©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - MODERN PUBLICATION CHEMISTRY (KANNADA ENGLISH)

UNIT TEST 2

Mcqs

1. Give an expression for the work done in a reversible isothermal expansion of an ideal gas.
A. Zero
B. $-2.303 \mathrm{R} \log \frac{V_{2}}{V_{1}}$
C. $-2.303 \operatorname{RT} \log \frac{V_{2}}{V_{1}}$
D. $2.303 \mathrm{RT} \log \frac{V_{2}}{V_{1}}$

Answer: C

- Watch Video Solution

2. The enthalpy of combustion of carbon to $\mathrm{CO}_{2}(g)$ is $-393.5 \mathrm{kJmol}^{-1}$. The heat released upon the formation of 35.2 g of CO_{2} from carbon and dioxygen is:
A. 491.87 kJ
B. 245.94 kJ
C. 31.48 kJ
D. 314.8 kJ

D Watch Video Solution

3. (i) $a A+b B \Leftrightarrow c C+d D: K_{1}$
(ii) $n c C+n d D \Leftrightarrow n a A+n b B: K_{2}$
K_{1} and K_{2} are releated as :
A. $K_{2}=\frac{n}{K_{1}}$
B. $K_{2}=\left(K_{1}\right)^{n}$
C. $K_{2}=\left(K_{1}\right)^{\frac{1}{n}}$
D. $K_{2}=\frac{1}{K_{1}^{n}}$

Answer: D

D Watch Video Solution
4. At a certain temperature and a total pressure of $10^{5} \mathrm{~Pa}$, iodine vapours contain 40% by volume of iodine atoms.
$I_{2}(g) \Leftrightarrow 2 I(g)$
K_{p} for the equilibrium reaction is :
A. 0.6×10^{5}
B. 2.67×10^{4}
C. 1.98×10^{4}
D. 2.67×10^{3}

Answer: B

- Watch Video Solution

5. In which of the following reactions, the forward reaction is
favoured by increase of pressure?
A. $N_{2}+O_{2} \Leftrightarrow 2 N O$
B. $2 \mathrm{HI} \Leftrightarrow H_{2}+I_{2}$
C. $2 \mathrm{NO}_{2} \Leftrightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$
D. $P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$

Answer: C

D Watch Video Solution

6. What will happen to equilibrium :

Ice \Leftrightarrow Water

If pressure is applied :
A. water changes to vapours
B. large amount of water forms
C. large amount of ice forms
D. no change

Answer: C

(D) Watch Video Solution

7. The enthalpy of neutralisation of NaOH with HCl is 57.1 kJ while with $\mathrm{CH}_{3} \mathrm{COOH}$, it is -55 kJ . This happens because
A. acetic acid is an organic acid
B. acetic acid is litle soluble in water
C. acetic acid is a weak acid and requires lesser sodium
hydroxide for neutralisation
D. some heat is required to ionise acetic acid completely.

Answer: D

D Watch Video Solution

8. Which of the following expresion is true ?
A. $\Delta_{f} H^{\circ}(C O, g)=\frac{1}{2} \Delta_{f} H^{\circ}\left(\mathrm{CO}_{2}, g\right)$
B. $\Delta_{f} H^{\circ}(C O, g)=\Delta_{f} H^{\circ}$
(C,
$+\frac{1}{2} \Delta_{f} H^{\circ}\left(O_{2}, g\right)$
C. $\Delta_{f} H^{\circ}(C O, g)=\Delta_{f} H^{\circ}\left(C O_{2}, g\right)-\frac{1}{2} \Delta_{f} H^{\circ}\left(O_{2}, g\right)$
D. $\Delta_{f} H^{\circ}(C O, g)=\Delta_{c} H^{\circ}(\mathrm{C}$, graphite $)-\Delta_{c} H^{\circ}(C O, g)$

(D) Watch Video Solution

9. Two moles of $P C l_{5}$ were introduced in a 2 L , flask and heated at 600 K to attain the equilibrium, $P C l_{5}$ was found to be 40% dissociated into $P C l_{3}$ and $C l_{2} . K_{c}$ for the reaction is :
A. 2.67×10^{4}
B. 2.67×10^{-1}
C. 2.67×10^{-3}
D. 2.67×10^{-2}
10. At a certain temperature K_{w} is 9.55×10^{-14}. The pH of water at this temperature is :
A. 6.51
B. 4.28
C. 6.42
D. 4.62

Answer: A

D Watch Video Solution

11. Identify the correct statement regarding a spontaneous process:
A. Endothermic processes are never spontaneous.
B. Exothermic processes are always spontaneous.
C. Lowering of energy in the reaction process is the only criterion for spontaneity.
D. For a spontaneous process in an isolated system, the change in entropy is positive.

Answer: D

- Watch Video Solution

12. In a fuel cell methanol is used as fuel and oxygen is used as an oxidiser. The reaction is :
$\mathrm{CH}_{3} \mathrm{OH}(l)+\frac{3}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)$
At 298 K, standard Gibb's energies of formation for $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l}), \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ and $\mathrm{CO}_{2}(g)$ are $-166.2,-237.2$ and
$-394.4 \mathrm{~kJ} / \mathrm{mol}$ respectively. If standard enthalpy of combustion of methanol is $-726 \mathrm{~kJ} / \mathrm{mol}$, effeciency of the fuel cell will be :
A. 80%
B. 87%
C. 90%
D. 97%

Answer: D

- Watch Video Solution

13. K_{p} for the reaction :
$\mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g) \Leftrightarrow \mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g)$ is found to be 16 at a given temperature. Originally equal number of moles of H_{2}
and
$\mathrm{CO}_{2}(g)$ wereplaced \in theflask. Atequilibrium, thepressureof $\mathrm{H}_{-}(2) i s 1.20 \mathrm{~atm} . W \hat{i}$ sthe $\partial p r e s u r e o f C O$ (2) and $\mathrm{H}_{-}(2) \mathrm{O}^{`} ?$
A. 1.20 atm. each
B. 2.40 atm. each
C. 4.80 atm each
D. 9.60 atm each

Answer: C

D Watch Video Solution

14. If $K_{s p}$ of MOH is 1×10^{-10}, then pH of its aqueous solution will be :
A. 3
B. 6
C. 9
D. 12

Answer: C

D Watch Video Solution

15. For an ideal gas undergoing isothermal change :
A. $q=\omega$
B. $\Delta U=0$
C. $\Delta U=q \neq \omega$
D. $\Delta U=q$

D Watch Video Solution

16. A gas absorbs 120 J of heat and expands against an external pressure of 1.10 atm from a volume of 0.52 to 2.0 L . The change in internal energy is (1 L atm $=101.3 \mathrm{~J}$) :
A. $-167.1 J$
B. $-47.1 J$
C. $-287.1 J$
D. 287.1 J

Answer: B
17. The difference between heats of reaction at constant pressure and constant volume for the reaction :

$$
2 \mathrm{C}_{6} \mathrm{H}_{6}(l)+15 \mathrm{O}_{2}(g) \rightarrow 12 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l) \text { at } 25^{\circ} \mathrm{C} \text { is : }
$$

A. -7.43 kJ
B. +3.72 kJ
C. -3.72 kJ
D. +7.43 kJ

Answer: C

- Watch Video Solution

18. The heat of formation of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is $-824.2 \mathrm{~kJ} \mathrm{~mol}^{-1} . \Delta H$ for the reaction $2 \mathrm{Fe}_{2} \mathrm{O}_{3}(s) \rightarrow 4 \mathrm{Fe}(s)+3 \mathrm{O}_{2}(g)$ is:
A. -412.1 kJ
B. -1648.4 kJ
C. -3296.8 kJ
D. 1648.4 kJ

Answer: D

- Watch Video Solution

19. What will be the pOH of $0.5 \times 10^{-4} \mathrm{MH}_{2} \mathrm{SO}_{4}$ solution ?
A. 4
B. 8
C. 10
D. 2

- Watch Video Solution

20. For a weak base, the concentration of OH^{-}ion at concentration 'c' would be
(disociation constant $=K_{b}$)
A. $\sqrt{\frac{K_{b}}{c}}$
B. $\frac{K_{b}}{\sqrt{c}}$
C. $\sqrt{K_{b} \times c}$
D. $\sqrt{K_{\omega} / K_{b} c}$

Answer: C

21. Four grams of sodium hydroxide have been added to $10^{3} \mathrm{~L}$ tank of water. The pH of resulting solution is :
A. 10
B. 4
C. 11
D. 12

Answer: A

(D) Watch Video Solution

22. The ratio of K_{p} / K_{c} for the reaction :
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$ is
A. 4
B. 0.25
C. 0.5
D. 1

Answer: D

D Watch Video Solution

23. For the reaction :
$A+B \rightarrow C$
the initial concentration of A and B are 2 and 1 moles per
littre. At equilibrium, the concentration of B has been found to be $0.5 \mathrm{~mol} /$ litre. The K for the reaction is :
A. 0.5
B. 2.0
C. 1.0
D. 1.5

Answer: C

D Watch Video Solution

24. For the reaction : $N_{2}+3 H_{2} \Leftrightarrow 2 N H_{3}$, equal number of moles of N_{2} and H_{2} were taken in a 1L flask. Which of the following is correct at equilibrium ?
A. $\left[H_{2}\right]=\left[N_{2}\right]$
B. $\left[H_{2}\right]>\left[N_{2}\right]$
C. $\left[H_{2}\right]<\left[N_{2}\right]$
D. $\left[H_{2}\right]$ and $\left[N_{2}\right]=0$

- Watch Video Solution

25. The equilibrium constant for the reaction
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{SO}_{3}(g)$
is 256 at 1000 K . The equilibrium constant for the reaction :
$S O_{3}(g) \Leftrightarrow \mathrm{SO}_{2}(g)+1 / 2 \mathrm{O}_{2}(g)$ is :
A. 16
B. $1 / 256$
C. 256
D. $1 / 16$

Answer: D
26. The value of K for the reaction :
$2 A(g) \Leftrightarrow B(g)+C(g)+$ Heat
at 750 K and 10 atm is 3.96 . The value of K at 750 K and 15 atm is :
A. 5.94
B. 2.97
C. 3.96
D. 2.64

Answer: C

D Watch Video Solution
27. When CO_{2} dissolves in water, the following equilibrium is established:
for which $K_{c}=3.95 \times 10^{-7}$ and $\mathrm{pH}=6.0$. What would be the ratio of $\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{CO}_{2}\right]$?
A. 3.95×10^{-14}
B. 0.395
C. 9.95×10^{-7}
D. 3.95×10^{-13}

Answer: B

- Watch Video Solution

28. HI was heated in a sealed tube at $400^{\circ} \mathrm{C}$ till the equilibrium was reached. HI was found to be 22% decomposed. The equilibrium for decomposition is:
A. 0.282
B. 0.0796
C. 0.0199
D. 1.99

Answer: C

- Watch Video Solution

29. The equilibrium ${S O_{2} C l}_{2}(g) \Leftrightarrow S O_{2}(g)+C l_{2}(g)$ is attained at $25^{\circ} \mathrm{C}$ in a closed container and an inert gas
helium is introduced. Which of the following statements is correct ?
A. Concentration of $\mathrm{SO}_{2}, \mathrm{Cl}_{2}$ and $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ changes
B. Concentration of SO_{2} is reduced
C. More Cl_{2} is formed
D. None is correct

Answer: D

- Watch Video Solution

30. The equilibrium constant, K_{c} for the reaction :
$H_{2}+I_{2} \Leftrightarrow 2 H I$ at 700 K is 49 . What is the equilibrium
constant for the reaction :
$H I \Leftrightarrow \frac{1}{2} H_{2}+\frac{1}{2} I_{2}$ at the same temperature ?
A. 49
B. 0.02
C. 1.43
D. 0.143

Answer: D

- Watch Video Solution

31. Solubility of $B a F_{2}$ in a solution of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ will be represented by the concentration term :
A. $\left[B a^{2+}\right]$
B. $\left[F^{-}\right]$
C. $\frac{1}{2}\left[F^{-}\right]$
D. $2\left[\mathrm{NO}_{3}^{-}\right]$

Answer: C

(Watch Video Solution

32. The following equilibrium are given :
$N_{2}+3 H_{2} \Leftrightarrow 2 \mathrm{NH}_{3}: K_{1}$
$N_{2}+O_{2} \Leftrightarrow 2 N O: K_{2}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}: \mathrm{K}_{3}$
The equilibrium constant of the reaction :
$2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$
in terms of K_{1}, K_{2} and K_{3} is :
A. $K_{1} \cdot K_{2}, K_{3}$
B. $K_{1} . K_{2} / K_{3}$
C. $K_{1} K_{3}^{2} / K_{2}$
D. $K_{2} . K_{3}^{2} / K_{1}$

Answer: D

D Watch Video Solution

33. For a sparingly soluble salt $A_{p} B_{q}$ the relationship between its solubility product $\left(L_{S}\right)$ and its solubility (S) is :
A. $L_{S}=S^{p+q} p^{q} q^{q}$
B. $L_{S}=S^{p+q} p^{q} q^{p}$
C. $L_{S}=S^{p q} p^{p} q^{p}$
D. $L_{S}=S^{p q}(p q)^{q+p}$

- Watch Video Solution

34. The $K_{s p}$ of $\mathrm{CuS}, A g_{2} S$ and HgS are $10^{-31}, 10^{-44}$ and 10^{-54} respectively. The solubility of these hydrides are in the order :
A. $A g_{2} S>C u S>H g S$
B. $A g_{2} S>H g S>C u S$
C. $\mathrm{CuS}>\mathrm{Ag}_{2} S>H g S$
D. $\mathrm{CuS}<\mathrm{Ag}_{2} S<H g S$

Answer: A

35. 500 ml of vessel contains 1.5 M each of A, B, C and D at equilibrium. If 0.5 M each of C and D are taken out, value of K_{c} for
$A+B \Leftrightarrow C+D$
will be :
A. 1.0
B. $1 / 9$
C. $4 / 9$
D. $8 / 9$

Answer: A

- Watch Video Solution

36. If K_{1} and K_{2} are the respective equilibrium constants for the two reactions :
$\mathrm{XeF}_{6}(g)+\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{XeOF}_{4}(g)+2 H F(g)$
$\mathrm{XeO}_{4}(g)+\mathrm{XeF}_{6}(g) \Leftrightarrow \mathrm{XeOF}_{4}(g)+\mathrm{XeO}_{3} \mathrm{~F}_{2}(g)$
The equilibrium constant for the reaction :
$\mathrm{XeO}_{4}(g)+2 \mathrm{HF}(g) \Leftrightarrow \mathrm{XeO}_{3} F_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)$ will be :
A. K_{1} / K_{2}^{2}
B. $K_{1} \cdot K_{2}$
C. K_{1} / K_{2}
D. K_{2} / K_{1}

Answer: D

37. Solubility of an $A B_{2}$ type electrolyte is $5.0 \times 10^{-5} \mathrm{~mol}$ $L^{-1} . K_{s p}$ for the electrolyte $A B_{2}$ is :
A. 5×10^{-12}
B. 25×10^{-10}
C. 1×10^{-13}
D. 5×10^{-13}

Answer: D

- Watch Video Solution

38. For the hydrolysis of a salt of weak acid and weak base, the hydrolysis constant is :
A. K_{ω} / K_{b}
B. K_{ω} / K_{a}
C. $K_{\omega} / K_{a} . K_{b}$
D. $K_{a} . K_{b}$

Answer: C

D Watch Video Solution

39. The $p K_{a}$ of a weak acid is 4.8. What should be the ratio of
[Acid]/[Salt] of a buffer if $\mathrm{pH}=5.8$ is required ?
A. 0.1
B. 4.0
C. 4.3
D. 3.3

D Watch Video Solution

40. A solution which is 0.001 M each in $\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Zn}^{2+}$ and Hg^{2+} is treated with $10^{-16} \mathrm{M}$ sulphide ion. If $K_{s p}$ of $\mathrm{MnS}, \mathrm{FeS}, \mathrm{ZnS}$ and HgS are $10^{-15}, 10^{-23}, 10^{-20}$ and 10^{-54} respectively, which one will precipitate first ?
A. FeS
B. MgS
C. HgS
D. ZnS

Answer: C
41. Which of the following pairs constitutes a buffer ?
A. NaOH and NaCl
B. HNO_{3} and $\mathrm{NH}_{4} \mathrm{NO}_{3}$
C. HCl and KCl
D. HNO_{2} and NaNO 2

Answer: C

- Watch Video Solution

42. The pH of a solution obtained by mixing 50 mL of 1 N HCl and 30 mL of 1 N NaOH is $[\log 2.5=0.3979]$
A. 0.979
B. 0.6021
C. 12.042
D. 1.2042

Answer: B

D Watch Video Solution

43. Molar heat capacity of water at equilibrium with ice at constant pressure is :
A. Zero
B. infinity
C. $40.45 \mathrm{kJmol}^{-1}$
D. $75.48 \mathrm{kJmol}^{-1}$

Answer: B

(D) Watch Video Solution

44. If the concentration of OH^{-}ions in the reaction
$F e(O H)_{3}(s) \Leftrightarrow F^{3+}(a q)+3 O H^{-}(a q)$
is decreased by $1 / 4$ times, then equilibrium concentration of
$F e^{3+}$ will increase by
A. 8 times
B. 16 times
C. 64 times
D. 4 times

D Watch Video Solution

45. $10^{-6} M \mathrm{NaOH}$ is diluted to 100 times. The pH of the diluted base is
A. between 5 and 6
B. between 6 and 7
C. between 10 and 11
D. between 7 and 8

Answer: D

46. 1 mole of helium is expanded from 1 atm to 0.1 atm at $30^{\circ} C$. Assuming ideal behaviour, ΔS for the process is :
A. $38.3 \mathrm{JK}^{-1}$
B. $76.6 \mathrm{JK}^{-1}$
C. $19.15 \mathrm{JK}^{-1}$
D. $100 \mathrm{JK}^{-1}$

Answer: C

- Watch Video Solution

47. What would be the solubility of AgCl in 0.1 M NaCl solution
$?\left(K_{s p}\right.$ for $\left.\mathrm{AgCl}=1.2 \times 10^{-10}\right)$
A. AgCl will precipitate first
B. Agl will precipitate first
C. AgBr will precipitate first
D. AgBr and Ag l will precipitate together

Answer: B

- Watch Video Solution

48. What would be the solubility of AgCl in 0.1 M NaCl solution
$?\left(K_{s p}\right.$ for $\left.\mathrm{AgCl}=1.2 \times 10^{-10}\right)$
A. 0.1 M
B. $1.2 \times 10^{-9} M$
C. $1.2 \times 10^{-6} M$
D. $1.2 \times 10^{-10} M$

- Watch Video Solution

49. The pH of a buffer solution of $0.1 \mathrm{MCH} \mathrm{H}_{3} \mathrm{COOH}$ and $0.01 \mathrm{MCH}_{3} \mathrm{COONa}$ is $\left(p K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=4.745\right)$:
A. 4.745
B. 5.745
C. 3.745
D. 10.255

Answer: C

- Watch Video Solution

50. The equilibrium constant for the reaction $H_{2}+I_{2} \Leftrightarrow 2 H I$ at 650 K is 40 . If 0.5 mole of each of hydrogen and iodine are added to the system at equilibrium, the value of equilibrium constant will be :
A. 20
B. 60
C. 40
D. 80

Answer: C

- Watch Video Solution

51. 1.6 mol of $P C l_{5}$ is placed in a 4 litre vessel. When the temperature is increased to 500 K , the $P C l_{5}$ decomposes as
$P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$
At equilibrium 1.20 mol of $P C l_{5}$ remains' K_{c} for the reaction is :
A. 0.013
B. 0.050
C. 0.067
D. 0.033

Answer: A

- Watch Video Solution

52. For the reaction : $I_{2}(g) \Leftrightarrow 2 I(g), K_{c}=37.6 \times 10^{-6}$ at 1000 K . If 1.0 mole of I_{2} is introduced into a 1.0 litre flask at 1000 K at equilibrium, then
A. Conc. Of $I_{2}(g)$ is less than that of $1(\mathrm{~g})$
B. Conc. of $I_{2}(g)$ is much larger than that of $\mathrm{I}(\mathrm{g})$
C. $\left[I_{2}\right]=[I]$
D. $\left[I_{2}=1 / 2[I]\right.$

Answer: B

- Watch Video Solution

53. 3 moles of A and 4 moles of B are mixed together and allowed to come into equilibrium according to the following reaction :
$A(g)+4 B(g) \Leftrightarrow 2 C(g)+3 D(g)$
When equilibrium is reached, there is 1 mole of C. The equilibrium extent of the reaction is
A. $1 / 4$
B. $1 / 3$
C. $1 / 2$
D. 1

Answer: C

D Watch Video Solution

54. What is the $\left[O H^{-}\right]$in the final solution prepared by mixing 20 mL of 0.050 M HCl with 30.0 mL of $0.10 \mathrm{MBa}(\mathrm{OH})_{2}$?
A. 0.40 M
B. 0.0050 M
C. 0.12 M
D. 0.10 M

Answer: D

- Watch Video Solution

55. Solubility of $C a F_{2}$ in terms of its solubility product is given by
A. $s=\left(K_{s p}\right)^{1 / 3}$
B. $s=\left(K_{s p} / 2\right)^{1 / 3}$
C. $s=\left(K_{s p} / 4\right)^{1 / 3}$
D. $s=\left(K_{s p} / 2\right)^{1 / 2}$

- Watch Video Solution

56. The enthalpy change on freezing of 1.0 mol of water at $10^{\circ} \mathrm{C}$ to ice at $-10^{\circ} \mathrm{C}$ is : $\Delta_{\text {fus }} . H^{\circ}=6.03 \mathrm{kJmol}^{-1}$ at $0^{\circ} \mathrm{C}$ $C_{p}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=75.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
$\mathrm{C}_{p}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{s})\right]=36.8 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
A. $-0.368 \mathrm{kJmol}^{-1}$
B. $-5.645 \mathrm{kJmol}^{-1}$
C. $0.753 \mathrm{kJmol}^{-1}$
D. $-11.390 \mathrm{kJmol}^{-1}$

Answer: B
57. The value of K_{c} for the reaction :
$3 O_{2}(g) \Leftrightarrow 2 O_{3}(g)$ is 2.0×10^{-50} at $25^{\circ} \mathrm{C}$. If equilibrium concentration of O_{2} in air at $25^{\circ} C$ is 1.6×10^{-2}, the concentration of O_{3} is :
A. $2.86 \times 10^{-28} M$
B. $8.192 \times 10^{-56} M$
C. $1.43 \times 10^{-14} M$
D. $1.6 \times 10^{-2} M$

Answer: A
58. Nitric oxide reacts with bromine as :
$2 N O(g)+B r_{2(g)} \Leftrightarrow 2 N O B r(g)$
When 0.087 mol of NO and 0.0437 mol of $B r_{2}$ are mixed in a closed container at constant temperature, 0.0518 mol of NaBr is obtained at equilibrium. The equilibrium constant is :
A. 12.86
B. 121.66
C. 2.1×10^{4}
D. 1.6×10^{3}

Answer: B

- Watch Video Solution

59. What is the maximum volume of water required to dissolve \lg of CaSO_{4} at $298 \mathrm{~K}, K_{s p}\left(\mathrm{CaSO}_{4}\right)=9.1 \times 10^{-6}$.
A. 5.0 L
B. 8.6 L
C. $3.0 \times 10^{-3} L$
D. 2.44 L

Answer: D

(Watch Video Solution

60. K_{b} for $\mathrm{NH}_{4} \mathrm{OH}$ is 1.81×10^{-5}. The pH of 0.01 MNH 4 Cl solution at $25^{\circ} \mathrm{C}$ is :
A. 4.82
B. 3.93
C. 5.63
D. 4.26

Answer: C

- Watch Video Solution

