©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - MODERN PUBLICATION CHEMISTRY (KANNADA ENGLISH)

THERMODYNAMICS

Multiple Choice Questions Level I

1. Which of the folowing is not an intensive property ?
A. Entropy
B. Pressure
C. Temperature
D. Molar volume
2. An adiabatic process is one in which :
A. $\Delta U=q$
B. $\Delta U<w$
C. $q=0$
D. $q=p \Delta V$

Answer: C

- Watch Video Solution

3. If temperature remains constant during the process. It is called an :
A. Isothermal process
B. Adiabatic process
C. Isobaric process
D. Isochoric process

Answer: A

- Watch Video Solution

4. In an exothermic reaction ($H_{r}=$ enthalpy of reactants and $H_{p}=$ enthalpy of products)
A. $H_{r}<H_{p}$
B. $H_{r}>H_{p}$
C. $H_{r}=H_{p}$
D. $H_{r} \neq H_{p}$ and $H_{p}=0$

Answer: B

- Watch Video Solution

5. For the reaction :

$$
C(s)+O_{2}(g) \rightarrow C O_{2}(g)
$$

A. $\Delta H<\Delta U$
B. $\Delta H>\Delta U$
C. $\Delta H=\Delta U$
D. $\Delta H=0$

Answer: C

- Watch Video Solution

6. In a bomb calorimeter, the heat of reaction is measured at :
A. Constant volume
B. Constant pressure
C. Constant volume and constant pressure
D. None of these.

- Watch Video Solution

7. In an adiabatic expansion of an ideal gas.
A. $\Delta T=0$
B. $w=0$
C. $q=0$
D. $\Delta U=0$.

Answer: C

- Watch Video Solution

8. If q is the heat added to the system, w is the work done by the system and ΔU is the change in internal energy, then according to first law of thermodynamics :
A. $\Delta U=q+w$
B. $\Delta U=q-w$
C. $\Delta U=q+p \Delta V$
D. $\Delta U=q+\Delta H$

Answer: B

- Watch Video Solution

9. For which of the following reactions, ΔH is equal to ΔU ?
A. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$
B. $P C l_{5}(g) \rightarrow P C l_{3}(g)+C l_{2}(g)$
C. $2 \mathrm{H}_{2} \mathrm{~S}(g)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+2 \mathrm{SO}_{2}(g)$
D. $C(s)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$.

Answer: D

10. For the reaction :

$$
P C l_{5}(g) \rightarrow P C l_{3}(g)+C l_{2}(g)
$$

A. $\Delta H=\Delta U$
B. $\Delta H>\Delta U$
C. $\Delta H<\Delta U$
D. $\Delta H=0$.

Answer: B

Watch Video Solution
11. Which of the folowing is not a state function ?
A. Heat
B. Internal energy
C. Enthalpy
D. Entropy.

Answer: A

- Watch Video Solution

12. For a chemical reaction at constant $\mathrm{P}, \Delta H$ is equal to
A. zero
B. ΔU
C. q / T
D. $\Delta U+p \Delta V$

Answer: D

- Watch Video Solution

13. Which of the following quantities is not a state function ?
A. Temperature
B. Entropy
C. Enthalpy
D. Work.

Answer: D

- Watch Video Solution

14. In an isothermal expansion of an ideal gas
A. $q=0$
B. $\Delta V=0$
C. $\Delta U=0$
D. $w=0$

Answer: C

15. For a chemical reaction at constant P and $\mathrm{V} . \Delta H$ is equal to
A. ΔU
B. zero
C. $\Delta U+P \Delta V$
D. p / T.

Answer: A

- Watch Video Solution

16. $(\Delta U-\Delta H)$ for the formation of NH_{3} from N_{2} and H_{2} is :
A. $-2 R T$
B. 2 RT
C. RT
D. $\frac{1}{2} R T$.

Answer: C

- Watch Video Solution

17. A system absorbs 10 kJ of heat at constant volume and its temperature rises from $27^{\circ} C$ to $37^{\circ} C$. The value of ΔU is :
A. 100 kJ
B. 10 kJ
C. 0
D. 1 kJ

Answer: B

18. For the reaction :
$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
A. $q_{p}=\left(q_{v}\right)^{2}$
B. $q_{p}=q_{v}-2 R T$
C. $q_{p}=q_{v}+2 R T$
D. $q_{p}=2 q_{v}-R$.

Answer: C

- Watch Video Solution

19. If ΔH is the change in enthalpy and ΔE is the change in internal energy accompanying a gaseous reaction then
A. ΔH is always greater than ΔU
B. $\Delta H>\Delta U$ only the number of moles of the reactnts is greater than the number of mole of products
C. ΔH is always less than ΔU
D. $\Delta H<\Delta U$ only if the number of moles of products is less than the number of moles of reactants.

Answer: D

- Watch Video Solution

20. For the reaction :
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at $298 \mathrm{~K}, \Delta U=-1415 \mathrm{~kJ}$. If $R=0.0084 k J K^{-1}$. Then ΔH is equal to
A. -1400 kJ
B. -1410 kJ
C. -1420 kJ
D. -1430 kJ .

Answer: C

21. In a closed insulated container, a liquid is stirred with a paddle to increase the temperature. Which of the following is true?
A. $\Delta U=w \neq 0, q=0$
B. $\Delta U=w, q \neq 0$
C. $\Delta U=0, w=q \neq 0$
D. $w=0, \Delta=q \neq 0$

Answer: A

Watch Video Solution

22. An adiabatic process occurs in
A. open system
B. closed system
C. isolated system
D. in all given systems

Answer: C

- Watch Video Solution

23. The volume of gas is reduced to half from its original volume. The specific heat will
A. reduce to half
B. be doubled
C. remain constant
D. increase four times

Answer: C

24. Molar heat capacity of ethenol is $110.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. Its specific heat capacity is
A. 2.4
B. 55.2
C. 5.078 kJ
D. 110.4

Answer: A

- Watch Video Solution

25. For an ideal gas, C_{p} and C_{v} are related as
A. $C_{p}-C_{v}=R$
B. $\frac{C_{p}}{C_{v}}$
C. $C_{p}+C_{v}=R$
D. $C_{v}-C_{p}=R$

D Watch Video Solution

26. Molar heat capacity of aluminium is $25 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. The heat necessary to raise the temperature of 54 g of aluminium (atomic mass $27 \mathrm{gmol}^{-1}$) from $30^{\circ} C$ to $50^{\circ} C$ is
A. 1.5 kJ
B. 0.5 kJ
C. 1.0 kJ
D. 2.5 kJ

Answer: C

27. The molar heat capacity of Al is $24 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$. The energy required to raise the temperature of 60.0 g of Al from $25^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ is
A. 3.2 kJ
B. 1.07 kJ
C. 10.1 kJ
D. 2.40 kJ

Answer: B

- Watch Video Solution

28. Calculate the amount of heat that must be supplied to raise the temperature of 2 kg of water from $25^{\circ} \mathrm{C}$ to its boiling point at one atmospheric pressure. The average specific heat of water in the range $25-100^{\circ} \mathrm{C}$ is $4.184 \mathrm{JK}^{-1} \mathrm{~g}^{-1}$.
A. 628 kJ
B. 418.4 kJ
C. 209.2 kJ
D. 108.6 kJ

Answer: A

- Watch Video Solution

29. The heat change for the reaction.
$\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$ is called
A. heat of reaction
B. heat of formation
C. heat of neutralisation
D. heat of combustion.

Answer: D

30. The heat of formation of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is $-824.2 \mathrm{~kJ} \mathrm{~mol}^{-1} . \Delta H$ for the reaction $2 \mathrm{Fe}_{2} \mathrm{O}_{3}(s) \rightarrow 4 \mathrm{Fe}(s)+3 \mathrm{O}_{2}(g)$ is :
A. $-412.1 k J$
B. $-1648.4 k J$
C. -3296.8 kJ
D. 1648.4 kJ

Answer: D

- Watch Video Solution

31. Which of the following enthalpies is always negative?
A. Enthalpy of solution
B. Enthalpy of combustion
C. Enthalpy of sublimination
D. Enthalpy of formation.

Answer: B

- Watch Video Solution

32. Which of the following reaction represents enthalpy of formation of

AgCl ?

A. $A g^{+}(a q)+C l^{-1}(a q) \rightarrow A g C l(s)$
B. $\mathrm{AgCl}(s) \rightarrow \mathrm{Ag}(s)+\frac{1}{2} \mathrm{Cl}_{2}(g)$
C. $A g(s)+A u C l(s) \rightarrow A g C l(s)+A u(s)$
D. $\mathrm{Ag}(\mathrm{s})+\frac{1}{2} \mathrm{Cl}_{2}(g) \rightarrow \mathrm{AgCl}(s)$

Answer: D

- Watch Video Solution

33. The variation of heat of reaction with temperature is given by an equation known as
A. Van't Hoff equation
B. Van der Waals equation
C. Kirchoff's equation
D. Gibbs Helmholtz equation.

Answer: C

- Watch Video Solution

34. Which of the following pairs has heat of neutralisation equal to -57.1 kJ mol^{-1} ?
A. $\mathrm{HNO}_{3} . \mathrm{KOH}$
B. $\mathrm{HCl} . \mathrm{NH}_{4} \mathrm{OH}$
C. $\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{NH}_{4} \mathrm{OH}$
D. $\mathrm{CH}_{3} \mathrm{COOH} . \mathrm{NaOH}$.

Answer: A

- Watch Video Solution

35. Which of the following equation represents standard heat of formation of methane?
A. C (diamond) $+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$
B. C (graphite) $+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$
C. $\mathrm{C}($ diamond $)+4 H(g) \rightarrow \mathrm{CH}_{4}(g)$
D. $\mathrm{C}($ graphite $)+4 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$

Answer: B

- Watch Video Solution

36. The enthalpies of formation of $\mathrm{N}_{2} \mathrm{O}$ and NO at 298 K are 82 and 90 kJmol^{-1}. The enthalpy of the reaction :
$\mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{NO}(\mathrm{g})$ is
A. $-8 k J$
B. 98 kJ
C. $-74 k J$
D. 8 kJ

Answer: B

- Watch Video Solution

37. The enthalpies of combustion of carbon and carbon monoxide are -393.5 and $-283.0 \mathrm{kJmol}^{-1}$ respectively. The enthalpy of formation of carbon monoxide is :
A. $-676.5 k J$
B. 110.5 kJ
C. $-110.5 k J$
D. 676.5 kJ

Answer: C

- Watch Video Solution

38. The enthalpies of combustion of rhombic sulphur and monoclinic sulphur are -295.1 and $-296.4 \mathrm{kJmol}^{-1}$ respectively. The enthalpy of allotropic transformation of monoclinic to rhombic sulphur is:
A. 1.3 kJ
B. -1.3 kJ
C. $-591.5 k J$
D. 0

Answer: B

39. The standard enthalpies of formation of $\mathrm{HCl}(\mathrm{g}), \mathrm{H}(\mathrm{g})$ and $\mathrm{Cl}(\mathrm{g})$ are $-92.2,217.7$ and $121.4 \mathrm{kJmol}^{-1}$ respectively. The bond dissociation enthalpy of HCl is :
A. $+431.3 k J$
B. 236.9 kJ
C. $-431.3 k J$
D. 339.1 kJ

Answer: A

- Watch Video Solution

40. The enthalpies of solution of anhydrous CuSO_{4} and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ are -15.89 and $2.80 \mathrm{kcalmol}^{-1}$ respectively. The enthalpy of hydration of CuSO_{4} to $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ is :
A. $-18.69 k c a l$
B. 13.09 kcal
C. -13.9 kcal
D. 18.69 kcal

Answer: A

- Watch Video Solution

41. The enthalpy of neutralisation of hydration of CuSO_{4} to $\mathrm{CuSO} 4.5 \mathrm{H}_{2} \mathrm{O}$ is :
A. $-69.2 k J$
B. -45.0 kJ
C. $-69.2 k J$
D. 45.9 kJ
42. For the reaction,
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \Delta \mathrm{H}=571.6 \mathrm{~kJ}$
$\Delta_{f} H^{\theta}$ of water is:
A. 285.8 kJ
B. -285.8 kJ
C. 1143.2kJ
D. $-1143.2 k J$

Answer: B

Watch Video Solution
43. ΔH for the reaction,
$S O_{2}(g)+\frac{1}{2} O_{2}(g) \Leftrightarrow S O_{3}(g) \quad \Delta H=-98.3 k J$

If the enthalpy of formation of $\mathrm{SO}_{3}(\mathrm{~g})$ is -395.4 k , then enthalpy of formation of $\mathrm{SO}_{2}(\mathrm{~g})$ is:
A. $-297.1 k J$
B. 493.7 kJ
C. -493.7 kJ
D. 297.1 kJ

Answer: A

- Watch Video Solution

44. The ΔH^{θ} for the reaction
$4 S(s)+6 O_{2}(g) \rightarrow 4 \mathrm{SO}_{3}(g)$ is $-1583.2 k J$. Standard enthalpy of formation of sulphur trioxide is:
A. $-3166.4 k J$
B. 3166.4 kJ
C. -395.8 kJ
D. 395.8 kJ

Answer: C

- Watch Video Solution

45. On combustion carbon forms two oxides CO and CO_{2}. Heat of formation of CO_{2} is -393.5 k J and that of CO is -110.5 kJ . Heat of combustion of CO is
A. $-393.5 k J$
B. -504.0 kJ
C. -283.0 kJ
D. 283.0 kJ

Answer: C

- Watch Video Solution

46. Given $\mathrm{C}(\mathrm{s})+O_{2} \quad(\mathrm{~g}) \rightarrow \mathrm{CO} 2 \quad(\mathrm{~g})+94.2 \mathrm{Kcal}, H_{2} \quad(\mathrm{~g})+1 / 2 \quad O_{2} \quad(\mathrm{~g}) \rightarrow H_{2}$ $\mathrm{O}(\mathrm{l})+68.3 \mathrm{Kcal}, \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2} \quad(\mathrm{~g}) \rightarrow \mathrm{CO}_{2} \quad(\mathrm{~g})+2 \mathrm{H}_{2} \quad \mathrm{O}(\mathrm{l})+210.8 \mathrm{Kcal}$ The heat of formation of methane in kcal will be:
A. 45.9 kcal
B. 47.8 kcal
C. 20.0 kcal
D. 47.4 kcal

Answer: C

- Watch Video Solution

47. The enthalpy of neutralisation of $\mathrm{NH}_{4} \mathrm{OH}$ and HCl is :
A. $57.1 \mathrm{kJmol}^{-1}$
B. $<57.1 \mathrm{kJmol}^{-1}$
C. $>57.1 \mathrm{kJmol}^{-1}$
D. zero

Answer: B

- Watch Video Solution

48. The enthalpy of the reaction :
$\mathrm{H}_{2} \mathrm{O}_{2}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\frac{1}{2} \mathrm{O}_{2}(g)$
is $-98.3 \mathrm{KJmol}^{-1}$ and the enthalpy of formation of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is
$-285.6 \mathrm{kJmol}^{-1}$. The enthalpy of formation of $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l})$ is:
A. $-187.3 k J$
B. 187.3 kJ
C. $-383.9 k J$
D. 383.9 kJ

Answer: A

49. Calculate the heat of formation of $P C l_{5}(s)$ from the following data :
$2 P(s)+3 \mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{PCl}_{3}(l) \Delta H=-151.8 \mathrm{kcal}$
$P C l_{3}(l)+C l_{2}(g) \rightarrow P C l_{5}(s) \Delta H=-32.8 k c a l$
A. -108.7 kcal
B. 108.7 kcal
C. -184.6 kcal
D. 184.6 kcal

Answer: A

- Watch Video Solution

50. Given that

$$
2 \mathrm{C}(s)+2 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g) \Delta H=-787 k J
$$

$$
H_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow H_{2} O(l) \Delta H=-286 k J
$$

$\mathrm{C}_{2} \mathrm{H}_{2}(g)+(2) \frac{1}{2} \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$
$\Delta H=-1301 k J$
Heat of formation of acetylene is :
A. $-1802 k J$
B. +1786 kJ
C. $-180.2 k J$
D. +228 kJ

Answer: D

- Watch Video Solution

51. The heat of neutralisation of strong acid and strong base is 57.0 kJ . The heat released when 0.5 mol of HNO_{3} is added to 0.2 mol of NaOH solution is:
A. 57.0 kJ
B. 11.40 kJ
C. 28.5 kJ
D. 34.9 kJ

Answer: B

- Watch Video Solution

52. The heat of combustion of yellow phosphorus and red phosphorus are -9.91 kJ and -8.78 kJ respectively. The heat of transition of yellow phosphorus to red phosphorus is
A. $-18.69 k J$
B. $+1.13 k J$
C. $+18.69 k J$
D. $-1.13 k J$

Answer: D

- Watch Video Solution

53. For the reaction :
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-68 \mathrm{kcalmol}^{-1}$
The heat change for the decomposition of 7.2 g of water is
A. 13.6 kcal
B. 27.2 kcal
C. 54.4 kcal
D. $-34 k \mathrm{cal}$

Answer: B

- Watch Video Solution

54. When 1000 ml of a 1 M solution of sulphuric acid is neutralised by a strong base in dilute solution, the standard enthalpy of neutralisation is
A. -57.1 kJ
B. $-114.2 k J$
C. $-28.55 k J$
D. +57.1 kJ

Answer: B

- Watch Video Solution

55. Which of the following values of heat of formation indicates that the product is least stable ?
A. $-94 k c a l$
B. -231.6 kcal
C. +21.4 kcal
D. +64.8 kJ

Answer: D

56. In which of the following neutralisation reaction, the heat of neutralisation will be highest ?
A. $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$
B. HCl and NaOH
C. $\mathrm{CH}_{3} \mathrm{COOH}$ and KOH
D. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{NH}_{4} \mathrm{OH}$

Answer: B

- Watch Video Solution

57. In the reaction :
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$,
$\Delta H=2.8 k J . \Delta H$ represents
A. heat of reaction
B. heat of combustion
C. heat of formation
D. heat of solution

Answer: A

- Watch Video Solution

58. $H_{2}(g)+I_{2} \Leftrightarrow 2 H I(g): \Delta H=12.40 k c a l$.

According to this reaction, heat of formation of HI will be
A. 12.4 kcal
B. $-12.4 k \mathrm{cal}$
C. -6.20 kcal
D. 6.20 kcal

Answer: D

59. The value of heat of formation of SiO_{2} and MgO are 48.24 and 34.7 kJ respectively. The heat of reaction :
$2 \mathrm{Mg}+\mathrm{SiO}_{2} \rightarrow 2 \mathrm{MgO}+\mathrm{Si}$ is :
A. 21.16 kJ
B. -21.16 kJ
C. 13.62 kJ
D. $-13.62 k J$

Answer: A

- Watch Video Solution

60. $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}, \Delta=-68.39 \mathrm{kcal}$
$\mathrm{K}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{KOH}+\frac{1}{2} \mathrm{H}_{2}, \Delta H=-48 \mathrm{kcal}$
$K O H+$ Water $\rightarrow K O H(a q), \Delta H=-14 k c a l$
The heat of formation of KOH in kcal is :
A. -34.39 kcal
B. 102.39 kcal
C. 34.39 kcal
D. 130.39 kcal

Answer: B

- Watch Video Solution

61. $\Delta_{f} \mathrm{H}^{\theta}$ of $\mathrm{CO}_{2}(g), \mathrm{CO}(g), \mathrm{N}_{2} \mathrm{O}(g)$ and $\mathrm{NO}_{2}(g)$ are respectively $-393,-110.81$ and $34\left(\right.$ in $\left.\mathrm{kJmol}^{-1}\right)$ at $27^{\circ} \mathrm{C}$.
ΔH (in kJ) for the reaction :
$2 \mathrm{NO}_{2}(g)+3 \mathrm{CO}(g) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+3 \mathrm{CO}_{3}(\mathrm{~g})$ is
A. 836
B. 1460
C. -836
D. -1460

Answer: C

- Watch Video Solution

62. Given that
$C+O_{2} \rightarrow C O_{2} \Delta H^{\theta}=-x k J$
$2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2} \Delta H^{\theta}=-y k J$

The enthalpy of formation of CO is :
A. $\frac{y-2 x}{2}$
B. $y-2 x$
C. $2 x-y$
D. $\frac{x-y}{2}$

Answer: A

63. Calculate ΔH^{θ} for the reaction :
$\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g)$
Given $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta H=-571.6 k J$
A. 571.6 kJ
B. -571.6 kJ
C. 285.8 kJ
D. $-285.8 k J$

Answer: C

- Watch Video Solution

64. When 0.5 g of sulphur is burnt to $S O_{2}: 4.6 \mathrm{~kJ}$ of heat is liberated.

What is the enthalpy of formation of sulphur dioxide?
A. $-147.2 k J$
B. $+147.2 k J$
C. $+294.4 k J$
D. $-294.4 k J$

Answer: D

- Watch Video Solution

65. Changes in enthalpy for the reaction :
$2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
if heat of formation of $\mathrm{H}_{2} \mathrm{O}_{2}(l)$ and $\mathrm{H}_{2} \mathrm{O}(l)$ are $-188 \mathrm{kJmol}^{-1}$ and $-286 \mathrm{kJmol}^{-1}$ respectively is
A. $-196 \mathrm{kJmol}^{-1}$
B. $+196 \mathrm{kJmol}^{-1}$
C. $+948 \mathrm{kJmol}^{-1}$
D. $-948 \mathrm{kJmol}^{-1}$

D Watch Video Solution

66. For which one of the following equations is $\Delta_{r} H^{\theta}$ equal to $\Delta_{f} H^{\theta}$ for the product?
A. $N_{2}(g)+O_{3}(g) \rightarrow N_{2} O_{3}(g)$
B. $\mathrm{CH}_{4}(g)+2 \mathrm{Cl}_{2}(g) \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}(g)+2 \mathrm{HCl}(g)$
C. $X e(g)+2 F_{2}(g) \rightarrow X e F_{4}(g)$
D. $2 \mathrm{CO}(g)+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}(g)$

Answer: C

D Watch Video Solution

67. Consider the following reaction :
(A) $H^{+}(a q)+O H^{-}(a q)=H_{2} O(l): \Delta H=-X_{1} k J m o l=1$
(B) $H_{2}(g)+\frac{1}{2} O_{2}(g)=H_{2} O(l): \Delta H=-X_{2} k J m o l^{-1}$
(C) $\mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)=\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}): \Delta H=-\mathrm{X}_{3} \mathrm{kJmol}^{-1}$
(D) $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{5}{2} \mathrm{O}_{2}(g)=2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}): \Delta H=+\mathrm{X}_{4} \mathrm{kJmol}^{-1}$

Enthalpy of formation of $\mathrm{H}_{2} \mathrm{O}(l)$ is :
A. $+X_{1} \mathrm{kJmol}^{-1}$
B. $-X_{2} \mathrm{kJmol}^{-1}$
C. $+X_{3} \mathrm{kJmol}^{-1}$
D. $-X_{4} \mathrm{kJmol}^{-1}$

Answer: B

- Watch Video Solution

68. The enthalpy of formation of NH_{3} is $-46 \mathrm{~kJ} / \mathrm{mol}$ The enthalpy change for reaction :
$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$ is:
A. $+23 k J$
B. $+92 k J$
C. +46 kJ
D. $+184 k J$

Answer: B

- Watch Video Solution

69. The enthalpy changes at $25^{\circ} \mathrm{C}$ in successive breaking of $\mathrm{O}-\mathrm{H}$ bonds of water are :
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}(\mathrm{g})+\mathrm{OH}(\mathrm{g}) \Delta \mathrm{H}=498 \mathrm{kJmol}^{-1}$
$O H(g) \rightarrow H(g)+O(g) \Delta H=428 \mathrm{kJmol}^{-1}$
The bond enthalpy of the $\mathrm{O}-\mathrm{H}$ bond is :
A. $498 \mathrm{kJmol}^{-1}$
B. $463 \mathrm{kJmol}^{-1}$
C. $428 \mathrm{kJmol}^{-1}$
D. $70 \mathrm{kJmol}^{-1}$

- Watch Video Solution

70. Calculate the heat of the reaction :
$\mathrm{CH}_{2}=\mathrm{CH}_{2}(g)+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{3}(g)$
given that bond energy of $\mathrm{C}-\mathrm{C}, \mathrm{C}=\mathrm{C}, \mathrm{C}-\mathrm{H}$ and $\mathrm{H}-\mathrm{H}$ is $80,145,98$ and 103 kcal .
A. $-28 \mathrm{kcalmol}^{-1}$
B. $-5.6 \mathrm{kcalmol}^{-1}$
C. $-2.8 \mathrm{kcalmol}^{-1}$
D. $-56 \mathrm{kcalmol}^{-1}$

Answer: A

71. If the bond energies of $\mathrm{H}-\mathrm{H}, \mathrm{Br}-\mathrm{Br}$ and $\mathrm{H}-\mathrm{Br}$ are 433, 192 and 364 kJ mol^{-1} respectively, then ΔH° for the reaction :
$\mathrm{H}_{2(g)}+\mathrm{Br}_{2(g)} \rightarrow 2 \mathrm{HBr}_{(g)}$ is
A. $+103 k J$
B. 261 kJ
C. -103 kJ
D. -261 kJ

Answer: C

- Watch Video Solution

72. From the following bond energies :
$H-H$ bond energy : $431.37 \mathrm{kJmol}^{-1}$
$C=C$ bond energy : $606.10 \mathrm{kJmol}^{-1}$
$C-C$ bond energy : $336.49 \mathrm{kJmol}^{-1}$
$C-H$ bond energy : $410.50 \mathrm{kJmol}^{-1}$
calculate the bond energy of the following reaction :

A. $-243.6 \mathrm{~kJ} / \mathrm{mol}$
B. $-120.0 \mathrm{~kJ} / \mathrm{mol}$
C. $553.0 \mathrm{~kJ} / / \mathrm{mol}$
D. $1523.6 \mathrm{~kJ} / / \mathrm{mol}$

Answer: B

Watch Video Solution

73. Entropy of the universe is
A. tends towards a maximum
B. tends towards a minimum
C. tends to be zero
D. remains constant

- Watch Video Solution

74. Entropy change for an adiabatic reversible process is :
A. zero
B. $+v e$
C. $-v e$
D. negative or zero

Answer: A

- Watch Video Solution

75. Which of the following processes is not accompanied by increase of entropy?
A. dissolution of $\mathrm{NH}_{4} \mathrm{Cl}$ in water
B. burning of rocket fuel
C. sublimation of dry ice
D. condensing steam

Answer: D

- Watch Video Solution

76. Which of the following conditions is not favourable for the feasibility of a process ?
A. $\Delta H=-v e, T \Delta S=-v e$ and $T \Delta S<\Delta H$
B. $\Delta H=+v e, T \Delta S=+v e$ and $T \Delta S>\Delta H$
C. $\Delta H=-v e, T \Delta S=+v e$ and $\Delta H>T \Delta S$
D. $\Delta H=+v e, T \Delta S=+v e$ and $\Delta H>T \Delta S$
77. In which of the following cases, the reaction is spontaneous at all temperatures ?
A. $\Delta H>0, \Delta G>0$
B. $\Delta H<0, \Delta G>0$
C. $\Delta H<0, \Delta G<0$
D. $\Delta H>0, \Delta G<0$

Answer: B

- Watch Video Solution

78. For an endothermic reaction, ΔS is positive. The reaction is :
A. feasible when $T \Delta S>\Delta H$
B. feasible when $\Delta H>T \Delta S$
C. feasible at all temperatures
D. not feasible at all

Answer: A

- Watch Video Solution

79. When potessium chloride is dissovled in water,
A. entropy increases
B. entropy decreases
C. entropy increases and then decreases
D. free energy increases

Answer: A

- Watch Video Solution

80. All the naturally occuring processes proceed spontaneously in a direction which leads to
A. Decrease of entropy
B. Increase of enthalpy
C. Increase of free energy
D. Decrease of free energy

Answer: D

- Watch Video Solution

81. For a spontaneous reaction, ΔG should be :
A. positive
B. negative
C. equal to zero
D. may be positive or negative

Answer: B

D Watch Video Solution

82. When a solid changes into liquid, the entropy :
A. increases
B. remains the same
C. decreases
D. becomes zero

Answer: A

Watch Video Solution
83. Entropy is a measure of :
A. disorder
B. internal energy
C. efficiency
D. useful work done by the system

Answer: A

D Watch Video Solution

84. When a solid is coverted directly into gaseous state, the process is called sublimation. The entropy change during the process is :
A. zero
B. negative
C. positive
D. may be negative

Answer: C

85. Which of the following processes is accompanied by decrease in entropy?
A. Evaporation of water
B. Sublimation of dry ice
C. Melting of ice
D. Condensing steam

Answer: D

- Watch Video Solution

86. Free energy is related to enthalpy and entropy changes as:
A. $\Delta G=\Delta H-T \Delta S$
B. $\Delta G=T \Delta S-\Delta H$
C. $\Delta G=\frac{\Delta H-\Delta S}{T}$
D. $\Delta G=\Delta H+T \Delta S$

Answer: A

- Watch Video Solution

87. For which of the following reactions, ΔS is not positive ?
A. $I_{2}(s) \rightarrow I_{2}(g)$
B. $\mathrm{CuO}(s)+\mathrm{H}_{2}(g) \rightarrow \mathrm{Cu}(s)+\mathrm{H}_{2} \mathrm{O}(l)$
C. $2 \mathrm{O}_{3}(\mathrm{~g}) \rightarrow 3 \mathrm{O}_{2}(\mathrm{~g})$
D. $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Answer: B

- Watch Video Solution

88. For an equilibrium state,
A. $\Delta H>0$
B. $\Delta G>0$
C. $\Delta H=T \Delta S$
D. $\Delta H>T \Delta S$

Answer: C

- Watch Video Solution

89. The standard free energy changes $\left(\Delta G^{\theta}\right)$ is related to equilibrium constant (K) as
A. $\Delta G^{\theta}=-2.303 R T \ln K$
B. $\Delta G^{\theta}=2.303 R T \log K$
C. $\Delta G^{\theta}=-2.303 R T \log K$
D. $\Delta G^{\theta}=R T \log K$

Answer: C

90. The units of entropy are :
A. Jmol^{-1}
B. $J K^{-1} \mathrm{~mol}^{-1}$
C. $J g^{-1}$
D. JKmol^{-1}

Answer: B

91. In an electrochemical cell, if E is the e.m.f. of the cell involving n mole of electrons, then ΔG° is :
A. $\Delta G^{\theta}=n F E^{\theta}$
B. $\Delta G^{\theta}=-n F E^{\theta}$
C. $E^{\theta}=n F \Delta G^{\theta}$
D. $\Delta G^{\theta}=\frac{n F}{E^{\theta}}$

Answer: B

(Watch Video Solution

92. For a spontaneous endothermic reaction :
A. $\Delta G>0$
B. $\Delta G=0$
C. $\Delta H<0$
D. $\Delta S>\frac{\Delta H}{T}$

Answer: D

- Watch Video Solution

93. The sign of ΔG for the process of melting of ice at 260 K is :
A. $\Delta G=0$
B. $\Delta G<0$
C. $\Delta G>0$
D. $\Delta G \leq 0$

Answer: C

- Watch Video Solution

94. The enthalpy of vaporisation of a substance is $8400 \mathrm{Jmol}^{-1}$ and its boiling point is $-173^{\circ} \mathrm{C}$. The entropy change for vaporisation is :
A. $84 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
B. $21 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
C. $49 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
D. $12 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

Answer: A

- Watch Video Solution

95. If equilibrium constant K is 10^{3}, the ΔG^{θ} for the reaction at 300 K is (assume $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$):
A. $-16.582 k J$
B. 16.582 kJ
C. 165.82 kJ
D. 1658.2 kJ

Answer: A

- Watch Video Solution

96. The enthalpy of vaporisation of a compound $A B$ a its boiling point $\left(127^{\circ} \mathrm{C}\right)$ is $6.4 \mathrm{kJmol}^{-1}$. Its entropy of vapourisation is:
A. $2.56 \mathrm{kJKmol}^{-1}$
B. $16 \mathrm{JKmol}^{-1}$
C. $16 \times 10^{-3} \mathrm{JKmol}^{-1}$
D. $1.6 \times 10^{3} \mathrm{kJKmol}^{-1}$

Answer: B

- Watch Video Solution

97. The equilibrium constant for a reaction is $10 . \Delta G^{\theta}$ will be $R=8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \mathrm{~T}=300 \mathrm{~K}$)
A. $-5527 \mathrm{kJmol}^{-1}$
B. $-5.527 \mathrm{kJmol}^{-1}$
C. $-55.27 \mathrm{kJmol}^{-1}$
D. $+5.527 \mathrm{kJmol}^{-1}$
98. ΔH (vap) for water is $40.7 \mathrm{kJmol}^{-1}$. The entropy of vaporisation of water is :
A. $-40.7 \mathrm{kJmol}^{-1} \mathrm{~K}^{-1}$
B. $407 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
C. $109 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
D. $722 \mathrm{Jmol}^{-1}$

Answer: C

- Watch Video Solution

99. The enthalpy of vaporisation of water is $186.5 \mathrm{kJmol}^{-1}$. The entropy of its vaporisation will be :
A. $2.0 \mathrm{JK}^{-1}$
B. $200 \mathrm{JK}^{-1}$
C. $0.5 \mathrm{JK}^{-1}$
D. $1.5 \mathrm{JK}^{-1}$

Answer: C

- Watch Video Solution

100. For the reaction at 298 K :
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}^{\circ}=-282.8 \mathrm{~kJ}$
Standard entropies (in $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
$\mathrm{CO}_{2}(g)=213.6 \mathrm{CO}(g)=197.6$ and $O_{2}(g)=205.0 \Delta_{r} G^{\circ} \quad$ for the reaction $\left(\mathrm{kJmol}^{-1}\right)$
A. -306.02
B. -257.81
C. 306.02
D. -157.03

D Watch Video Solution

101. For the process : $\mathrm{CO}_{2}(s) \rightarrow \mathrm{CO}_{2}(g)$
A. Both ΔH and ΔS are +ve
B. ΔH is -ve, ΔS is +ve
C. ΔH is +ve, ΔS is -ve
D. Both ΔH and ΔS are -ve

Answer: A

- Watch Video Solution

102. Entropy change for an isothermal expansion of one mole of an ideal gas from volume V_{1} to V_{2} is:
A. $R \ln \frac{V_{2}}{V_{1}}$
B. $2.303 R \ln \frac{V_{2}}{V_{1}}$
C. $R \ln \frac{V_{1}}{V_{2}}$
D. $R \ln \left(V_{2}-V_{1}\right)$

Answer: A

- Watch Video Solution

103. For a reaction to be spontaneous at all temperatures
A. ΔG and ΔH should be negative
B. $\Delta H=\Delta G=0$
C. ΔG and ΔH should be positive
D. $\Delta H<\Delta G$

Answer: A

104. The free energy change $\Delta G=0$, when
A. the system is at equilibrium
B. catalyst is added
C. reactants are initially mixed thoroughly
D. the reactants are completely consumed

Answer: A

- Watch Video Solution

105. For a reaction to occur spontaneously
A. ΔS must be negative
B. $(\Delta H-T \Delta S)$ must be negative
C. $(\Delta H+T \Delta S)$ must be negative
D. ΔH must be negative

Answer: B

- Watch Video Solution

106. The enthalpy and entropy of a reaction are $-5.0 \mathrm{kJmol}^{-1}$ and $-20 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively and independent of tempareture. The highest temperature upto which the reaction is feasible is :
A. 250 K
B. 260 K
C. 275 K
D. 300 K

Answer: A

107. The free energy change for a reaction is zero when
A. The reactants are initially mixed
B. A catalyst is added
C. The system is at equilibrium
D. The reactants are completely consumed

Answer: C

- Watch Video Solution

108. The change in entropy of an ideal gas during a reversible isothermal expansion is
A. negative
B. positive
C. zero
D. infinite

Answer: B

D Watch Video Solution

109. Considering entropy (s) as a thermodynamic parameter, the criterion for the spontaneity of any process is
A. $\Delta S_{\text {system }}-\Delta S_{\text {surroundings }}>0$
B. $\Delta S_{\text {system }}>0$ only
C. $\Delta S_{\text {surroundings }}>0$ only
D. $\Delta S_{\text {system }}+\Delta S_{\text {surroundings }}>0$

Answer: D

D Watch Video Solution

110. Identify the correct statement for change of Gibb's energy for a system $\left(\Delta G_{\text {system }}\right)$ at constant temperature and pressure :
A. If $\Delta G_{\text {system }}=0$, the system has attained equilibrium
B. If $\Delta G_{\text {system }}=0$, the system is still moving in a particular direction
C. If $\Delta G_{\text {system }}<0$, the process is not spontaneous
D. If $\Delta G_{\text {system }}>0$, the process is spontaneous

Answer: A

D Watch Video Solution

111. Entropy changes for the process
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
at normal pressure and 274 K are given below
$\Delta G_{\text {system }}=-22.13, \Delta S_{\text {surroundings }}=+22.05$
Then process is non spontaneous because
A. $\Delta G_{\text {system }}$ is -ve
B. $\Delta G_{\text {surrounding }}$ is +ve
C. $\Delta S_{\text {universe }}$ is -ve
D. $\Delta G_{\text {system }} \neq \Delta S_{\text {surrounding }}$

Answer: C

- Watch Video Solution

112. The second law of thrmodynamics says that in a cyclic process,
A. work cannot be converted into heat
B. heat cannot be converted into work
C. work cannot be completely converted into heat
D. heat cannot be completely converted into work

Answer: D

- Watch Video Solution

113. A reaction cannot take place spontaneously at any temperature where
A. both ΔH and ΔS are positive
B. both ΔH and ΔS are negative
C. ΔH is negative and ΔS is positive
D. ΔH is positive and ΔS is negative

Answer: D

- Watch Video Solution

114. Pick out the wrong statement.
A. Standard free energy of formation of all elements is zero
B.A process accompanied by decrease in entropy is spontaneous under certain conditions
C. The entropy of a perfectly crystalline substance at absolute zero is zero
D. A process that leads to increase in free energy will be spontaneous

Answer: D

- Watch Video Solution

115. The values of ΔH and ΔS for the reaction. C (graphite) $+\mathrm{CO}_{2}(g) \rightarrow 2 \mathrm{CO}(g)$ are 170 kJ and $170 \mathrm{JK}^{-1}$, respectively. This reaction will be spontaneous at :
A. 910 K
B. 1110 K
C. 510 K
D. 710 K

Answer: B

116. Which of the following demonstrates a decrease in entropy ?
A. Dissolving a solid into solution
B. An expanding universe
C. Burning a \log in a fireplace
D. Raking up leaves into a trash bag

Answer: D

- Watch Video Solution

117. A certain reaction is at equilibrium at $82^{\circ} \mathrm{C}$ and the enthalpy change for the reaction is 21.3 kJ . The value of ΔS (in JKmol^{-1} for the reaction is
A. 55.0
B. 60.0
C. 68.5
D. 120.0

Answer: C

- Watch Video Solution

118. Standard entropies of X_{2}, Y_{2} and $X Y_{3}$ are 60,40 and $50 \mathrm{JK}^{-1}$ respectively $\frac{1}{2} X_{2}+\frac{3}{2} Y, \Delta H=-30 k J$ to be at equilibrium, the temperature should be :
A. 1250 K
B. 500 K
C. 750 K
D. 1000 K

Answer: B

D Watch Video Solution

119. If the enthalpy change for the transition of liquid water to steam is $30 \mathrm{~kJ} \mathrm{~mol}{ }^{\wedge}(-1)$ at $27^{\circ} C$, the entropy change for the process would be :
A. $10 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
B. 1. $0 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
C. $0.1 \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
D. $100 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

Answer: D

D Watch Video Solution

120. The standard Gibbs free energies $\left(\Delta_{f} G^{\circ}\right)$ for the formation of $S O_{2}(g)$ and $\mathrm{SO}_{3}(\mathrm{~g})$ are -300.0 and $-371.0 \mathrm{kJmol}^{-1}$ at 300 K
respectively. ΔG for the reaction.
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ is
A. 1342 kJ
B. $-142 k J$
C. -71 kJ
D. -671 kJ

Answer: A

- Watch Video Solution

Multiple Choice Questions Level li

1. For which of the following reactions, ΔH is greater than ΔU ?
A. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
B. $\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
C. $\mathrm{PCl}_{5}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
D. $\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(a q)$

Answer: C

- Watch Video Solution

2. A sample of gas changes from p_{1}, V_{1} and $p_{2} . V_{2}$ and T_{2} by one path and then back to p_{1}, V_{1} and $T_{1} . \Delta U$ for the process is :
A. Infinite
B. >0
C. <0
D. equal to 0

Answer: D

3. An endothermic reaction is allowed to occur very rapidly in the air. The temperature of the surrounding air
A. remains constant
B. decreases
C. increases
D. may increase or decrease

Answer: B

- Watch Video Solution

4. Under which of the following conditions is the relation $\Delta H=\Delta U+p \Delta V$ valid for a closed system ?
A. constant pressure
B. constant temperature
C. constant temperature and constant pressure
D. constant temperature, pressure and composition

Answer: C

- Watch Video Solution

5. The enthalpy change for the process :
$C(s) \rightarrow C(g)$
corresponding to enthalpy of
A. fusion
B. Sublimation
C. combustion
D. vaporisation

Answer: B

D Watch Video Solution

6. For the reversible vaporisation of water at 373 K and 1 atmosphere pressure, ΔG is equal to
A. ΔH
B. ΔS
C. zero
D. $\frac{\Delta H}{T}$

Answer: C

- Watch Video Solution

7. Calculate the heat required to make 6.4 kg of CaC_{2} from $\mathrm{CaO}(\mathrm{s})$ and $\mathrm{C}(\mathrm{s})$ from the reaction :
$\mathrm{CaO}(s)+3 C(s) \rightarrow \mathrm{CaCl}_{2}(s)+\mathrm{CO}(g)$
given
that
$\Delta_{f} H^{\theta}(C a O)=-151.6 k c a l$.
$\Delta_{f} H^{\theta}\left(C a C_{2}\right)=-14.2 k c a l$.
$\Delta_{f} H^{\theta}(C O)=-26.4 k c a l$
A. 5624 kcal
B. $1.1 \times 10^{4} k c a l$
C. 86.24×10^{3}
D. 1100 kcal

Answer: B

- Watch Video Solution

8. Four grams of helium is expanded from 1 atm to one-tenth of its origiinal pressure at $30^{\circ} \mathrm{C}$. Change in entropy (assuming ideal gas behaviour) is :
A. $38.3 \mathrm{JK}^{-1}$
B. $76.6 \mathrm{JK}^{-1}$
C. $19.15 \mathrm{JK}^{-1}$
D. $100 \mathrm{JK}^{-1}$

Answer: C

9. The entropy change of the conversion of 1 mol of α - tin (at $13^{\circ} \mathrm{C}$, 1 atm) to 1 mol of β - $\operatorname{tin}\left(13^{\circ}, 1 \mathrm{~atm}\right)$. If enthalpy of transition is $2.095 \mathrm{kmol}^{-1}$ is :
A. $7.32 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
B. $14.62 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
C. $56.3 \mathrm{Jmol}^{-1} K^{-1}$
D. 0

Answer: A

- Watch Video Solution

10. The following data is known about the melting of a compoun AB.
$\Delta H=9.2 \mathrm{kJmol}^{-1}, \Delta S=0.008 \mathrm{kJK}^{-1} \mathrm{~mol}^{-1}$. Its melting point is :
A. 736 K
B. 1050 K
C. 1150 K
D. $1150^{\circ} \mathrm{C}$

Answer: C

- Watch Video Solution

11. For a reaction,
$X+Y \rightarrow Z$
there is no entropy charge. Enthaply change for the reaction is $100 \mathrm{Jmol}^{-1} . \Delta G$ is
A. $-100 \mathrm{Jmol}^{-1}$
B. $100 \mathrm{Jmol}^{-1}$
C. 0
D. Infinite

Answer: B

- Watch Video Solution

12. The difference between heats of reaction at constant pressure and constant volume for the reaction.
$2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+15 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at $25^{\circ} \mathrm{C}$ is :
A. $-7.43 k J$
B. $+3.72 k J$
C. $-3.72 k J$
D. 7.43 kJ

Answer: A

13. Given :
$H_{2}(g)+\frac{1}{2} O_{2}(g)=H_{2} O(g)+q_{1}$
$\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g)=\mathrm{H}_{2} \mathrm{O}(l)+q_{2}$
The enthalpy of vaporisation of water is equal to
A. $q_{1}+q_{2}$
B. $q_{1}-q_{2}$
C. $q_{2}-q_{1}$
D. $q_{1} q_{2}$

Answer: C

- Watch Video Solution

14. If $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}+x k J$

$$
\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+y k J
$$

The enthalpy change for the reaction :
$\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$is
A. $x+y$
B. $x-y$
C. $y-x$
D. $x-y / 2$

Answer: C

- Watch Video Solution

15. The heat of neutralisation of HCl and NaOH is $57.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The amount of heat liberated when 0.25 mol of HCl reacts with 1 mol of NaOH is :
A. 57.3 kJ
B. 14.325 kJ
C. 28.65 kJ
D. 114.6 kJ

- Watch Video Solution

16. Given that $O(g)+e^{-} \rightarrow O^{-}(g) \Delta H=-142 \mathrm{kJmol}^{-1}$
$O(g)+2 e^{-} \rightarrow O^{2-}(g) \Delta H=+712 \mathrm{kJmol}^{-1}$
The heat change for the reaction
$O^{-}(g)+e^{-} \rightarrow O^{2-}(g)$ is :
A. $-570 k J$
B. 570 kJ
C. $+854 k J$
D. $-854 k J$

Answer: C

- Watch Video Solution

17. Equal volumes of 1 M HCl and $\mathrm{H}_{2} \mathrm{SO}_{4}$ are neutralised by dil NaOH solution and xkJ and ykJ of heat are librated respectively. Which of the following is true?
A. $x=y$
B. $x=\frac{1}{2} y$
C. $x=2 y$
D. None of these.

Answer: B

- Watch Video Solution

18. For an ideal gas, the Joule Thomson co-efficient is equal to
A. 1
B. 0
C. 2
D. infinity

Answer: B

- Watch Video Solution

19. The enthalpies of combustion of some fuels are given below. Which of these has lowest efficiency as fuel per gram?
A. $C_{2} H_{6}(-1560 k J)$
B. $C_{2} H_{4}(-1411 k J)$
C. $C_{4} H_{10}(-2877 k J)$
D. $\mathrm{CH}_{4}(-890.4 \mathrm{~kJ})$

Answer: C

- Watch Video Solution

20. Which of the following statements/relationships is not correct ?
A. In an exothermic reaction, enthalpy of products is less than that of reactants.
B. A reaction for which $\Delta H^{\theta}<0$ and $\Delta S^{\theta}>0$ is spontaneous at all temperatures.
C. ΔH is less than, ΔE for the reaction :
$C(s)+\frac{1}{2} O_{2}(g) \rightarrow C O(g)$
D. $\Delta_{\text {vap }} H=\Delta_{\text {sub }} H-\Delta_{\text {fus }} H$

Answer: C

- Watch Video Solution

21. The maximum work obtained by an isothermal reversible expansion of 1 mol of an ideal gas at $27^{\circ} C$ from 2.24 to 22.4 L is ($\mathrm{R}=2$ cal)
A. 1381.8 cal
B. 600 cal
C. 138.18 cal
D. 690.9 cal

Answer: A

- Watch Video Solution

22. Which of the following salts will have maximum cooling effect when 0.5 mole of the salt is dissolved in same amount of water. Integral heat of solution at 298 K is given for each salt ?
A. $K N O_{3}(\Delta H=35.4 k J m o l ~ l i d)$
B. $N a C l\left(\Delta H=5.35 \mathrm{kJmol}^{-1}\right)$
C. $H B r(\Delta H=-83.3 k J m o l=1)$
D. $K O H\left(\Delta H=-55.6 \mathrm{kJmol}^{-1}\right)$

Answer: A

23. One mole of ice is coverted into water at 273 K . The entropies of $\mathrm{H}_{2} \mathrm{O}(s)$ and $\mathrm{H}_{2} \mathrm{O}(l)$ are 38.20 and $60.01 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$ respectively. The enthaply change for the conversion is
A. $59.54 \mathrm{Jmol}^{-1}$
B. $5954 \mathrm{Jmol}^{-1}$
C. $595.4 \mathrm{Jmol}^{-1}$
D. $320.6 \mathrm{Jmol}^{-1}$

Answer: B

- Watch Video Solution

24. The molar heat of vaporisation for water is $9.72 \mathrm{kcalmol}^{-1}$. The amount of heat change when 45 g of water condense is :
A. 437.4 kcal
B. 24.3 kcal
C. 243 kcal
D. 3.89 kcal

Answer: B

- Watch Video Solution

25. Which of the following properties of a system undergoing change at a constant temperature and pressure is a measure of the maximum useful work that the system can do ?
A. ΔG
B. ΔS
C. ΔH
D. $\mathrm{P} \Delta V$

D Watch Video Solution

26. Two objects are said to be in thermal equilibrium if they have same
A. kinetic energy
B. temperature
C. potential energy
D. internal energy

Answer: B

- Watch Video Solution

27. An isolated system is that system in which
A. There is no exchange of energy with the surroundings
B. There is exchange of mass and energy with the surroundings
C. There is no exchange of mass and energy with the surroundings
D. There is exchange of mass with surroundings.

Answer: D

- Watch Video Solution

28. For the reaction :
$F_{2}(g)+2 H C l(g) \Leftrightarrow 2 H F(g)+C l_{2}(g)$
ΔH^{θ} at $25^{\circ} \mathrm{C}$ is $=-84.4 \mathrm{kcalmol}^{-1}$
$\Delta_{f} H^{\theta}(H F)=-64.2 \mathrm{kcalmol}^{-1}$
$\Delta_{f} H^{\theta}$ for $\mathrm{HCl}(\mathrm{g})$ per gram is :
A. $-0.603 \mathrm{kcalg}^{-1}$
B. $0.603 \mathrm{kcalg}^{-1}$
C. $0.0603 \mathrm{kcalg}^{-1}$
D. $6.03 \mathrm{kcalg}^{-1}$

- Watch Video Solution

29. M is a metal which forms an oxide, $M_{2} O$ and $\frac{1}{2} M_{2} O(s) \rightarrow M(s)+\frac{1}{4} O_{2}(g), \Delta H=90 \mathrm{kJmol}^{-1}$

When a sample of the metal M reacts with 1 mole of $\mathrm{O}_{2}(\mathrm{~g})$ to form $\mathrm{M}_{2} \mathrm{O}$,
ΔH for the reaction is :
A. +180 kJ
B. -180 kJ
C. -360 kJ
D. 360 kJ

Answer: C

- Watch Video Solution

30. A mixture of 2 moles of carbon monoxide and one mole of oxygen in a closed vessel is ignited to get carbon dioxide. If ΔH is the enthalpy change and ΔU is the change in internal energy, then
A. $\Delta H>\Delta U$
B. $\Delta H<\Delta U$
C. $\Delta H=\Delta U$
D. Not definite

Answer: B

- Watch Video Solution

31. Latent heat of vaporisation of a liquid at 500 K and 1 atm pressure is $10 \mathrm{kcal} / \mathrm{mol}$. What will be the change in internal energy (ΔU) of 3 mol of liquid at the same temperature?
A. 13.0 kcal
B. -13.0 kcal
C. 27.0 kcal
D. -27.0 kcal

Answer: C

- Watch Video Solution

32. At constant T and P which one of the following statements is correct for the reaction :
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
A. $\Delta H=\Delta U$
B. $\Delta H<\Delta U$
C. $\Delta H>\Delta U$
D. ΔH is independent of the physical state of the reactant of that compound

- Watch Video Solution

33. If $S+O_{2} \rightarrow S O_{2}, \Delta H=-298.2 k J$
$\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}, \Delta H=-98.2 k J$
$\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}, \Delta \mathrm{H}=-130.2 \mathrm{~kJ}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=-287.3 \mathrm{~kJ}$
the enthalpy of formation of $\mathrm{H}_{2} \mathrm{SO}_{4}$ at 298 K will be
A. $-433.7 k J$
B. -650.3 kJ
C. $+320.5 k J$
D. $-813.9 k J$

Answer: D

34. The latent heat of vaporisation of water at 100° is $2257 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$. The ΔH for the process
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is very nearly
A. +2257 J
B. -2257 J
C. +40.7 kJ
D. -40.7 kJ

Answer: D

- Watch Video Solution

35. If ΔH and ΔU are the changes in the enthalpy and internal energy when a liquid is converted into its vapours at temperature T , then :
A. $\Delta H-\Delta U=0$
B. $\Delta H-\Delta U=22.4 k J / \mathrm{mol}$
C. $\Delta H-\Delta U=R T$
D. $\Delta U-\Delta H=R T$

Answer: C

- Watch Video Solution

36. One mole of methannol when burnt in oxygen gives out $723 \mathrm{kJmol}^{-1}$ heat. If one mole of oxygen is used, what will be the amount of heat evolved?
A. 723 kJ
B. 964 kJ
C. 482 kJ
D. 241 kJ

Answer: C

37. $\mathrm{S}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}+2 x \mathrm{kcal}$
$\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}+y k \mathrm{cal}$
Find out the heat of formation of SO_{2} :
A. $(2 x-y)$
B. $(2 x+y)$
C. $(x+y)$
D. $2 x / y$

Answer: A

- Watch Video Solution

38. The enthalpy of formation of two compounds A and B are $-84 k J$ and $-156 k J$ respectively. Which one of the following statements is correct ?
$A . A$ and B are endothermic compounds
B. A is more stable than B
C. A is less stable than B
D. Both A and B are unstable

Answer: C

- Watch Video Solution

39. For a reaction at equilibrium, the partial pressure of B is found to be one fourth of the partial pressure of A. The value of ΔG^{θ} of the reaction $A \rightarrow B$ is
A. $-R T \log 4$
B. $2.303 R T \log 4$
C. $-2.303 R T \frac{\log 1}{4}$
D. $2.303 R \log 4$

Answer: B

40. When an ideal gas is suddenly allowed to expand adiabatically into an evacuated container, then
A. $\Delta S=0$
B. $\Delta G=0$
C. $\Delta U=0$
D. $\Delta G=-T \Delta S$

Answer: C

- Watch Video Solution

41. In which case of mixing of a strong acid and a strong base each of 1 M concentration. Temperature increase is the highest ?
A. 15 ml acid and 40 ml alkali
B. 10 ml acid and 25 ml alkali
C. 20 ml acid and 20 ml alkali
D. 40 ml acid and 20 ml alkali

Answer: C

- Watch Video Solution

42. The dissociation energy of CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{6}$ are respectively 1508 and $2594 \mathrm{kJmol}^{-1}$ respectively. The bond energy of $\mathrm{C}-\mathrm{C}$ bond is
A. $332 \mathrm{kJmol}^{-1}$
B. $316 \mathrm{kJmol}^{-1}$
C. $806 \mathrm{kJmol}^{-1}$
D. $320 \mathrm{kJmol}^{-1}$

Answer: A

43. Standard heat of formation of $\mathrm{CH}_{4} \cdot \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are $-76.2,-394.8$ and $-241.6 \mathrm{kJmol}^{-1}$. Amount of heat evolved by burning $1 \mathrm{~m}^{3}$ of CH_{4} measured at normal conditions is
A. $3.579 \times 10^{6} k J$
B. $3.579 \times 10^{4} k J$
C. $6.240 \times 10^{4} k J$
D. $6.240 \times 10^{7} \mathrm{~kJ}$

Answer: B

- Watch Video Solution

44. Standard molar enthalpy of formation of CO_{2} is equal to
A. zero
B. standard molar enthalpy of combustion
C. the sum of standard molar enthalpies of formation of CO and O_{2}
D. the standard molar enthalpy of combustion of carbon (graphite)

Answer: D

- Watch Video Solution

45. The enthalpy change in freezing 1 g of water (
ΔH fusion $=6.0 \mathrm{kJmol}^{-1}$) will be
A. -6000.0 J
B. $-333 J$
C. 333.33 J
D. 60.0 J

Answer: C

46. For the reaction :
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad$ a constant temperature, $\Delta H-\Delta U$ is
A. $+R T$
B. $-3 R T$
C. $+3 R T$
D. $-R T$

Answer: B

- Watch Video Solution

47. For a reaction to occur spontaneously
A. $T \Delta S<\Delta H$ and both ΔH and ΔS are +ve
B. $T \Delta S>\Delta H$ and ΔH is +ve and ΔS is -ve
C. $T \Delta S>\Delta H$ and both ΔH and ΔS are +ve
D. $T \Delta S=\Delta H$ and both ΔH and ΔS are +ve

Answer: C

- Watch Video Solution

48. Which of the following pairs of a chemical reaction is certain to result in a spontaneous reaction ?
A. Exothermic and increasing disorder
B. Exothermic and decreasing disorder
C. Endothermic and increasing disorder
D. Endothermic and decreasing disorder

Answer: A

- Watch Video Solution

49. The enthalpy and entropy change for the reaction :
$B r_{2}(l)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{BrCl}(g)$
are $30 \mathrm{kJmol}^{-1}$ and $105 \mathrm{JK}^{-1}$ respectively. The temperature at which the reaction will be in equilibrium is :
A. 273 K
B. 450 K
C. 300 K
D. 285.7 K

Answer: D

- Watch Video Solution

50. Assume each reaction is carried out in an open container. For which reaction will be $\Delta H=\Delta U$?
A. $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(g) \rightarrow 2 \mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g)$
B. $P C l_{5}(g) \rightarrow \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(\mathrm{~g})$
C. $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
D. $\mathrm{H}_{2}(g)+\mathrm{Br}_{2}(g) \rightarrow 2 \mathrm{HBr}(g)$

Answer: D

- Watch Video Solution

51. Given that bond energies $\mathrm{H}-\mathrm{H}$ and $\mathrm{Cl}-\mathrm{Cl}$ are $430 \mathrm{kJmol}^{-1}$ and $240 \mathrm{kJmol}^{-1}$ respecively and $\Delta_{f} H$ for HCl is $-90 \mathrm{kJmol}^{-1}$. Bond enthalpy of HCl is:
A. $380 \mathrm{kJmol}^{-1}$
B. $425 \mathrm{kJmol}^{-1}$
C. $245 \mathrm{kJmol}^{-1}$
D. $290 \mathrm{kJmol}^{-1}$
52. Sodium chloride is soluble in water not in benzene because
A.
$\Delta H_{\text {hydration }}<\Delta H_{\text {lattice energy in water }}$ and $\Delta H_{\text {solvation }}>\Delta H_{\text {lattice energy i }}$
B.
$\Delta H_{\text {hydration }}>\Delta H_{\text {lattice energy in water }}$ and $\Delta H_{\text {solvation }}<\Delta H_{\text {lattice energy } i}$
C.
$\Delta H_{\text {hydration }}=\Delta H_{\text {lattice energy in water }}$ and $\Delta H_{\text {solvation }}<\Delta H_{\text {lattice energy } i}$
D.
$\Delta H_{\text {hydration }}<\Delta H_{\text {lattice energy in water }}$ and $\Delta H_{\text {solvation }}=\Delta H_{\text {lattice energy } i}$

Answer: B

53. Calculate the work done when 1 mol of an ideal gas is compressed reversible from 1 bar to 4 bar at a constant temperature of 300 K .
A. 4.01 kJ
B. $-8.02 k J$
C. 18.02 kJ
D. 3.458 kJ

Answer: D

- Watch Video Solution

54. The enthalpy of neutralisation of oxalic acid by a strong base is $-25.4 \mathrm{kcal} / \mathrm{mol}$. The enthapy of neutralisation of a strong acid and strong base is $-13.7 \mathrm{kcal} / \mathrm{equiv}$. The enthaply of dissociation of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ is
A. $1.0 \mathrm{kcal} / \mathrm{mol}$
B. $2.0 \mathrm{kcal} / \mathrm{mol}$
C. $18.55 \mathrm{kcal} / \mathrm{mol}$
D. $11.7 \mathrm{kcal} / \mathrm{mol}$

Answer: B

- Watch Video Solution

55. The heats of atomisation of $\mathrm{PH}_{3}(\mathrm{~g})$ and $\mathrm{P}_{2} \mathrm{H}_{4}(\mathrm{~g})$ are $954 \mathrm{kJmol}^{-1}$ and $1485 \mathrm{kJmol}^{-1}$ respectively. The P-P bond energy in kJmol^{-1} is
A. 213
B. 426
C. 318
D. 1272
56. Given that $d U=T d S-P d V$ and $H=U+P V$. Which one of the following relations is true?
A. $d H=T d S+V d P$
B. $d H=S d T+V d P$
C. $d H=-S d T+V d P$
D. $d H=d U+P d V$

Answer: A

- Watch Video Solution

57. The values of ΔH and ΔS for the reaction. C (graphite) $+\mathrm{CO}_{2}(g) \rightarrow 2 \mathrm{CO}(g)$ are 170 kJ and $170 \mathrm{JK}^{-1}$, respectively. This reaction will be spontaneous at :
A. 910 K
B. 1110 K
C. 510 K
D. 710 K

Answer: B

- Watch Video Solution

58. Which of these species has a standard enthalpy of formation equal to zero ?
A. $F_{2}(g)$
B. $\mathrm{F}(\mathrm{g})$
C. $\mathrm{HF}(\mathrm{aq})$
D. $F^{-}(a q)$
59. Which of the following is correct option for free expansion of an ideal gas under adiabatic condition?
A. $q=0, \Delta T \neq 0, w=0$
B. $q \neq 0, \Delta T=0, w=0$
C. $q=0, \Delta T=0, w=0$
D. $q=0, \Delta T<0, w \neq 0$

Answer: C

- Watch Video Solution

60. In which of the following reactions, standard reaction entropy change (ΔS°) is positive and standard Gibb's energy (ΔG°) decreases sharply with increasing temperature?
A. $\frac{1}{2} C($ graphite $)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \frac{1}{2} \mathrm{CO}_{2}(g)$
B. $\mathrm{C}($ graphite $)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(g)$
C. $\mathrm{CO}($ graphite $)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
D. $M g(s)+\frac{1}{2} O_{2}(g) \rightarrow M g O(s)$

Answer: B

- Watch Video Solution

61. Standard enthaply of vaporisation $\Delta_{\text {vap }} H^{\theta}$ for water at $100^{\circ} \mathrm{C}$ is $40.66 \mathrm{kJmol}^{-1}$. The internal energy of vapourisation of water at $100^{\circ} \mathrm{C}$ (in kJmol^{-1}) is :
A. +40.66
B. +37.56
C. -43.76
D. +43.76

Answer: B

- Watch Video Solution

62. Which of the following statements is correct ?
A. The presence of reacting species in a covered beaker is an example of open system
B. There is an exchange of energy as well as matter between the system and the surroundings in a closed system
C. The presence of reactants in a closed vessel made up of copper is an example of a closed system
D. The presence of reactants in a thermos flask or any other closed insulated vessel is an example of a closed system

Answer: C

D Watch Video Solution

63. The volume of gas is reduced to half from its original volume. The specific heat will
A. reduced to half
B. be doubled
C. remain constant
D. increased four times

Answer: C

- Watch Video Solution

64. $\Delta_{f} U^{\circ}$ of formation of $\mathrm{CH}_{4}(g)$ at certain temperature is $-393 \mathrm{kJmol}^{-1}$. The value of $\Delta_{f} H^{\circ}$
A. zero
B. $<\Delta_{f} U^{\circ}$
C. $>\Delta_{f} U^{\circ}$
D. equal to $\Delta_{f} U^{\circ}$

Answer: B

- Watch Video Solution

65. In an adiabatic process, no transfer of heat takes place between system and surroundings. Choose the correct option for free expansion of an ideal gas under adiabatic condition from the following.
A. $q=0, \Delta T \neq 0, w=0$
B. $q \neq 0, \Delta T=0, w=0$
C. $q=0, \Delta T=0, w=0$
D. $q=0, \Delta T<0, w \neq 0$

Answer: C

66. The enthalpies of elements in their standard states are taken as zero.

The enthalpy of formation of a compound
A. is always negative
B. is always positive
C. may be positive or negative
D. is never negative

Answer: C

- Watch Video Solution

67. Enthalpy of sublimation of a substance is equal to
A. enthalpy of fusion + enthalpy of vapourisation
B. enthalpy of fusion
C. enthalpy of vapourisation
D. twice the enthalpy of vapourisation

Answer: A

- Watch Video Solution

68. Which of the following is not correct ?
A. ΔG is zero for a reversible reaction
B. ΔG is positive for a spontaneous reaction
C. ΔG is negative for a spontaneous reaction
D. ΔG is positive for a non-spontaneous reaction

Answer: B

- Watch Video Solution

69. On the basis of thermochemical equation (a), (b) and (c), which of the algebric relationship is correct.
(a) C (graphite) $+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g), \Delta_{r} H=x \mathrm{kJmol}^{-1}$
(b) C (graphite) $+\frac{1}{2} O_{2}(g) \rightarrow C O(g), \Delta_{r} H=y \mathrm{kJmol}^{-1}$
(c) $\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta_{r} \mathrm{H}=z \mathrm{kJmol}^{-1}$
A. $z=x+y$
B. $x=y-z$
C. $x=y+z$
D. $y=2 z-x$

Answer: C

- Watch Video Solution

70. The standard free energy changes $\left(\Delta G^{\circ}\right)$ is related to equilibrium constant K_{p} as
A. $K_{p}=e^{-\Delta G^{\circ} / R T}$
B. $K_{p} \frac{-\Delta G^{\circ}}{R T}$
C. $K_{p}=R T \ln \Delta G^{\circ}$
D. $\Delta G=e^{K_{P} / R T}$

Answer: A

- Watch Video Solution

71. If $\Delta_{f} G^{\circ}$ for $\mathrm{NH}_{3}(\mathrm{~g})$ is $-16.4 \mathrm{kJmol}^{-1}$, then ΔG° for the reaction :
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ is
A. $32.8 \mathrm{kJmol}^{-1}$
B. $16.4 \mathrm{kJmol}^{-1}$
C. $-16.4 \mathrm{kJmol}^{-1}$
D. $-32.8 \mathrm{kJmol}^{-1}$
72. A cylinder of gas supplied by Bharat Petroleum is assumed to contain 14 kg of butane. If a normal family requires $20,000 \mathrm{~kJ}$ of energy per day for cooking, butane gas in the cylinder last days $\left(\Delta H_{C}\right.$ of $C_{4} H_{10}=-2658 k J$ per mole)
A. 15 days
B. 20 days
C. 50 days
D. 32 days

Answer: D

- Watch Video Solution

73. Given :
$C_{2} H_{6}(g) \rightarrow 2 C(g)+6 H(g): \Delta H=712 k c a l$

The C-C bond energy is 112 kcal , what is the $\mathrm{C}-\mathrm{H}$ bond energy ?
A. 88 kcal
B. 12 kcal
C. 50 kcal
D. 100 kcal

Answer: D

- Watch Video Solution

74. Four grams of graphite is burnt in a bomb calorimeter of heat capacity $30 \mathrm{kJK}^{-1}$ in excess of oxygen at 1 atmospheric pressure. The temperature rises from 300 to 304 K . What is the enthalpy of combustion of graphite (in $k J m o l{ }^{1}$) ?
A. 360
B. 1440
C. -360
D. -1440

Answer: C

- Watch Video Solution

75. A chemical reaction is spontaneous at 298 K but non-spontaneous at 350 K . Which one of the following is true for the reaction?
$\Delta G \quad \Delta H \quad \Delta S$
A.
$-\quad-\quad+$
$\Delta G \quad \Delta H \quad \Delta S$
B. $+\quad+$
$\Delta G \quad \Delta H \quad \Delta S$
C. $\quad+\quad-$
D. $\Delta G \quad \Delta H \quad \Delta S$

Answer: D

- Watch Video Solution

76. The bond energies of of $\mathrm{C}-\mathrm{C}, \mathrm{C}=\mathrm{C}, \mathrm{H}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ linkages are 350 , 600,400 and 410 kJ per mol respectively. The heat of hydrogenation of ethylene is
A. $-170 \mathrm{kJmol}^{-1}$
B. $-260 \mathrm{kJmol}^{-1}$
C. $-400 \mathrm{kJmol}^{-1}$
D. $-450 \mathrm{kJmol}^{-1}$

Answer: A

- Watch Video Solution

77. Two moles of an ideal gas is expanded isothermally and reversible from 1 L to 10 L at 300 K . The enthalpy change (in kJ) for the process is
A. 11.4 kJ
B. -11.4 kJ
C. 0 kJ
D. 4.8 kJ

Answer: C

- Watch Video Solution

78. To neutrealize completely 20 mL of 0.1 M aqueous solution of phosphorus ($\mathrm{H}_{3} \mathrm{PO}_{3}$), the volume of 0.1 M aqueous KOH required is
A. 10 mL
B. 20 mL
C. 40 mL
D. 60 mL

Answer: C

79. The rusting of iron takes place as follows :
$2 \mathrm{H}^{+}+2 e^{-}+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) E^{\circ}=+1.23 \mathrm{~V}$
$\mathrm{Fe}^{2+}+2 e^{-} \rightarrow \mathrm{Fe}(\mathrm{s}) \mathrm{E}^{\circ}=-0.44 \mathrm{~V}$
Calculate ΔG° for the net process
A. $-322 \mathrm{kJmol}^{-1}$
B. $-161 \mathrm{kJmol}^{-1}$
C. $-152 \mathrm{kJmol}^{-1}$
D. $-76 \mathrm{kJmol}^{-1}$

Answer: A

- Watch Video Solution

80. For a spontaneous reaction, ΔG, equilibrium constant (K) and $E_{\text {cell }}^{\circ}$ will be respectively.

$$
\text { A. }-v e,>1,+v e
$$

B. $+v e,>1,-v e$
C. $-v e,<1,-v e$
D. $-v e,>1,-v e$

Answer: A

- Watch Video Solution

81. Consider an endothermic reaction :
$X \rightarrow Y$
with activation energies E_{b} and E_{f} for the backward and forward reactions respectively. In general
A. $E_{b}<E_{f}$
B. $E_{b}>E_{f}$
C. $E_{b}=E_{f}$
D. there is no definite relation between E_{b} and E_{f}

D Watch Video Solution

82. Consider the reaction, $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ carried out ata constant temperature and pressure. If ΔH and ΔU are the enthalpy and internal energy changes for the reaction, which of the following expressions is true?
A. $\Delta H=0$
B. $\Delta H=\Delta U$
C. $\Delta H<\Delta U$
D. $\Delta H>\Delta U$

Answer: C

83. If the bond dissociation energy of $\mathrm{XY}, x_{2} A N D y_{2}$ (all diatomic molecules) are in the ratio of $1: 1: 0.5$ and $\Delta_{f} H$ for the formation of XY is $-200 \mathrm{kJmol}^{-1}$. The bond dissociation energy of X_{2} will be :
A. $100 \mathrm{kJmol}^{-1}$
B. $200 \mathrm{kJmol}^{-1}$
C. $800 \mathrm{kJmol}^{-1}$
D. $400 \mathrm{kJmol}^{-1}$

Answer: C

- Watch Video Solution

84. $(\Delta U-\Delta H)$ for the formation of carbon monoxide (CO) from its elements of 298 K is $\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$
A. $1238.78 \mathrm{Jmol}^{-1}$
B. $-2477.57 \mathrm{Jmol}^{-1}$
C. $2477.57 \mathrm{Jmol}^{-1}$
D. $-1238.78 \mathrm{Jmol}^{-1}$

Answer: A

- Watch Video Solution

85. For the process :
$H_{2} O(l)(1,373 K) \rightarrow H_{2} O(g)(1,373 K)$, the correct set of thermodynamic parameter is :
A. $\Delta G=0, \Delta S=+v e$
B. $\Delta G=0, \Delta S=-v e$
C. $\Delta G=+v e, \Delta S=0$
D. $\Delta G=-v e, \Delta S=+v e$

Answer: A

Multiple Choice Questions Level Iii

1. In a fuel cell methanol is used as fuel and oxygen is used as an oxidiser.

The reaction is :
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
At 298 K , standard Gibb's energies of formation for $\mathrm{CH}_{3} \mathrm{OH}(l), \mathrm{H}_{2} \mathrm{O}(l)$ and $\mathrm{CO}_{2}(\mathrm{~g})$ are $-166.2,-237.2$ and $-394.4 \mathrm{~kJ} / \mathrm{mol}$ respectively. If standard enthalpy of combustion of methanol is $-726 \mathrm{~kJ} / \mathrm{mol}$, effeciency of the fuel cell will be :
A. 80%
B. 87%
C. 90%
D. 97%

Answer: D

2. On the basis of the following thermochemical data $\left[\left(\Delta_{f} G^{\circ} H^{+}(a q)=0\right]\right.$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}^{+}(\mathrm{aq}), \Delta H=57.32 k J$
$\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta H=-286 \mathrm{~kJ}$
The value of enthalpy of formation of OH^{-}at $25^{\circ} \mathrm{C}$ is
A. -22.88 kJ
B. -228.88 kJ
C. 228.88 kJ
D. $-343.52 k J$

Answer: B

- Watch Video Solution

3. The standard enthalpy of formation of NH_{3} is $-46.0 \mathrm{kJmol}^{-1}$. If the enthalpy of formation of H_{2} from its atoms is $-436 \mathrm{kJmol}^{-1}$ and that of N_{2} is $-712 \mathrm{kJmol}^{-1}$, the average bond enthalpy of $\mathrm{N}-\mathrm{H}$ bond is NH_{3} is
A. $+1056 \mathrm{kJmol}^{-1}$
B. $-1102 \mathrm{kJmol}^{-1}$
C. $-964 \mathrm{kJmol}^{-1}$
D. $+352 \mathrm{kJmol}^{-1}$

Answer: D

- Watch Video Solution

4. For a particular reversible reaction at temperature T. ΔH and ΔS were found to be both +ve. If T_{e} is the temperature at equilibrium, the reaction would be spontaneous when
A. T_{e} is five times T
B. $T=T_{e}$
C. $T_{e}>T$
D. $T>T_{e}$

Answer: D

D Watch Video Solution

5. The entropy change involved in the isothermal reversible expansion of 2 moles of an ideal gas from a volume of $10 \mathrm{dm}^{3}$ to volume of 100 dm at $27^{\circ} C$ is :
A. $32.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
B. $42.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
C. $38.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
D. 35.8 $\mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

Answer: C

6. The value of enthalpy change (ΔH) for the reaction :

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l) \quad \text { at } \quad 27^{\circ} \mathrm{C} \quad \text { is }
$$

$-1366.5 \mathrm{kJmol}^{-1}$. The value of internal energy change for the above reaction at the temperature will be :
A. -1369.0 kJ
B. -1364.0 kJ
C. $-1361.5 k J$
D. -1371.5 kJ

Answer: B

- Watch Video Solution

7. Consider the reaction :
$4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5}(g), \Delta_{f} H=-111 k J$
If $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~s})$ is fromed instead of $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ in the above reaction, the $\Delta_{f} H$ is value will be (given, $\Delta \mathrm{H}$ of sublimation for $\mathrm{N}_{2} \mathrm{O}_{5}$ is $54 \mathrm{kJmol}^{-1}$).
A. $+54 k J$
B. $+219 k J$
C. $-219 k J$
D. $-165 k J$

Answer: C

- Watch Video Solution

8. The incorrect expression among the following is :
A. $K=e^{-\Delta G^{\circ} / R T}$
B. $\frac{\Delta G_{\text {system }}}{\Delta S_{\text {total }}}=-T$
C. In isothermal process,

$$
w_{\text {reversible }}=-n R T \quad \ln \frac{V_{f}}{V_{i}}
$$

D. $\ln K=\frac{\Delta H^{\circ}-T \Delta S^{\circ}}{R T}$

Answer: D

(D) Watch Video Solution

9. A piston filled with 0.4 mol of an ideal gas expands reversibly from 50.0 mL to 375 mL at a constant temperature of $37.0^{\circ} \mathrm{C}$. As it does so, absorb 208 J of heat. The values of q and w for the process will be:
$(R=8.314 J / \mathrm{molK})(\ln 7.5=2.01)$
A. $q=+208 J, w=-208 J$
B. $q=-208 J, w=-208 J$
C. $q=-208 J, w=+208 J$
D. $q=+208 J, w=+208 J$

Answer: A

- Watch Video Solution

10. For complete combustion of ethanol,
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ the amount of heat
produced as measured in bomb calorimeter is $1364.47 \mathrm{kJmol}^{-1}$ at $25^{\circ} \mathrm{C}$.
Assuming ideality the enthalpy of comustion, $\Delta_{c} H$ for the reaction will be ($R=8.314 \mathrm{kJmol}^{-1}$)
A. $-1366.95 \mathrm{kJmol}^{-1}$
B. $-1361.95 \mathrm{kJmol}^{-1}$
C. $-1460.50 \mathrm{kJmol}^{-1}$
D. $-1350.50 \mathrm{kJmol}^{-1}$

Answer: A

- Watch Video Solution

Recent Examination Question

1. Enthalpy of vaporization of benzene is $+35.3 \mathrm{kJmol}^{-1}$ at its boiling point, $80^{\circ} \mathrm{C}$. The entropy change in the transition of the vapour to liquid at its boilling point [in $J K^{-1} \mathrm{~mol}^{-1}$] is
A. -441
B. -100
C. +441
D. +100

Answer: B

D Watch Video Solution

2. For the reversible reaction :
$A_{s}+B_{g} \Leftrightarrow C_{g}+D_{g}: \Delta G^{\circ}=-350 k J$

Which one of the following statements is true?
A. The entropy change is negative
B. Equilibrium constant is greater than one
C. The reaction should be instantaneous
D. The reaction is thermodynamically not feasible

Answer: B

- Watch Video Solution

3. The amount of heat evolved when $500 \mathrm{~cm}^{3}$ of 0.1 M HCl is mixed with $200 \mathrm{~cm}^{3}$ of $0.2 \mathrm{M} \mathrm{NaOH}^{\text {is }}$ \qquad
A. 2.292 kJ
B. 1.292 kJ
C. 0.292 kJ
D. 3.392 kJ

Answer: A

- Watch Video Solution

4. During the adsorption of krypton on activated charcoal at low temperature
A. $\Delta H>0$ and $\Delta S<0$
B. $\Delta H<0$ and $\Delta S<0$
C. $\Delta H>0$ and $\Delta S>0$
D. $\Delta H<0$ and $\Delta S>0$

Answer: B

- Watch Video Solution

5. Based on the first law of thermodynamics, which one of the following is correct ?
A. For an isochoric process : $\Delta U=-q$
B. For an adiabatic process : $\Delta U=-w$
C. For an isothermal process : $q=+w$
D. For an cyclic process : q : $-w$
6. A gas expands from a volume of $1 m^{3}$ to a volume of $2 m^{3}$ against an external pressure of $10^{5} \mathrm{Nm}^{-2}$. The work done by the gas will be
A. $10^{5} \mathrm{~kJ}$
B. $10^{2} k J$
C. $10^{2} \mathrm{~J}$
D. $10^{3} \mathrm{~J}$

Answer: B

- Watch Video Solution

7. Which of the following statements is true ?
A. The total entropy of the universe remains constant
B. The total entropy of the universe is continuously decreasing
C. The total energy of the universe is continuously decreasing
D. The total energy of the universe is remains constant

Answer: D

- Watch Video Solution

8. For the thermochemical equation,
$2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{l}, \Delta H=-571.6 \mathrm{~kJ}$
Heat of decomposition of water is:
A. $-571.6 k J$
B. $+571.6 k J$
C. $-1143.2 k J$
D. $+285.8 k J$

Answer: D

9. The process is spontaneous at the given temperature, if
A. ΔH is +ve and ΔS is -ve
B. ΔH is -ve and ΔS is +ve
C. ΔH is +ve and ΔS is +ve
D. ΔH is +ve and ΔS is equal to zero

Answer: B

- Watch Video Solution

10. The value of entropy of solar system is
A. increasing
B. decreasing
C. constant
D. zero

Answer: A

- Watch Video Solution

11. The ratio of heats liberated at 298 K from the combustion of one kg of coke and by burning water gas obtained from kg of coke is (Assume coke to be 100% carbon). (Given enthalpies of combustion of $\mathrm{CO}_{2}, \mathrm{CO}$ and H_{2} as $393.5 \mathrm{~kJ}, 285 \mathrm{~kJ}, 285 \mathrm{~kJ}$ respectively at 298 K).
A. $0.79: 1$
B. $0.69: 1$
C. 0.86:1
D. $0.96: 1$

Answer: B

12. $\mathrm{S}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}+2 x \mathrm{kcal}$
$\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}+y k \mathrm{cal}$
Find out the heat of formation of SO_{2} :
A. $2 x-y$
B. $x+y$
C. $2 x+y$
D. $x-y$

Answer: A

- Watch Video Solution

13. For one mole of $\mathrm{NaCl}(\mathrm{s})$ the lattice enthalpy is :
$N a(s)+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \xrightarrow{+108.4 \mathrm{~kJ} / \mathrm{mol}} \mathrm{Na}(\mathrm{g})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \xrightarrow{+495.6 \mathrm{~kJ} / \mathrm{mol}} \mathrm{Na} a^{+}(\mathrm{g})+$
$\stackrel{-411.2 k \frac{J}{m} o l}{ } \mathrm{Na}(\mathrm{s})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g})$
A. $-788 \mathrm{~kJ} / \mathrm{mol}$
B. $+878 \mathrm{~kJ} / \mathrm{mol}$
C. $+788 \mathrm{~kJ} / \mathrm{mol}$
D. $-878 \mathrm{~kJ} / \mathrm{mol}$

Answer: A

- Watch Video Solution

14. An endothermic reaction is found to have +ve entropy change. The reaction will be
A. Possible at high temperature
B. Possible only at low temperature
C. Not possible at any temperature
D. Possible at any temperature

Answer: A

15. For an adiabatic change in a system, the condition which is applicable will be
A. $w=0$
B. $q=-w$
C. $q=w$
D. $q=0$

Answer: D

