

CHEMISTRY

BOOKS - MODERN PUBLICATION CHEMISTRY (KANNADA ENGLISH)

UNIT TEST 2

Mcqs

1. Give an expression for the work done in a reversible isothermal expansion of an ideal gas.

A. Zero

$$\mathsf{B.}-2.303 \ \ \mathrm{R} \log \frac{V_2}{V_1}$$

C.
$$-2.303$$
 RT $\log \frac{V_2}{V_1}$
D. 2.303 RT $\log \frac{V_2}{V_1}$

Answer: C

Watch Video Solution

2. The enthalpy of combustion of carbon to $CO_2(g)$ is $-393.5kJmol^{-1}$. The heat released upon the formation of 35.2 g of CO_2 from carbon and dioxygen is :

A. 491.87 kJ

B. 245.94 kJ

C. 31.48 kJ

D. 314.8 kJ

Answer: D

3. (i)
$$aA + bB \Leftrightarrow cC + dD$$
: K_1
(ii) $ncC + ndD \Leftrightarrow naA + nbB$: K_2
 K_1 and K_2 are releated as :

A.
$$K_2 = rac{n}{K_1}$$

B. $K_2 = (K_1)^n$
C. $K_2 = (K_1)^{rac{1}{n}}$
D. $K_2 = rac{1}{K_1^n}$

Answer: D

4. At a certain temperature and a total pressure of 10^5 Pa, iodine vapours contain 40% by volume of iodine atoms. $I_2(g) \Leftrightarrow 2I(g)$

 K_p for the equilibrium reaction is :

A. $0.6 imes10^5$

B. $2.67 imes10^4$

 $\mathsf{C.}\,1.98 imes10^4$

D. $2.67 imes10^3$

Answer: B

5. In which of the following reactions, the forward reaction is

favoured by increase of pressure ?

A.
$$N_2 + O_2 \Leftrightarrow 2NO$$

B. $2HI \Leftrightarrow H_2 + I_2$
C. $2NO_2 \Leftrightarrow N_2O_4$
D. $PCl_5 \Leftrightarrow PCl_3 + Cl_2$

Answer: C

Watch Video Solution

6. What will happen to equilibrium :

 $\mathsf{lce} \ \Leftrightarrow \ \mathsf{Water}$

If pressure is applied :

A. water changes to vapours

B. large amount of water forms

C. large amount of ice forms

D. no change

Answer: C

O Watch Video Solution

7. The enthalpy of neutralisation of NaOH with HCl is 57. 1 kJ

while with CH_3COOH , it is - 55 kJ. This happens because

A. acetic acid is an organic acid

B. acetic acid is litle soluble in water

C. acetic acid is a weak acid and requires lesser sodium

hydroxide for neutralisation

D. some heat is required to ionise acetic acid completely.

Answer: D

8. Which of the following expresion is true?

$$\begin{split} &\mathsf{A}.\,\Delta_{f}H^{\,\circ}(CO,\,g)\,=\,\frac{1}{2}\Delta_{f}H^{\,\circ}(CO_{2},\,g)\\ &\mathsf{B}.\,\Delta_{f}H^{\,\circ}(CO,\,g)\,=\,\Delta_{f}H^{\,\circ}\qquad (\mathsf{C},\qquad \text{graphite})\\ &+\,\frac{1}{2}\Delta_{f}H^{\,\circ}(O_{2},\,g)\\ &\mathsf{C}.\,\Delta_{f}H^{\,\circ}(CO,\,g)\,=\,\Delta_{f}H^{\,\circ}(CO_{2},\,g)\,-\,\frac{1}{2}\Delta_{f}H^{\,\circ}(O_{2},\,g)\\ &\mathsf{D}.\,\Delta_{f}H^{\,\circ}(CO,\,g)\,=\,\Delta_{c}H^{\,\circ}(\mathsf{C},\,\mathsf{graphite})\,-\,\Delta_{c}H^{\,\circ}(CO,\,g) \end{split}$$

Answer: D

Watch Video Solution

9. Two moles of PCl_5 were introduced in a 2L, flask and heated at 600 K to attain the equilibrium, PCl_5 was found to be 40% dissociated into PCl_3 and Cl_2 . K_c for the reaction is :

A. $2.67 imes 10^4$ B. $2.67 imes 10^{-1}$ C. $2.67 imes 10^{-3}$

D. $2.67 imes10^{-2}$

Answer: B

10. At a certain temperature K_w is $9.55 imes 10^{-14}$. The pH of

water at this temperature is :

 $\mathsf{A.}\,6.51$

B. 4.28

 $\mathsf{C.}\,6.42$

D. 4.62

Answer: A

Watch Video Solution

11. Identify the correct statement regarding a spontaneous process :

A. Endothermic processes are never spontaneous.

B. Exothermic processes are always spontaneous.

C. Lowering of energy in the reaction process is the only

criterion for spontaneity.

D. For a spontaneous process in an isolated system, the

change in entropy is positive.

Answer: D

Watch Video Solution

12. In a fuel cell methanol is used as fuel and oxygen is used as an oxidiser. The reaction is :

 $CH_3OH(l)+rac{3}{2}O_2(g) o CO_2(g)+2H_2O(l)$ At 298 K, standard Gibb's energies of formation for $CH_3OH(l),H_2O(l)$ and $CO_2(g)$ are $-166.2,\ -237.2$ and -394.4 kJ/mol respectively. If standard enthalpy of combustion of methanol is - 726 kJ/mol, effeciency of the fuel cell will be :

A. 80~%

 $\mathbf{B.\,87~\%}$

 $\mathsf{C}.\,90\,\%$

D. 97~%

Answer: D

Watch Video Solution

13. K_p for the reaction :

 $CO_2(g) + H_2(g) \Leftrightarrow CO(g) + H_2O(g)$ is found to be 16 at a

given temperature. Originally equal number of moles of ${\cal H}_2$

and

 $CO_2(g)$ were place $d \in the flask$. At equilibrium, the pressure of $H_2(2)is1.20atm$. $\hat{W}is the \partial presure of CO_2(2)$ and $H_2(2)O^2$?

A. 1.20 atm. each

B. 2.40 atm. each

C. 4.80 atm each

D. 9.60 atm each

Answer: C

Watch Video Solution

14. If K_{sp} of MOH is 1×10^{-10} , then pH of its aqueous solution will be :

A. 3

B. 6

C. 9

D. 12

Answer: C

Watch Video Solution

15. For an ideal gas undergoing isothermal change :

A.
$$q=\omega$$

- $\mathrm{B.}\,\Delta U=0$
- $\mathsf{C}.\,\Delta U=q\neq\omega$

D. $\Delta U = q$

Answer: B

Watch Video Solution

16. A gas absorbs 120 J of heat and expands against an external pressure of 1.10 atm from a volume of 0.52 to 2.0 L. The change in internal energy is (1 L atm = 101.3 J) :

 $\mathsf{A.}-167.1J$

 $\mathrm{B.}-47.1J$

 ${\rm C.}-287.1J$

D. 287.1 J

Answer: B

17. The difference between heats of reaction at constant pressure and constant volume for the reaction :

 $2C_6H_6(l)+15O_2(g)
ightarrow 12CO_2(g)+6H_2O(l)$ at $25^\circ C$ is :

 $\mathrm{A.}-7.43~\mathrm{kJ}$

 $\mathrm{B.}+3.72~\mathrm{kJ}$

 $\mathrm{C.}-3.72~\mathrm{kJ}$

 $\mathrm{D.}+7.43~\mathrm{kJ}$

Answer: C

18. The heat of formation of Fe_2O_3 is -824.2 kJ mol^{-1} . ΔH for the reaction $2Fe_2O_3(s) o 4Fe(s) + 3O_2(g)$ is :

 $\mathrm{A.}-412.1~\mathrm{kJ}$

 $\mathrm{B.}-1648.4\,\mathrm{kJ}$

 $\mathrm{C.}-3296.8\,\mathrm{kJ}$

 $\mathsf{D}.\,1648.4\,\mathsf{kJ}$

Answer: D

Watch Video Solution

19. What will be the pOH of $0.5 imes 10^{-4} M H_2 SO_4$ solution ?

A. 4

B. 8

C. 10

D. 2

Answer: C

20. For a weak base, the concentration of OH^- ion at concentration 'c' would be

(disociation constant $= K_b$)

A.
$$\sqrt{rac{K_b}{c}}$$

B. $rac{K_b}{\sqrt{c}}$
C. $\sqrt{K_b imes c}$
D. $\sqrt{K_\omega/K_b c}$

Answer: C

21. Four grams of sodium hydroxide have been added to $10^3 L$

tank of water. The pH of resulting solution is :

A. 10 B. 4 C. 11

D. 12

Answer: A

Watch Video Solution

22. The ratio of $K_p \, / \, K_c$ for the reaction :

 $N_2(g) + O_2(g) \Leftrightarrow 2NO(g)$ is

 $\mathsf{B.}\,0.25$

 $\mathsf{C}.\,0.5$

D. 1

Answer: D

23. For the reaction :

 $A + B \rightarrow C$

the initial concentration of A and B are 2 and 1 moles per littre. At equilibrium, the concentration of B has been found to be 0.5 mol/litre. The K for the reaction is :

 $\mathsf{A.}~0.5$

 $\mathsf{B.}\,2.0$

 $C.\,1.0$

 $\mathsf{D}.\,1.5$

Answer: C

Watch Video Solution

24. For the reaction : $N_2 + 3H_2 \Leftrightarrow 2NH_3$, equal number of moles of N_2 and H_2 were taken in a 1L flask. Which of the following is correct at equilibrium ?

A. $[H_2] = [N_2]$

 $\mathsf{B}.\left[H_2\right]>\left[N_2\right]$

 $\mathsf{C}.\left[H_2\right] < \left[N_2\right]$

D.
$$\left[H_{2}
ight]$$
 and $\left[N_{2}
ight] =0$

Answer: C

25. The equilibrium constant for the reaction

 $2SO_2(g) + O_2(g) \Leftrightarrow 2SO_3(g)$

is 256 at 1000 K. The equilibrium constant for the reaction :

 $SO_3(g) \Leftrightarrow SO_2(g) + 1/2O_2(g)$ is :

A. 16

B. 1/256

C. 256

D. 1/16

Answer: D

26. The value of K for the reaction :

 $2A(g) \Leftrightarrow B(g) + C(g) + ext{ Heat}$

at 750 K and 10 atm is 3.96. The value of K at 750 K and 15 atm is :

A. 5.94

 $\mathsf{B}.\,2.97$

C. 3.96

D. 2.64

Answer: C

> Watch Video Solution

27. When CO_2 dissolves in water, the following equilibrium is established :

for which $K_c=3.95 imes10^{-7}$ and pH = 6.0. What would be the ratio of $\left[HCO_3^{-}
ight]/[CO_2]$?

A. $3.95 imes10^{-14}$

B.0.395

 $ext{C.} 9.95 imes 10^{-7}$

D. $3.95 imes10^{-13}$

Answer: B

28. HI was heated in a sealed tube at $400^{\circ}C$ till the equilibrium was reached. HI was found to be 22% decomposed. The equilibrium for decomposition is :

A. 0.282

B. 0.0796

C. 0.0199

D. 1.99

Answer: C

29. The equilibrium $SO_2Cl_2(g) \Leftrightarrow SO_2(g) + Cl_2(g)$ is attained at $25^{\circ}C$ in a closed container and an inert gas

helium is introduced. Which of the following statements is correct ?

A. Concentration of SO_2, Cl_2 and SO_2Cl_2 changes

B. Concentration of SO_2 is reduced

C. More Cl_2 is formed

D. None is correct

Answer: D

30. The equilibrium constant, K_c for the reaction :

 $H_2+I_2 \Leftrightarrow 2HI$ at 700 K is 49. What is the equilibrium

constant for the reaction :

$$HI \Leftrightarrow rac{1}{2}H_2 + rac{1}{2}I_2$$
 at the same temperature ?

A. 49

 $\mathsf{B}.\,0.02$

 $C.\,1.43$

 $D.\,0.143$

Answer: D

Watch Video Solution

31. Solubility of BaF_2 in a solution of $Ba(NO_3)_2$ will be represented by the concentration term :

A. $[Ba^{2+}]$ B. $[F^{-}]$ C. $\frac{1}{2}[F^{-}]$

D.
$$2 \big[NO_3^{\,-} \big]$$

Answer: C

32. The following equilibrium are given :

$$egin{aligned} N_2+3H_2&\Leftrightarrow 2NH_3\!:\!K_1\ N_2+O_2&\Leftrightarrow 2NO\!:\!K_2\ H_2+rac{1}{2}O_2&\Leftrightarrow H_2O\!:\!K_3 \end{aligned}$$

The equilibrium constant of the reaction :

$$2NH_3+rac{5}{2}O_2 \Leftrightarrow 2NO+3H_2O$$

in terms of K_1, K_2 and K_3 is :

A. K_1 . K_2 . K_3

B. K_1 . $K_2 \,/\, K_3$

 $\mathsf{C}.\,K_{1}K_{3}^{2}\,/\,K_{2}$

D. K_2 . $K_3^2 \,/\, K_1$

Answer: D

Watch Video Solution

33. For a sparingly soluble salt A_pB_q the relationship between its solubility product (L_S) and its solubility (S) is :

A.
$$L_S = S^{p\,+\,q} p^q q^q$$

B.
$$L_S=S^{p+q}p^qq^p$$

C.
$$L_S = S^{pq} p^p q^p$$

D.
$$L_S=S^{pq}(pq)^{q+p}$$

Answer: A

34. The K_{sp} of CuS, Ag_2S and HgS are 10^{-31} , 10^{-44} and 10^{-54} respectively. The solubility of these hydrides are in the order :

A. $Ag_2S > CuS > HgS$

B. $Ag_2S > HgS > CuS$

C. $CuS > Ag_2S > HgS$

D. $CuS < Ag_2S < HgS$

Answer: A

Watch Video Solution

35. 500 ml of vessel contains 1.5 M each of A, B, C and D at equilibrium. If 0.5 M each of C and D are taken out, value of K_c for

 $A+B \Leftrightarrow C+D$

will be :

A. 1.0

B. 1/9

C.4/9

D. 8/9

Answer: A

Watch Video Solution

36. If K_1 and K_2 are the respective equilibrium constants for the two reactions :

 $egin{aligned} XeF_6(g) + H_2O(g) &\Leftrightarrow XeOF_4(g) + 2HF(g) \ XeO_4(g) + XeF_6(g) &\Leftrightarrow XeOF_4(g) + XeO_3F_2(g) \end{aligned}$ The equilibrium constant for the reaction :

 $XeO_4(g)+2HF(g) \Leftrightarrow XeO_3F_2(g)+H_2O(g)$ will be :

A. $K_1 \,/\, K_2^2$

B. K_1 . K_2

C. K_1 / K_2

D. K_2 / K_1

Answer: D

37. Solubility of an AB_2 type electrolyte is $5.0 imes 10^{-5}$ mol L^{-1} . K_{sp} for the electrolyte AB_2 is :

A. $5 imes 10^{-12}$

B. $25 imes 10^{-10}$

 $\text{C.1}\times10^{-13}$

D. $5 imes 10^{-13}$

Answer: D

Watch Video Solution

38. For the hydrolysis of a salt of weak acid and weak base, the

hydrolysis constant is :

A. $K_{\omega}\,/\,K_b$

B. K_{ω}/K_{a}

 $\mathsf{C.}\,K_{\omega}\,/\,K_{a}.\;K_{b}$

D. K_a . K_b

Answer: C

39. The pK_a of a weak acid is 4.8. What should be the ratio of [Acid]/[Salt] of a buffer if pH = 5.8 is required ?

A. 0.1

 $\mathsf{B.}\,4.0$

C. 4.3

D. 3.3

Answer: A

Watch Video Solution

40. A solution which is 0.001 M each in Mn^{2+} , Fe^{2+} , Zn^{2+} and Hg^{2+} is treated with 10^{-16} M sulphide ion. If K_{sp} of MnS, FeS, ZnS and HgS are 10^{-15} , 10^{-23} , 10^{-20} and 10^{-54} respectively, which one will precipitate first ?

A. FeS

B. MgS

C. HgS

D. ZnS

Answer: C

41. Which of the following pairs constitutes a buffer ?

A. NaOH and NaCl

B. HNO_3 and NH_4NO_3

C. HCl and KCl

D. HNO_2 and $NaNO_2$

Answer: C

Watch Video Solution

42. The pH of a solution obtained by mixing 50 mL of 1N HCl and 30 mL of 1 N NaOH is [log 2.5 = 0.3979]

A. 0.979

 $\mathsf{B.}\,0.6021$

C. 12.042

D. 1.2042

Answer: B

Watch Video Solution

43. Molar heat capacity of water at equilibrium with ice at

constant pressure is :

A. Zero

B. infinity

C. $40.45 k Jmol^{-1}$

D. $75.48 k Jmol^{-1}$

Answer: B

Watch Video Solution

44. If the concentration of OH^- ions in the reaction

 $Fe(OH)_3(s) \Leftrightarrow Fe^{3+}(aq) + 3OH^{-}(aq)$

is decreased by 1/4 times, then equilibrium concentration of Fe^{3+} will increase by

A. 8 times

B. 16 times

C. 64 times

D. 4 times

Answer: C

Watch Video Solution

45. $10^{-6}M$ NaOH is diluted to 100 times. The pH of the diluted base is

A. between 5 and 6

B. between 6 and 7

C. between 10 and 11

D. between 7 and 8

Answer: D

46. 1 mole of helium is expanded from 1 atm to 0.1 atm at $30^{\circ}C$. Assuming ideal behaviour, ΔS for the process is :

A. $38.3 JK^{-1}$

B. $76.6 J K^{-1}$

C. $19.15 JK^{-1}$

D. $100 J K^{-1}$

Answer: C

Watch Video Solution

47. What would be the solubility of AgCl in 0.1 M NaCl solution

? $\left(K_{sp} \;\; ext{for AgCl} = 1.2 imes 10^{-10}
ight)$

A. AgCl will precipitate first

- B. AgI will precipitate first
- C. AgBr will precipitate first
- D. AgBr and AgI will precipitate together

Answer: B

48. What would be the solubility of AgCl in 0.1 M NaCl solution

? $\left(K_{sp} \;\; ext{for AgCl} = 1.2 imes 10^{-10}
ight)$

A. 0.1 M

B. $1.2 imes 10^{-9}M$

C. $1.2 imes 10^{-6}M$

D. $1.2 imes 10^{-10}M$

49. The pH of a buffer solution of $0.1MCH_3COOH$ and $0.01MCH_3COONa$ is $(pK_a(CH_3COOH) = 4.745)$:

A. 4.745

B. 5.745

 $\mathsf{C.}\,3.745$

 $D.\,10.255$

Answer: C

50. The equilibrium constant for the reaction $H_2 + I_2 \Leftrightarrow 2HI$ at 650 K is 40. If 0.5 mole of each of hydrogen and iodine are added to the system at equilibrium, the value of equilibrium constant will be :

A. 20

B. 60

C. 40

D. 80

Answer: C

51. 1.6 mol of PCl_5 is placed in a 4 litre vessel. When the

temperature is increased to 500 K, the PCl_5 decomposes as

 $PCl_5 \Leftrightarrow PCl_3 + Cl_2$

At equilibrium 1.20 mol of PCl_5 remains' K_c for the reaction

is :

A. 0.013

B. 0.050

 $C.\,0.067$

 $D.\,0.033$

Answer: A

52. For the reaction : $I_2(g) \Leftrightarrow 2I(g), K_c = 37.6 \times 10^{-6}$ at 1000 K. If 1.0 mole of I_2 is introduced into a 1.0 litre flask at 1000 K at equilibrium, then A. Conc. Of $I_2(g)$ is less than that of I(g)

B. Conc. of $I_2(g)$ is much larger than that of I(g)

 $\mathsf{C}.\left[I_2
ight]=\left[I
ight]$

D. $\left[I_2=1/2[I]
ight]$

Answer: B

53. 3 moles of A and 4 moles of B are mixed together and allowed to come into equilibrium according to the following reaction :

 $A(g) + 4B(g) \Leftrightarrow 2C(g) + 3D(g)$

When equilibrium is reached, there is 1 mole of C. The equilibrium extent of the reaction is

A. 1/4

B. 1/3

C.1/2

D. 1

Answer: C

Watch Video Solution

54. What is the $[OH^{-}]$ in the final solution prepared by mixing 20 mL of 0.050 M HCl with 30.0 mL of $0.10MBa(OH)_{2}$

?

A. 0.40 M

B. 0.0050 M

C. 0.12 M

D. 0.10 M

Answer: D

Watch Video Solution

55. Solubility of CaF_2 in terms of its solubility product is given by

A.
$$s = (K_{sp})^{1/3}$$

B. $s = (K_{sp}/2)^{1/3}$
C. $s = (K_{sp}/4)^{1/3}$
D. $s = (K_{sp}/2)^{1/2}$

Answer: C

56. The enthalpy change on freezing of 1.0 mol of water at $10^{\circ}C$ to ice at $-10^{\circ}C$ is : Δ_{fus} . $H^{\circ} = 6.03kJmol^{-1}$ at $0^{\circ}C$ $C_p[H_2O(l)] = 75.3Jmol^{-1}K^{-1}$ $C_p[H_2O(s)] = 36.8Jmol^{-1}K^{-1}$

A. $-0.368 k Jmol^{-1}$

B. $-5.645 k Jmol^{-1}$

C. $0.753 k Jmol^{-1}$

D. $-11.390 k Jmol^{-1}$

Answer: B

57. The value of K_c for the reaction :

 $3O_2(g) \Leftrightarrow 2O_3(g)$ is 2.0×10^{-50} at $25^{\circ}C$. If equilibrium concentration of O_2 in air at $25^{\circ}C$ is 1.6×10^{-2} , the concentration of O_3 is :

A. $2.86 imes 10^{-28}M$

 $\mathsf{B.8.192}\times 10^{-56}M$

C. $1.43 imes 10^{-14} M$

D. $1.6 imes 10^{-2}M$

Answer: A

Watch Video Solution

58. Nitric oxide reacts with bromine as :

 $2NO(g) + Br_{2(g)} \Leftrightarrow 2NOBr(g)$

When 0.087 mol of NO and 0.0437 mol of Br_2 are mixed in a closed container at constant temperature, 0.0518 mol of NaBr is obtained at equilibrium. The equilibrium constant is :

A. 12.86

B. 121.66

 ${\sf C.}\,2.1 imes10^4$

D. $1.6 imes 10^3$

Answer: B

Watch Video Solution

59. What is the maximum volume of water required to dissolve 1g of $CaSO_4$ at $298K, K_{sp}(CaSO_4) = 9.1 imes 10^{-6}.$

A. 5.0 L

B. 8.6 L

C. $3.0 imes10^{-3}L$

D. 2.44 L

Answer: D

Watch Video Solution

60. K_b for NH_4OH is $1.81 imes 10^{-5}$. The pH of $0.01MNH_4Cl$ solution at $25^\circ C$ is :

B. 3.93

C. 5.63

D. 4.26

Answer: C

