
C. 16
D. 32

Answer: C

- Watch Video Solution

53. Which of the following statement is incorrect?
A. The e/m ratio for anode rays is not constant.
B. The e/m ratio for anode rays is considerably
smaller than elecrons.
C. Millikan oil drop experiment showed particle nature while diffraction studies showed wave nature of electron.
D. the wavelength associated with an electron
would become equal of the weavelength
associated with a proton when velocity of proton is about 1836 times that of electron.

Answer: D

- Watch Video Solution

54. Which of the following notations, describing a subshell with the quantum numbers n and I , is not correct?
A. $n=3, l=2, \rightarrow 3 d$
B. $n=5, l=0 \rightarrow 5 s$
C. $n=4, l=3 \rightarrow 4 f$
D. $n=5, l=4 \rightarrow 5 f$

Answer: D

- Watch Video Solution

55. Which of the following sets of quantum numbers represents an impossible arrangement?
A. $\begin{array}{llll}n & l & m & s \\ 3 & 2 & -2 & +1 / 2\end{array}$
$\begin{array}{cccc}n & l & m & s \\ \text { B. } & \begin{array}{c}n \\ 4\end{array} & 0 & 0\end{array}$

C. | n | l | m | s |
| :---: | :---: | :---: | :---: |
| 5 | 2 | 0 | $+1 / 2$ |

D. $\begin{array}{llll}n & l & m & s \\ 3 & 3 & +2 & +1 / 2\end{array}$

Answer: D

- Watch Video Solution

56. What is the lowest value of n that allows the g subshell to exists?
A. $\mathrm{n}=1$
B. $\mathrm{n}=4$
C. $\mathrm{n}=3$
D. $n=5$

Answer: D

- Watch Video Solution

57. The quantum numbers for the designation of 3 d are:
A. $n=3, m=-3$
B. $n=3, l=3$
C. $n=4, l=1$
D. $n=3, l=2$

Answer: D

- Watch Video Solution

58. The quantum number not obtained from

Schrodinger wave equation is
A. n
B. I
C. m
D. s

Answer: D

- Watch Video Solution

59. The energy of an electron is specified by
A. azimuthal quantum number
B. magnetic quantum number
C. principal quantum number
D. spin quantum number.

Answer: C

60. If the number of values of m is seven, the value of azimuthal quantum number should be:
A. 3
B. 4
C. 2
D. 1

Answer: A

- Watch Video Solution

61. Among the following particles, which will have the shortest wavelength when accelerated by one million eV?
A. Neutron
B. Tritium atom
C. α-particle
D. Electron

Answer: C

- Watch Video Solution

62. Which of the following has the largest de Broglie wavelength provided all have equal velocity?
A. Carbon dioxide molecule
B. Ammonia molecule
C. nitrogen molecule
D. Oxygen molecule

Answer: B

- Watch Video Solution

63. The Schrodinger wave equation for an electron in a potential field V, in three demensions is:
A.

$$
\begin{aligned}
& \quad \frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}+\frac{8 \pi^{2} m}{h}(E-V) \phi=0 \\
& \text { B. } \frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}+\frac{8 \pi^{2}}{m h^{2}}(E-V) \psi=0 \\
& \text { C. } \\
& \quad \frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}+\frac{8 \pi^{2} m}{h^{2}}[E-V] \psi=0
\end{aligned}
$$

D.

$$
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}+\frac{8 \pi^{2} m}{h^{2}}+[E+V] \psi=0
$$

Answer: C
64. The first energy shell that can have f-orbital is:
A. First
B. Second
C. Third
D. fourth

Answer: D
(.) Watch Video Solution
65. If the uncertainty in the positioin of an electron is
zero, the uncertainty in its momentum would be
A. zero
B. $>h / 4 \pi$
C. $<h / 4 \pi$
D. infinite

Answer: D

- Watch Video Solution

66. Heisenberg uncertainty principle precludes the simultaneous measurement of
A. Energy and velocity
B. Radius and charge density
C. Position and momentum
D. Probability and intensity.

Answer: C

- Watch Video Solution

67. If the Planck's constant is $h=6.6 \times 10^{-34} J$, the de Broglie wavelength of a particle having momentum of $3.3 \times 10^{-24} \mathrm{kgms}^{-1}$ will be
A. $0.02 \AA$
B. $0.5 \AA$
C. $2 \AA$
D. $500 \AA$

Answer: C
68. The wavelength associated with a ball of mass 100 g moving with a speed of $10^{3} \mathrm{~cm} \mathrm{sec}{ }^{-1}$ ($\left.h=6.6 \times 10^{-34} \mathrm{Js}^{-1}\right)$ is
A. $6.6 \times 10^{32} \mathrm{~cm}$
B. $6.6 \times 10^{-27} \mathrm{~cm}$
C. $6.6 \times 10^{27} \mathrm{~cm}$
D. $6.6 \times 10^{-32} \mathrm{~cm}$

Answer: D
69. The de Broglie wavelength of an electron is 66 nm. The velocity of the electron is

$$
\left(h=6.6 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1} \mathrm{~m}=9.0 \times 10^{-31} \mathrm{~kg}\right)
$$

A. $1.84 \times 10^{-14} m s^{-1}$
B. $1.1 \times 10^{-4} \mathrm{~ms}^{-1}$
C. $5.4 \times 10^{3} \mathrm{~ms}^{-1}$
D. $1.1 \times 10^{4} \mathrm{~ms}^{-1}$

Answer: B
70. The uncertainty in the momentum of an electron is $1.0 \times 10^{-5} \mathrm{kgms}^{-1}$. The uncertainty in position will be $\left(h=6.6 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}\right)$
A. $5.25 \times 10^{-28} m$
B. $1.05 \times 10^{-26} m$
C. $5.25 \times 10^{-30} m$
D. $1.05 \times 10^{-28} m$

Answer: A

71. The momentum of a particle having a de-Broglie

 wavelenth of $10^{-17} \mathrm{~m}$ is $\left(h=6.625 \times 10^{-34} \mathrm{Js}\right)$A. $6.625 \times 10^{-17} \mathrm{kgms}^{-1}$
B. $3.3125 \times 10^{-7} \mathrm{kgms}^{-1}$
C. $13.25 \times 10^{-17} \mathrm{kgm}^{-1}$
D. $26.5 \times 10^{-7} \mathrm{kgms}^{-1}$

Answer: A

- Watch Video Solution

72. Which of the following condition is incorrect for well behaved wave function ψ ?
A. ψ must be single valued at any particlular point
B. ψ must be finite
C. ψ must be positive
D. ψ must be a continous function of its coordinates.

Answer: C
73. At $200^{\circ} C$, the velocity of hydrogen molecules is $2.4 \times 10^{5} \mathrm{~cm} / \mathrm{sec}$. In this case the de-Broglie wavelength is about
A. $1 \AA$
B. $1000 \AA$
C. $100 \AA$
D. $10 \AA$

Answer: A
74. The uncertainty in the position of an electron (mass $=9.1 \times 10^{-28} g$) moving with a velocity of $3.0 \times 10^{4} \mathrm{cms}^{-1}$ accurate up to 0.011% will be
A. 1.92 cm
B. 7.68 cm
C. 0.175 cm
D. 3.85 cm

Answer: C

Watch Video Solution

75. Principal, magnetic and azimuthal quantum numbers are respectively related to:
A. size, orientation, shape
B. size, shape, orientation
C. shape, size and orientation

D. None of these

Answer: A

D Watch Video Solution

76. Given: Mass of electron $=9.11 \times 10^{-31} \mathrm{~kg}$ Plank's constant $=6.626 \times 10^{-34} \mathrm{Js}$

The uncertaintly involved in the measurement of velocity with in a distance of $0.1 \AA$ is

$$
\begin{aligned}
& \text { A. } 5.79 \times 10^{7} \mathrm{~ms}^{-1} \\
& \text { B. } 5.79 \times 10^{8} \mathrm{~ms}^{-1} \\
& \text { C. } 5.79 \times 10^{5} \mathrm{~ms}^{-1} \\
& \text { D. } 5.79 \times 10^{6} \mathrm{~ms}^{-1}
\end{aligned}
$$

Answer: D

77. The orientation of an atomic orbital is governed by
A. spin quantum number
B. magnetic quantum number
C. principal quantum number
D. Azimuthal quantum number

Answer: B

- Watch Video Solution

78. A body of mass $x \mathrm{~kg}$ is moving with a velocity of $100 \mathrm{~m} / \mathrm{s}$. Its de Broglie wavelength is $6.62 \times 10^{-35} \mathrm{~m}$.

Hencex is $\left[h=6.2 \times 10^{-34} \mathrm{Js}\right]$
A. 0.25 kg
B. 0.15 kg
C. 0.2 kg
D. 0.1 kg

Answer: D

79. Which of the following is not possible?

A. $n=3, l=0, m=0$
B. $n=3, l=1, m=-1$
C. $n=2, l=0, m=-1$
D. $n=3, l=1, m=0$

Answer: C

- Watch Video Solution

80. The following quantum numbers are possible for how many orbitals?
$n=3, l=2, m=+2$
A. 1
B. 2
C. 3
D. 4

Answer: A

Watch Video Solution
81. The number of unpaired electrons in P-atom is
A. 1
B. 3
C. 5
D. 0

Answer: B

- Watch Video Solution

82. The correct set of quantum number for the unpaired electron of chlorine atom is

Answer: C

- Watch Video Solution

83. The two electrons present in an orbital are distinguished by
A. Principal quantum number
B. Azimuthal quantum number
C. Magnetic quantum number
D. spin quantum number.

Answer: D

- Watch Video Solution

84. P^{3-} ion has the valence shell electronic configuration
A. $3 s^{2} 3 p^{3}$
B. $3 s^{2} 3 p^{6}$
C. $2 s^{2} 2 p^{3}$
D. $4 s^{2} 4 p^{3}$

- Watch Video Solution

85. The maximum number of 3d-electrons having spin quantum number $s=+1 / 2$ is
A. 10
B. 5
C. 2
D. 1

Answer: A
86. The electronic configuration for Ca^{2+} ion is :
A. $[N e] 3 s^{2} 3 p^{6}$
B. $[N e] 3 s^{2} 3 p^{4}$
C. $[A r] 4 s^{2}$
D. $[\operatorname{Ar}] 3 s^{\wedge}(2) 3 p^{\wedge}(6)^{\wedge}$

Answer: A

87. The electronic configuration of an element with

 atomic number 26 isA. $[A r] 4 s^{2} 3 d^{6}$
B. $[A r] 4 s^{1} 3 d^{5}$
C. $[A r] 3 d^{8}$
D. $[A r] 4 s^{2} 3 d^{4}$

Answer: C

- Watch Video Solution

88. Which of the following species has maximum number of unpaired electrons?
A. $N a(Z=11)$
B. $C l(z=17)$
C. $P(Z=15)$
D. $O(Z=8)$

Answer: A

- Watch Video Solution

89. How many electrons in a given atom can have the following quantum numbers?

$$
n=3, l=2, m=+2, s=-1 / 2
$$

A. 1
B. 18
C. 14
D. 7

Answer: C

Watch Video Solution

90. The number of unpaired electrons in chromium $(Z=24)$ is :
A. 4
B. 3
C. 6
D. 5

Answer: C

- Watch Video Solution

91. Which of the following is not possible electronic configuration for an atom?
A. $1 s^{2}, 2 s^{2}, 2 p_{x}^{1}, 2 p_{7}^{1}$
B. $1 s^{2}, 2 s^{2}, 2 p_{x}^{2}, 2 p_{y}^{2}, 2 p_{z}^{1}$
C. $1 s^{2}, 2 s^{2}, 2 p_{x}^{2}$
D. $1 s^{2}, 2 s^{2}, 2 p_{y}^{1}, 2 p_{z}^{1}$

Answer: C

- Watch Video Solution

92. How many electrons in an atom can have

 $\mathrm{n}=3, \mathrm{l}=2, \mathrm{~m}=-1$?A. 2
B. 6
C. 10
D. 1

Answer: A

- Watch Video Solution

93. Consider the electronic configuration:
$1 s^{2} 2 s^{2} 2 p_{x}^{2}$
It violates
A. Aufbalu principle
B. Hund's rule
C. Pauli's exclusion principle
D. It is correct.

Answer: B

- Watch Video Solution

94. The ground state electronic configuration of oxygen in $L i_{2} \mathrm{O}$ is
A. $1 s^{2} 2 s^{2} 2 p^{4}$
B. $1 s^{2} 2 s^{2} 2 p^{6}$
C. $1 s^{2} 2 s^{2} 2 p^{2}$
D. $1 s^{2} 2 s^{2} 2 p^{3}$

Answer: B

- Watch Video Solution

95. With the increasing principal quantum number, the energy diference between adjacent energy levels in H -atiom,
A. decreases
B. increases
C. remains constant
D. decreases for low values of Z and increaes for
higher values of Z

Answer: A

- Watch Video Solution

96. The maximum number of electrons in a sub-shell

 is given by the expression:A. $4 l-2$
B. $4 l+2$
C. $2 l+1$
D. $2 n^{2}$

Answer: B

- Watch Video Solution

97. The number of unpaired electrons in $C u^{+} \quad(Z=29)$

is
A. 1
B. 2
C. 0
D. 3

Answer: C

- Watch Video Solution

98. Which of the followng has maximum number of unpaired electrons?
A. $M g^{2+}$
B. $T i^{3+}$
C. V^{3+}
D. $F e^{2+}$

Answer: D

- Watch Video Solution

99. The total number of maxima in the radial probabililty disribution curve of 2 s is :
A. one
B. two
C. six
D. four

Answer: B

- Watch Video Solution

100. How many electrons can have $\mathrm{I}=2$ and $\mathrm{n}=5$?
A. 32
B. 18
C. 10
D. 6

Answer: C

- Watch Video Solution

101. For H -atom, the energies of electronic levels depend upon
A. $n+1$ values
B. I+m values
C. n only
D. I only

Answer: C

- Watch Video Solution

102. The figure is representation of the shape of

A. $3 d_{x y}$ orbital
B. $3 d_{z}^{2}$ orbital
C. $2 p_{z}$ orbital
D. $3 d_{x^{2}-y^{2}}$ orbtial

Answer: D

- Watch Video Solution

103. In the energy level sequence for a multi electron atom, 4 f - orbial lies between
A. 6 s and 5 d
B. 5 p and 5 d
C. $4 p$ and $5 p$
D. 5d and 6d

Answer: A

- Watch Video Solution

104. The correct electronic configuration for $N i^{2}=$ $(\mathrm{Z}=28)$ is
A. $[A r] 4 s^{2} 3 d^{6}$
B. $[A r] 4 s^{2} 3 d^{8}$
C. $[A r] 3 d^{8}$
D. $[A r] 4 s^{2} 3 d^{10}$

Answer: C

- Watch Video Solution

105. A 2 p-orbital has the following node/nodes:
A. 2 spherical
B. 1 spherical
C. 1 planar
D. 1 planar and 1 spherical

Answer: C

- Watch Video Solution

106. The electronic configuration for $S e^{2-} \quad(\mathrm{Z}=34)$ ion is
A. $[A r] 3 d^{10} 4 s^{2} 4 p^{4}$
B. $[A r] 3 d^{10} 4 p^{4}$
C. $[A r] 3 d^{10} 4 s^{2} 4 p^{6}$
D. $[A r] 3 d^{10}$

Answer: C

107. Which of the following has maximum number of unpaired electrons?

$$
\begin{aligned}
& \text { A. } C u^{2+}(Z=29) \\
& \text { B. } F e^{3+}(Z=26) \\
& \text { C. } F e(Z=26) \\
& \text { D. } P(Z=15)
\end{aligned}
$$

Answer: B
108. Which of the folowing 3d-orbitals has electron density in all the three axes?
A. $3 d_{x y}$
B. $3 d_{z^{2}}$
C. $3 d_{y z}$
D. $3 d^{z x}$

Answer: B

109. The maximum number of electrons in a sub shell

 having the same value of spin quantum number is given byA. l^{2}
B. $2 l+1$
C. $4 l+2$
D. $1 / 2(2 l+1)^{2}$

Answer: B

Watch Video Solution

110. Which one of the following is nearest to the nucleus?
A. 6 s
B. 4 f
C. 5d
D. $6 p$

Answer: A

- Watch Video Solution

111. Presence of three unpaired electrons in phosphorus ($Z=15$) can be explained by
A. Aufbau principle
B. Hund's rule
C. Pauli exclusion principle
D. Bohr-Bury rule

Answer: B

- Watch Video Solution

112. Which of the following has zero electron density in xy-plane?
A. $d_{x^{2}}-y^{2}$
B. $d_{z} 2$
C. p_{z}
D. $d_{x y}$

Answer: C

- Watch Video Solution

113. An electron has spin quantum number $+1 / 2$ and a magnetic quantum number -1. It cannot be present in
A. s-orbital
B. p-orbital
C. d-orbital
D. f-orbital

Answer: A

Watch Video Solution

114. The electronic configuration of an element (M) is
$\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{1}\right.$
This represents:
A. Excited state
B. Ground state
C. Anionic form $\left(M^{-}\right)$
D. Cationic for $\left(M^{2+}\right)$

Answer: B

- Watch Video Solution

115. Orbital angular momentum depends upon

A. I values

B. I+m values
C. n and I
D. I and m

Answer: B

- Watch Video Solution

116. The maximum probability of finding electron in $d_{x y}$ orbital is,
A. along the x axis
B. along the y-axis
C. at an angle of 45° form the x and y-xis
D. along x and y-axis

Answer: C

- Watch Video Solution

117. In an atom,the signs of lobes indicate the
A. sign of charges
B. sign of probability disribution
C. sign of the wave function
D. presence of absence of electron.

Answer: C

D Watch Video Solution

118. If $n=6$, the correct sequence for filling of electrons will be:
A. $n s \rightarrow(n-2) f \rightarrow(n-1) d \rightarrow n p$
B. $n s \rightarrow(n-1) d \rightarrow(n-2) f \rightarrow n p$
C. $n s \rightarrow(n-2) f \rightarrow n p \rightarrow(n-1) d$
D. $n s \rightarrow n p \rightarrow(n-1) d \rightarrow(n-2) f$

Answer: A

- Watch Video Solution

119. Maximum number of electrons in a subshell with
$\mathrm{l}=3$ and $\mathrm{n}=4$ is
A. 12
B. 14
C. 16
D. 10

- Watch Video Solution

120. The ground state electronic configuration for chromium atom ($z=24$) is
A. $[A r] 3 d^{5} 4 s^{1}$
B. $[A r]\left(3 d^{4}\right) 4 s^{2}$
C. $[A r] 3 d^{6}$
D. $[A r] 4 s^{1} 4 p^{5}$

Answer: A
121. Which of the following electronic configuration is/are wrong?

1. $1 s^{2} 2 s^{2} 2 p_{x}^{2} 2 p_{y}^{1}$ (for nitrogen)
2. $1 s^{2} 2 s^{2} 2 p_{x}^{2} 2 p_{y}^{1} 2 p_{z}^{1}$ (for oxygen)
3. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{1}$ (for chromium)
4. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} 4 s^{2}$ (for iron)
A. 1 and 3
B. 3 and 4
C. 1 only
D. 2 only

Answer: C

D Watch Video Solution

122. How many unpaired electrons are present in tin
($\mathrm{z}=50$) ?
A. 3
B. 5
C. 2
D. 4

Answer: C
123. Which of the following species is diamagnetic?

$$
\begin{aligned}
& \text { A. } T i^{2+}(Z=22) \\
& \text { B. } Z i^{2+}(Z=30) \\
& \text { C. } N i^{2+}(Z=28) \\
& \text { D. } C r^{3+}(Z=24)
\end{aligned}
$$

Answer: B
124. ${ }^{36} K r$ has the electronic configuration as
$[A r] 3 d^{10} 4 s^{2} 4 p^{6}$. The next 37th electron will go into the subshell
A. 4 d
B. 4 f
C. 5 s
D. 6 s

Answer: C

Multiple Choice Questions Level Ii

1. The electron configuration in which Aufbau principle is violated is:
A. $\frac{2 s}{\text { TV }} \frac{2 p}{T 1}$
B. (1) (1) T
C. T1 TT T
D. (T) T T T

Answer: B

- Watch Video Solution

2. The maximum number of electrons theoritically possible for seventh principal shell is
A. 49
B. 196
C. 86
D. 98

Answer: D

3. The quantum numbers for the valence electron of

 an atom are$n=3, l=0, m=0, s=+1 / 2$
The element is
A. Calcium
B. Sodium
C. Lithium
D. Potassium

Answer: B

4. The splitting of the spectral lines under the influence of magnetic field is called
A. Zeeman effect
B. Compton effect
C. Photoelectric effect
D. Difraction.

Answer: A
5. The number of electrons in the highest principal energy level for an element(Z=26) is
A. 8
B. 6
C. 2
D. 16

Answer: C

- Watch Video Solution

6. Which of the following is not characteristic of X rays?
A. The radiations can ionise the gas
B. It causes ZnS to fluorescence
C. Deflected by electric and magnetic fields
D. Have wave length shorter than ultraviolet

Answer: C

- Watch Video Solution

7. The ground state electronic configuration of Fe^{3+} (g) ion is:
A. $[A r] 3 d^{3} 4 s^{2}$
B. $[A r] 3 d^{6} 4 s^{2}$
C. $[A r] 3 d^{5}$
D. $[A r] 3 d^{6}$

Answer: C

- Watch Video Solution

8. The number of spherical nodes in a 4s-orbital in hydrogen atom is:
A. 0
B. 1
C. 3
D. 4

Answer: C

- Watch Video Solution

9. The dipositive meal ion has the outermost configuration $3 d^{10} 4 s^{0}$. The name of the element is:
A. Copper
B. Silver
C. Nickel
D. Zinc

Answer: D

- Watch Video Solution

10. How many electrons can have the values $n=2$,
$\mathrm{I}=1$,and $s=+1 / 2$ in the configuration
$1 s^{2} 2 s^{2} 2 p^{3}$?
A. 1
B. 3
C. 5
D. 7

Answer: B

Watch Video Solution

11. An electron will have highest energy with which one of the followng sets of four quantum numbers?
A.
n
l
m
s
A. 3
2
1
$+\frac{1}{2}$
n
l
m
s
B.
$4 \quad 2$
-1
$+\frac{1}{2}$
C. $\begin{array}{ll}n & l \\ 4 & 2\end{array}$
m
s
0
$-\frac{1}{2}$
D. $\begin{aligned} & n \\ & 5\end{aligned}$
$\begin{array}{ll}n & l \\ 5 & 0\end{array}$
m
s
0
$-\frac{1}{2}$

Answer: B

- Watch Video Solution

12. The thresthold frequencey for photoelecric emission of electrons from platinum is
$1.3 \times 10^{15} s^{-1}$. Which of the following statements is not correct?
A. the number of electrons ejected from the metal surface will depend upon the the intensity of radiation having frequency

$$
\leq 1.3 \times 10^{15} s^{-1}
$$

B. The radiation having energy $1 \times 10^{-20} J$ will be able to cause photoelectric efect.
C. If radiation having frequency $1.3 \times 10^{14} \mathrm{~s}^{-1}$
strikes the platinum suface, photo-electrons
will not be ejected.
D. The kinetic energy of the emitted electrons will
increasse with increase in frequency provided
it is greater than $1.3 \times 10^{15} s^{-1}$.

Answer: A

- Watch Video Solution

13. Which of the following relates to light as wave motion as well as a stream of particles?
A. Photoelecric effect
B. $E=m c^{2}$
C. diffraction
D. $E=h v$

Answer: D

- Watch Video Solution

14. Which of the following has maximum magnetic moment?
A. $M n^{2+}(Z=25)$
B. $F e(Z=26)$
C. $F e^{2+}(Z=26)$
D. $C r^{3+}(Z=24)$

Answer: A

- Watch Video Solution

15. The electronic configuration of molybdenum $(Z=42)$ is
A. $[A r] 3 d^{10} 4 s^{2} 4 p^{5}$
B. $[K r] 4 d^{4} 5 s^{2}$
C. $[K r] 4 d^{5} 5 s^{1}$
D. $[K r] 5 d^{5} 5 s^{1}$

Answer: C

- Watch Video Solution

16. The total number of unpaired electrons in $R f$
($\mathrm{Z}=104$) are
A. 2
B. zero
C. 3

Answer: C

- Watch Video Solution

17. The number of d-electrons $F e^{2+}(\mathrm{Z}=26)$ is not equal to that to the
A. p-electron in $\mathrm{Ne}($ at no. $=10)$
B. d-electrons in Mn (at. $\mathrm{No}=25$)
C. d-elecrons in Fe
D. p-electrons in F^{-}(at no of $\mathrm{F}=9$)

Answer: B

- Watch Video Solution

18. Light of wavelenght λ shines oinlametal surface
with intensity x and the metal emits y electrons per
second of average energy, z. What will happen to y
and z if x is doubled?
A. y will be doubled and z will become half
B. y will remain same and z will be doubled
C. both y and z will be doubled
D. y will be doubled but z will remain same.

- Watch Video Solution

19. The angular wave function depends upon quantum numbers.
A. n and I
B. I and m
C. n, l and m
D. m and s

Answer: B
20. The kinetic energy of the electron emitted when
light of frequency $3.5 \times 10^{15} \mathrm{~Hz}$ is made to strike on
a metal surface havng threshold frequency
$1.5 \times 10^{15} \mathrm{~Hz}$ is
$\left(h=6.6 \times 10^{-34} J s\right)$
A. $1.32 \times 10^{-18 J}$
B. $3.3 \times 10^{-18} J$
C. $6.6 \times 10^{-19} J$
D. $1.98 \times 10^{-19} J$

Answer: A
21. One unpaired electron in an atom contributes a magnetic moment of 1.1 BM. The magnetic moment for chromium ($Z=24$) is
A. 4.4 BM
B. 1.1 BM
C. 5.5 BM
D. 6.6 BM

Answer: D

- Watch Video Solution

22. Two particles A and B are in motion. If the wavelength associated with the particle A is $5.0 \times 10^{-8} m$,the wavelength of particle B having moment half of A is
A. $2.5 \times 10^{-8} m$
B. $1.25 \times 10^{-8} \mathrm{~m}$
C. $1.0 \times 10^{-7} \mathrm{~m}$
D. $1.2 \times 10^{-8} \mathrm{~m}$

Answer: C
23. If r_{1} is the radius of the first orbit of hydrogen atom, then the radii of second, third and fourth orbitals in terms of r_{1} are
A. $r_{1}^{2}, r_{1}^{3}, r_{1}^{4}$
B. $8 r_{1}, 27 r_{1}, 64 r_{1}$
C. $4 r_{1}, 9 r_{1}, 16 r_{1}$
D. $2 r_{1}, 6 r_{1}, 8 r_{1}$

Answer: C

- Watch Video Solution

24. Number of electron in an atom having $n=4, m=1$
and $m_{s}=-1 / 2$ are
A. 16
B. 8
C. 32
D. 6

Answer: A

D Watch Video Solution

25. Which of the following has a maximum number of

 unpaired electron?A. Zn
B. $F e^{2+}$
C. $N i^{2+}$
D. $C u$

Answer: B

- Watch Video Solution

26. The ground state configuration of oxygen in $O F_{2}$

 isA. $1 s^{2} 2 s^{2} 2 p^{4}$
B. $1 s^{2} 2 s^{2} 2 p^{6}$
C. $1 s^{2} 2 s^{2} 2 p^{2}$
D. $1 s^{2} 2 s^{2} 2 p^{3}$

Answer: C

27. The outer shell electronic configuration of palladium ($Z=46$) is
A. $4 d^{8} 5 s^{2}$
B. $4 d^{9} 5 s^{2}$
C. $4 d^{10} 5 s^{0}$
D. $4 d^{2} 5 s^{2} 5 p^{6}$

Answer: C

- Watch Video Solution

28. The wave number of first line of Balmer series of

H -atom is $15200 \mathrm{~cm}^{-1}$. The wave number of first Balmer line of $L i^{2+}$ ion is:
A. $15200 \mathrm{~cm}^{-1}$
B. $60800 \mathrm{~cm}^{-1}$
C. $76000 \mathrm{~cm}^{-1}$
D. $136,800 \mathrm{~cm}^{-1}$

Answer: D

Watch Video Solution

29. An electron of a velocity x is found to have a certain wavelength.The velocity to be possessed by the neuron to have half the de Broglie wavelength possessed by electron is:

A. $x / 1840$
B. $x / 920$
C. $3680 x$
D. $x / 3680$

Answer: A
30. The total spin resulting from a d^{7} configuration is
A. $3 / 2$
B. $1 / 2$
C. 2
D. 1

Answer: A

- Watch Video Solution

31. The deBroglie wavelength of an electron travelling at 1% of the speed of light is($h=6.6 \times 10^{-4} \mathrm{~J}$, mass of electron $=9.0 \times 10^{-31}$ kg
A. $24.4 \times 10^{-10} m$
B. 244 nm
C. 24.4 pm
D. 244 pm

Answer: D

32. The ground state electronic configuration of the element which is isoelectronic with NO^{+}is
A. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$
B. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$
C. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}$
D. $1 s^{2} 2 s^{2} 2 p^{6}$

Answer: C

33. If radius of Bohr first orbit is x, then de Broglie

 wavelength of electron in 3rd orbit is nearlyA. $2 \pi x$
B. $9 \pi x$
C. $9 x$
D. $6 \pi x$

Answer: D

- Watch Video Solution

34. According to Bohr's theory, the angular momentum for an electron of 5th orbit is
A. $10 h / \pi$
B. $5 h / 2 \pi$
C. $25 h / \pi$
D. $5 \pi / 2 h$

Answer: B

- Watch Video Solution

35. Which of the following has electronic configuration in violation to Aufbau principle?
A. Silver ($Z=47$)
B. $\operatorname{Tin}(Z=50)$
C. Magnanese (Z=25)
D. Arsenic (Z=33)

Answer: A

D Watch Video Solution

36. Uncertainty in the position of an electron (mass
$\left.=9.1 \times 10^{-31} \mathrm{~kg}\right)$ moving with a velocity $300 \mathrm{~ms}^{-1}$
accurate upto 0.001% will be $\left(h=6.6 \times 10^{-34} \mathrm{Js}\right)$
A. $19.2 \times 10^{-2} m$
B. $3.84 \times 10^{-2} m$
C. $5.68 \times 10^{-2} m$
D. $1.92 \times 10^{-2} \mathrm{~m}$

Answer: D
37. Energy of the electron in hydrogen atom is 1.5 timesas much ass the minimum energy required for its escape (13.6 eV) from the atom. Wavelength of the emitted electron is
A. $3.96 \AA$
B. $5.32 \AA$
C. $4.60 \AA$
D. $4.71 \AA$

Answer: D

38. If moving wih equal speed,the longest wavelength of the following matter waves is that for (an)
A. Elecron
B. α - kparticle
C. Proton
D. Neutron

Answer: A

- Watch Video Solution

39. The orbital angular momentum of an electron in

2s orbital
A. $+\frac{1}{2} \frac{h}{2 \pi}$
B. zero
C. $\frac{h}{2 \pi}$
D. $\sqrt{2}$. $\frac{h}{2 \pi}$

Answer: B

- Watch Video Solution

40. For an electron having $s=1 / 2$, the spin anglar momentum is
A. $\frac{\sqrt{3} h}{4 \pi}$
B. $\sqrt{3}$
C. $\sqrt{2}$
D. 1

Answer: A

- Watch Video Solution

41. For a particular value of azimuthal quantum number (I), the total number of magnetic quantum number (m) is given by:

$$
\begin{aligned}
& \text { A. } l=\frac{m+1}{2} \\
& \text { B. } l=\frac{2 m+1}{2} \\
& \text { C. } m=\frac{2 l-1}{2} \\
& \text { D. } l=\frac{m-1}{2}
\end{aligned}
$$

Answer: D
42. The ratio of radius of 4th orbit of hydrogen and 3rd orbit of Li^{2+} is
A. $256: 9$
B. 9:16
C. 16:3
D. $32: 9$

Answer: C

- Watch Video Solution

43. The electronic transition in the He^{+}spectrum from $n=4$ to $n=2$ corresponds to which transition in the H -spectrum?
A. $n=2$ to $n=1$
B. $n=3$ ton $=1$
C. $n=4$ to $n=2$
D. $n=3$ to $n=2$

Answer: A

Watch Video Solution

44. The ratio of the energy of the electron in the ground state of H to the electron in the first excited state of $B e^{3+}$ is,
A. 1: 4
B. 1:8
C. 1:16
D. $16: 1$

Answer: A

45. If the value of $n+l$ is more than 3 and less than

 6 , what will be the possible number of orbitals?A. 10
B. 11
C. 13
D. 6

Answer: C

- Watch Video Solution

46. If the shortest wavelength of H atom in Layman
series is x , then the longest wavelength in Balmer
series of He^{+}is
A. $\frac{36 x}{5}$
B. $\frac{5 x}{9}$
C. $\frac{9 x}{5}$
D. $\frac{x}{5}$

Answer: C

Watch Video Solution

47. Which orbital has two angular nodal planes?
A. 2 s
B. $2 p$
C. 3d
D. 4 f

Answer: C

- Watch Video Solution

48. The velocity of electron in the third Bohr orbit of hydrogen is v. The velocity of the electron in the first
A. $9 v$
B. 3 v
C. $\mathrm{v} / 3$
D. $\mathrm{v} / 9$

Answer: B

- Watch Video Solution

49. The number of quanta of radiations of frequency
$4.75 \times 10^{13} s^{-1}$ required to melt 100 g of ice is
(energy required to melt 1 g of ice is 350 J)
A. 1.113×10^{23}
B. 111.3×10^{23}
C. 11.13×10^{23}
D. 1.113×10^{22}

Answer: C

- Watch Video Solution

50. How many electrons in chromium ($\mathrm{Z}=24$)have $\mathrm{I}=0$?
A. 8
B. 6
C. 10
D. 7

Answer: D

- Watch Video Solution

51. The number of radial nodes and nodal planes in
$2 p$ orbital are
A. 1,1
B. 2,1
C. 2,2
52. Frequency of matter waves may be expressed as
A. $2($ K.E. $) / \mathrm{h}$
B. (K.E.) $/ 2 \mathrm{~h}$
C. K.E/h
D. $K . E / h^{2}$

Answer: A
53. In the ground state of Cr atom $(\mathrm{Z}=24)$, the total number of orbitals populated by one or more electrons is,
A. 15
B. 16
C. 14
D. 11

Answer: A
54. What is the kinetic energy ofan electron in second excited state of $\mathrm{He} e^{+}$? (Energy of electron in first shell of $H=-13.6 e \mathrm{~V}$)

$$
\begin{aligned}
& \text { A. }-1.51 \mathrm{eV} \\
& \text { B. }-6.04 \mathrm{eV} \\
& \text { C. }-13.08 \mathrm{eV} \\
& \text { D. }-13.06 \mathrm{eV}
\end{aligned}
$$

Answer: B
55. If the total energy of anelectron in a hydrogen
like atom in excited state is -3.4 eV ,then the de Broglie wavelength of the electron is
A. $6.6 \times 10^{-12} m$
B. $3 \times 10^{-10} \mathrm{~m}$
C. $6.6 \times 10^{-10} \mathrm{~m}$
D. $9.3 \times 10^{-12} m$

Answer: C

- Watch Video Solution

56. When uncertainty in position and momentum are equal, then uncertainty in velocity is
A. $\sqrt{\frac{h}{\pi}}$
B. $\frac{1}{2} \sqrt{\frac{h}{\pi}}$
C. $\frac{1}{2 m} \sqrt{\frac{h}{\pi}}$
D. $2 m \sqrt{\frac{h}{\pi}}$

Answer: C

D Watch Video Solution

57. If the radius of Bohr's 4th orbit is a, then the radius of Bohr's first orbit is
A. 4 a
B. $a / 4$
C. $a^{2} / 16$
D. $a / 16$

Answer: D

- Watch Video Solution

58. The ionisation energy of H atom is x kJ . The energy required for the electron to jump from $\mathrm{n}=2$ to $n=3$ will be
A. $5 x$
B. $36 \mathrm{x} / \mathrm{f}$
C. $5 x / 36$
D. $9 x / 4$

Answer: C

Watch Video Solution

59. The highest excited state that an unexcited hydrogen atom can reach when they are bombarded with 12.75 eV of energy is :
A. $\mathrm{n}=2$
B. $\mathrm{n}=3$
C. $\mathrm{n}=4$
D. $n=5$

Answer: C

- Watch Video Solution

60. Which orbit of $B e^{3+}$ has almost same radius as that of the ground state of H -atom?
A. Second
B. Third
C. Fourth
D. Sixth

Answer: A

- Watch Video Solution

61. For d-electrons the orbital angular momentum is
A. $\sqrt{6} \frac{h}{2 \pi}$
B. $\sqrt{2} \frac{h}{2 \pi}$
C. $\frac{h}{2 \pi}$
D. $2 \frac{h}{2 \pi}$

Answer: A

- Watch Video Solution

62. Which of the following orbial has zero orbital angular momentum.
A. $3 p$
B. 4s
C. 3d
D. 4 f

Answer: B

- Watch Video Solution

63. The velocity of an electron in Bohr's first orbital of la H -atom is $2.16 \times 10^{6} \mathrm{~ms}^{-1}$. Its velocity in the second orbit would be
A. $1.08 \times 10^{6} m s^{-1}$
B. $0.54 \times 10^{6} \mathrm{~ms} \mathrm{~s}^{-1}$
C. $4.32 \times 10^{6} \mathrm{~ms}-1$
D. $8.64 \times 10^{6} \mathrm{~ms}-1$

Answer: A

- Watch Video Solution

64. The Bohr orbit radius for the H -atom $(\mathrm{Z}=1)$ is approximately $0.53 \AA$. The radius for the first excited state orbit is:
A. $0.13 \AA$
B. $1.06 \AA$
C. $4.77 \AA$
D. $2.12 \AA$

Answer: D

D Watch Video Solution

65. Who modified Bohr's theory for introducing elliptical orbits for electron path?
A. Hund
B. Thomson

C. Rutherford

D. Sommerferd

Answer: D

- Watch Video Solution

66. The energy of a photon is given as:
$\Delta E /$ atom $=3.03 \times 10^{-19} \mathrm{Jatom}^{-1}$.
The
wavelength (λ) of its photon is
A. 65.6 nm
B. 656 nm
C. 0.565 nm

D. 6.56 nm

Answer: B

- Watch Video Solution

67. In hydrogen atom, energy of first excited state is-
3.4 eV . The K.E. of the same orbit of H -atom is
A. +3.4 eV
B. +6.8 eV
C. -13.6 eV

Answer: A

- Watch Video Solution

68. The frequency of radiation emitted when the electron falls from $n=4$ to $n=1$ in a hydrogen atom will

$$
\begin{aligned}
& \text { be } \quad \text { (given ionisation energy } \\
& H=2.18 \times 10^{18} \mathrm{Jatom}^{-1} \\
& h=6.625 \times 10^{-25} \mathrm{Js} \text {) of }
\end{aligned}
$$

A. $1.03 \times 10^{3} s^{-1}$
B. $3008 \times 10^{15} s^{-1}$

$$
\text { C. } 2.00 \times 10^{15} s^{-1}
$$

D. $1.54 \times 10^{-15} s^{-1}$

Answer: B

- Watch Video Solution

69. An element X has the following isotopic

composition

. ${ }^{200} X=90 \%,{ }^{199} X=8.0 \%,{ }^{202} X=2.0 \%$ Its
average atomic mass is
A. 199amu
B. 200amu
C. 201 amu
D. 202amu

Answer: B

- Watch Video Solution

70. The electrons identified by quantum numbers n and I,
(i) $n=3, \mathrm{l}=0$ (ii) $\mathrm{n}=4, \mathrm{l}=0$
(iii) $n=3, \mathrm{l}=2$ (iv) $\mathrm{n}=3, \mathrm{l}=1$
can be placed in order of increasing energy from lowest to highest as
A. (iv) < (ii) < (iii) < (i)
B. (i) < (iv) < (ii) < (iii)
C. (i) < (iii) < (ii) < (iv)
D. (iii) $<$ (i) $<$ (iv) $<$ (ii)

Answer: A

- Watch Video Solution

71. A metal surface ejects electrons when hit by blue
light but not when hit by green light. When the electrons be ejected if the surface is hit by yellow light?
A. Yes
B. No
C. Yes, if the beam used is quite intense

D. Yes,if the beam is allowed to fall on the surface for a longer time.

Answer: B

- Watch Video Solution

72. Out of the first 80 elements, the number of elements having 3d orbitals are:
A. 10
B. 30
C. 60
D. 20

Answer: C

- Watch Video Solution

73. The de Broglie wavelength of electron in second Bohr orbit is exactly equal to
A. the circumference of the orbit
B. Double the circumference of the orbit
C. Half the circumference of the orbit
D. thrice the circumference of the orbit

Answer: C

- Watch Video Solution

74. The number of photons emitted per second by a 60 watt source of monochromatic light of wavelength 663 nm is $\left(h=6.63 \times 10^{-34} \mathrm{Js}\right)$
A. 4×10^{-20}
B. 1.5×10^{20}
C. 3×10^{-20}
D. 2×10^{20}

Answer: D

- Watch Video Solution

75. The energies E_{1} and E_{2} of two radiations are 25 eV and 50 eV respectively. The relation beween their wavelength i.e. λ_{1} and λ_{2} will be
A. $\lambda_{1}=\lambda_{2}$
B. $\lambda_{1}=2 \lambda_{2}$
C. $\lambda_{1}=4 \lambda_{2}$

$$
\text { D. } \lambda_{1}=\frac{1}{2} \lambda_{2}
$$

Answer: B

- Watch Video Solution

76. If ratio of the 1st three Bohr orbits in H is $1: 4: 9$, then the ratio of 1st three orbits in He^{+}will be
A. $10.5: 2: 4.5$
B. 2. 2:4:8
C. $3.2: 3: 4$
D. 4.1:4:9

Answer: D

- Watch Video Solution

77. The element with electronic configuration of its atom $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{1}$ is:
A. Fe
B. Compton effect
C. Nickel
D. Cu

Answer: D

- Watch Video Solution

78. Which of the following options does not represent ground state electronic configuration of an atom?
A. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{8} 4 s^{2}$
B. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{9} 4 s^{2}$
C. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{1}$
D. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{1}$

Answer: B

- Watch Video Solution

79. Number of angular nodes for 4 d orbital is
A. 4
B. 3
C. 2
D. 1
80. Total number of orbitals associated with third

shell will be

A. 2
B. 4
C. 9
D. 3

Answer: C

- Watch Video Solution

81. The pair of ions having same electronic configuration is
A. $\mathrm{Cr}^{3+}, \mathrm{Fe}^{3+}$
B. $F e^{3+}, \mathrm{Mn}^{2+}$
C. $\mathrm{Fe}^{3+}, \mathrm{Co}^{3+}$
D. $S c^{3+}, C r^{3+}$

Answer: B

- Watch Video Solution

82. Which of the following orbitals does not make sense?
A. 6 s and 5 d
B. $3 p$
C. 2d
D. 4 f

Answer: C

- Watch Video Solution

83. Which of the following make up an isotonic traid?
A. ${ }_{32}^{78} G e,{ }_{33}^{77} A s,{ }_{31}^{74} G a$
B. ${ }_{18}^{40} \mathrm{Ar},{ }_{19}^{40} \mathrm{~K},{ }_{20}^{40} \mathrm{Ca}$
C. ${ }_{92}^{233} U,{ }_{90}^{232} \mathrm{Th},{ }_{94}^{239} \mathrm{Pu}$
D. ${ }_{6}^{14} \mathrm{C},{ }_{8}^{16} \mathrm{O},{ }_{7}^{15} \mathrm{~N}$

Answer: D

- Watch Video Solution

84. Which of the following ion has maximum magnetic moment?
A. $M n^{2+}$
B. $F e^{2+}$
C. $T i^{2+}$
D. Cr^{2+}

Answer: A

- Watch Video Solution

85. The number of d-electrons remained in Fe^{2+}
(At.no. of $\mathrm{Fe}=26$)ion is
A. 4
B. 5
C. 6
D. 3

Answer: C

- Watch Video Solution

86. The de Broglie wavelength of a tennis ball of mass 60 g moving with a velocity of $10 \mathrm{~ms}^{-1}$ is approximately
$\left(h=6.6 \times 10^{-34} J s\right)$
A. $10^{-31} m$
B. $10^{-16} m$
C. $10^{-25} m$
D. $10^{-33} \mathrm{~m}$

Answer: D

- Watch Video Solution

87. Which of the following sets of quantum number is correct for an electron in 4 f orbital?

$$
\begin{aligned}
& \text { A. } n=4, l=3, m=+1, s=+\frac{1}{2} \\
& \text { B. } n=4, l=4, m=-4, s=-\frac{1}{2} \\
& \text { С. } n=4, l=3, m=+4, s=+\frac{1}{2}
\end{aligned}
$$

D. $n=3, l=2, m=-2, s=-\frac{1}{2}$

Answer: A

- Watch Video Solution

88. Consider the ground state of Cr atom ($\mathrm{Z}=24$). The number of electrons with azimuthal quantum numbers,l=1 and 2 are respectively.
A. 16 and 14
B. 12 and 5
C. 12 and 4

D. 16 and 5

Answer: B

- Watch Video Solution

89. According to Bohr's theory, the angular momentum of an electron is 5 th orbit is
A. $1.0 h / \pi$
B. $10 h / \pi$
C. $2.5 h / \pi$
D. $25 h / \pi$

Answer: C

- Watch Video Solution

90. Unertainty in the position of an electron (mass
$\left.=9.1 \times 10^{-31} \mathrm{~kg}\right)$ moving with a velocity $300 \mathrm{~ms}^{-1}$
accurate upto 0.001% will be

$$
h=6.63 \times 10^{-34} \mathrm{Js}
$$

A. $5.76 \times 10^{-2} m$
B. $1.92 \times 10^{-2} m$
C. $3.84 \times 10^{-2} m$
D. $19.2 \times 10^{-2} \mathrm{~m}$

Answer: B

- Watch Video Solution

Multiple Choice Questions Level Iif

1. In an atom, an electron is moving with a speed of $6200 \mathrm{~m} / \mathrm{s}$ which the position of an electron can be locates is $\left(h=6.6 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}\right.$, mass of electron $e_{m}=9.1 \times 10^{-31} \mathrm{~kg}$)
A. $1.52 \times 10^{-4} m$
B. $5.10 \times 10^{-3} m$

$$
\text { C. } 1.92 \times 10^{-3} \mathrm{~m}
$$

D. $3.84 \times 10^{-3} \mathrm{~m}$

Answer: C

- Watch Video Solution

2. Calculate the wavelength associated with a proton moving at $1.0 \times 10^{3} \mathrm{~m} / \mathrm{s}$. (Mass of proton

$$
\left.=1.67 \times 10^{-27} \mathrm{~kg} \text { and } h=6.63 \times 10^{-34} \mathrm{Js}\right)
$$

A. 0.032 nm ,
B. 0.40 nm
C. 2.5 nm
D. 14.0 nm

Answer: B

- Watch Video Solution

3. Ionisation energy of $H e^{+}$is
$19.6 \times 10^{-18} \mathrm{Jatom}^{-1}$. The energy of first stationary
state ($\mathrm{n}=1$) of $L i^{2+}$ is
A. -2.2×10^{-15} atom $^{-1}$
B. $8.82 \times 10^{-178} \mathrm{Jatom}(-1)$
C. $4.41 \times 10^{-16} \mathrm{Jatom}^{-1}$
D. $-4.41 \times 10^{-17} \mathrm{Jatom}^{-1}$

Answer: D

- Watch Video Solution

4. The energy required to break one moleof $C l-C l$
bonds in Cl_{2} is $242 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The largest wavelenth of light capable of breaking a single $\mathrm{Cl}-\mathrm{Cl}$ bond is

$$
\left(c=3 \times 10^{8} \mathrm{~ms}^{-1} \text { and } N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)
$$

A. 700 nm
B. 494 nm
C. 594 nm
D. 640 nm

Answer: B

- Watch Video Solution

5. The frequency of light emitted for the transition $\mathrm{n}=4$ to $\mathrm{n}=2$ of He^{+}is equal to the transition in H atom corresponding to which of the following?
A. $n=2$ to $n=1$
B. $n=3$ to $n=2$
C. $n=4$ to $n=3$
D. $n=3$ to $n=1$

Answer: A

D Watch Video Solution

6. A gas absorbs a photon of 355 nm and emits at two wavelengths. If one of the emissions is at 680 $n m$. The other is at:
A. ${ }^{`} 743 \mathrm{~nm}$
B. 518 nm
C. 1035 nm
D. 325 nm

Answer: A

- Watch Video Solution

7. The electrons identified by quantum numbers n and I
a. $n=4, \mathrm{l}=1$
b. $n=4, l=0$
c. $n=3, \mathrm{l}=2$
d. $n=3, l=1$
can be placed in order of increasing energy as:
A. $a<c<b<d$
B. $c<d<b<a$
C. $d<b<c<a$
D. $b<d<a<c$

Answer: C

- Watch Video Solution

8. Energy of an electron is given by $E=-2.178 \times 10^{-18} J\left(\frac{Z^{2}}{n^{2}}\right)$. Wavelength of light required to excite an electron in an hydrogen atom from level $n=1$ to $n=2$ will be:
A. $1.214 \times 10^{-7} m$
B. $2.816 \times 10^{-7} m$
C. $6.500 \times 10^{-7} m$
D. $8.500 \times 10^{-7} m$

Answer: A

- Watch Video Solution

9. The correct set of quantum numbers for the valence electrons of rubidium atom ($Z=37$) is
A. $5,0,0,+1 / 2$
B. $5,1,0,+1 / 2$
C. $5,1,1,+1 / 2$
D. $5,0,1,+1 / 2)$

Answer: A

- Watch Video Solution

10. Which of the following is the energy of a possible excited state of hydrogen?
A. +13.6 eV
B. -6.8 eV

C. -3.4 eV

D. +638 eV

Answer: C

- Watch Video Solution

Recent Examination Questions

1. The correct set of four quantum numbers for outermost electron of potassium ($\mathrm{Z}=19$) is
A. $3,1,0, \frac{1}{2}$
B. $4,0,0, \frac{1}{2}$
C. $3,0,0, \frac{1}{2}$
D. $4,1,0, \frac{1}{2}$

Answer: B

- Watch Video Solution

2. A body of mass $x g$ is moving with a velocity of $100 \mathrm{~m} / \mathrm{s}$. It de Broglie wavelength is $6.62 \times 10^{-35} \mathrm{~m}$.

Hence x is $\left(h=6.62 \times 10^{-34} J-s\right)$
A. 0.25 kg
B. 0.15 kg
C. 0.2 kg

D. 0.1 kg

Answer: D

- Watch Video Solution

3. The wave number of the spectral line in emission spectral of hydrogen will be equal to $8 / 9$ timesthe Rydberg's constant if the electron jumps from
A. $n=3$ to $n=1$
B. $\mathrm{n}=10$ to $\mathrm{n}=1$
C. $n=9$ to $n=1$
D. $n=2$ to $n=1$

Answer: A

- Watch Video Solution

4. Which one of the following sets of quantum numbers represents the highest energy level in an atom?
A. $4,0,0,+\frac{1}{2}$
B. $3,1,1,+\frac{1}{2}$

$$
\begin{aligned}
& \text { C. } 3,2,-2,+\frac{1}{2} \\
& \text { D. } 3,0,0,+\frac{1}{2}
\end{aligned}
$$

Answer: C

- Watch Video Solution

5. If energies of the two photons are in the ratio $3: 2$, their wave lengths will be in the ratio of:
A. 9: 4
B. 2:3
C. 1:2
D. $3: 2$

Answer: B

- Watch Video Solution

6. The correct set of four quantum numbers for the outermost electron of sodium ($Z=11$) is

$$
\begin{aligned}
& \text { A. } 3,1,0, \frac{1}{2} \\
& \text { B. } 3,1,1, \frac{1}{2} \\
& \text { C. } 3,2,1, \frac{1}{2} \\
& \text { D. } 3,0,0, \frac{1}{2}
\end{aligned}
$$

Answer: D

- Watch Video Solution

7. Impossible orbital among the following is
A. 2 s
B. $3 f$
C. $2 p$
D. 4 d

Answer: B
8. The electronic configuration of Cu^{2+} ion is
A. $[A r] 3 d^{5} 4 s^{1}$
B. $[A r] 3 d^{9} 4 s^{0}$
C. $[a r] 3 d^{7} 4 s^{2}$
D. $[A r] 3 d^{8} 4 s^{0}$

Answer: B

- Watch Video Solution

9. The statement that is not correct is
A. Angular quantum number signifies the shape of orbital
B. Energies of stationary states in hydrogen like
atoms are inversely proportional to square root of principle of quantum number.
C. Total number of nodes for 3 s orbital is three
D. The radius of first orbit of He^{+}is half that of the first orbit of hydroegn atom.

Answer: C

- Watch Video Solution

10. The two electrons have the following set of quantum numbers:

$$
\begin{aligned}
& P=3,2,-2,+\frac{1}{2} \\
& Q=3,0,0,=\frac{1}{2}
\end{aligned}
$$

Which of the following statement is true?
A. P has lesser energy than Q
B. P and Q have same energy
C. P and Q represent same electron
D. P has greater energy than Q .

Answer: D

11. Energy associated with the first orbit of He^{+}is:
A. 8.72×10^{-18} Joules
B. 0.872×10^{-18} Joules
C. -0.872×10^{-18} Joules
D. -8.72×10^{-18} Joules

Answer: D

