©゙"doubtnut

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION MATHS (KANNADA ENGLISH)

AREA UNDER CURVES

Multiple Choice Questions Level I

1. The area bounded by the circle $x^{2}+y^{2}=2$
is equal to :
A. 4π sq. units
B. $2 \sqrt{2} \pi$ sq.units
C. $4 \pi^{2}$ sq. units
D. 2π sq. units

Answer: D

D Watch Video Solution

2. The area of the region bounded by the curve
$y=x^{2}$ and the line $y=16$ is
A. $\frac{32}{3}$
B. $\frac{256}{3}$
C. $\frac{64}{3}$
D. $\frac{128}{3}$

Answer: B

D Watch Video Solution

3. The area of the region bounded by the parabola $y^{2}=x$ and the straight line $2 \mathrm{y}=\mathrm{x}$ is :
A. $\frac{4}{3}$ sq. units
B. 1 sq. unit
C. $\frac{2}{3}$ sq.units
D. $\frac{1}{3}$ sq. units

Answer: A

D Watch Video Solution

4. The area of the region bounded by the
curve $y=\sin x$ between the ordinates $x=0$,
$x=\frac{\pi}{2}$ and the x-axis is:
A. 2 sq. units
B. 4 sq. units
C. 3 sq. units
D. 1 sq. unit

Answer: D

- Watch Video Solution

5. The area of the region bounded by the curve
$y=\sqrt{16-x^{2}}$ and x -axis is :
A. 8π sq. units
B. 20π sq. units
C. 16π sq. units
D. 256π sq. units

Answer: A

D Watch Video Solution
6. The area bounded by the curve $y=x^{2}$, the
x-axis and the line $x=2^{1 / 3}$ is divided into
two equal area by the line $x=k$. The value of k is
A. $2^{1 / 3}-1$
B. 1
C. $2^{-2 / 3}$
D. $2^{-1 / 3}$

Answer: B
(Watch Video Solution

7. The area $\left\{(x, y):|x| \geq y \geq x^{2}\right\}$ is equal to

A. $\frac{1}{6}$
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. None of these

Answer: B
(Watch Video Solution
8. The area $\left\{(x, y): x^{2} \leq y \leq \sqrt{x}\right\}$ is equal to
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. $\frac{1}{6}$
D. None of these

Answer: A

- Watch Video Solution

9. The area enclosed between the curves
$y=x^{2}$ and $x=y^{2}$ is :

> A. $\frac{1}{3}$
> B. $\frac{2}{3}$
> C. $\frac{1}{6}$
D. None of these

Answer: A

D Watch Video Solution
10. The area enclosed between the curves $y^{2}=4 x$ and the line $\mathrm{y}=\mathrm{x}$ is

> A. $\frac{8}{3}$
> B. $\frac{4}{3}$
> C. $\frac{2}{3}$
> D. $\frac{1}{2}$

Answer: A

D Watch Video Solution
11. Area enclosed between the curve $y=x^{1 / 3}$,
the y-axis and the lines $y=-1, y=1$ is :
A. 0
B. $\frac{1}{2}$
C. $\frac{3}{2}$
D. None of these

Answer: B

D Watch Video Solution
12. Find the area of the parabola $y^{2}=4 a x$ bounded by its latus rectum.

> A. $\frac{8}{3} a^{2}$
> B. $\frac{16}{3} a^{2}$
> C. $\frac{4}{3} a^{2}$
> D. $\frac{2}{3} a^{2}$

Answer: A

D Watch Video Solution
13. The area between the hyperbola $x y=c^{2}$,
the x-axis and the ordinates at a and b with $a>$
b , is :

> A. $c^{2} \log \left(\frac{a}{b}\right)$
> B. $c^{2} \log \left(\frac{b}{a}\right)$
> C. $c^{2} \log (a b)$
D. None of these

Answer: B

- Watch Video Solution

14. The area of the region bounded by the curve $y=2 x-x^{2}$ and the line $\mathrm{y}=\mathrm{x}$ is
A. $\frac{1}{6}$
B. $\frac{1}{4}$
C. $\frac{1}{2}$
D. $\frac{1}{3}$

Answer: A

D Watch Video Solution
15. The area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is :
A. $\pi^{2} a b$
B. $\pi a b$
C. $\pi a^{2} b$
D. $\pi a b^{2}$

Answer: C

- Watch Video Solution

16. If the area bounded by the curve $y=f(x)$, the coordinate axes and the line $x=x_{1}$ is given by $x_{1} \cdot e^{x_{1}}$, then $\mathrm{f}(\mathrm{x})$ is equal to
A. $x e^{x}-e^{x}$
B. $x e^{x}+e^{x}$
C. e^{x}
D. $x e^{x}$

Answer: B

- Watch Video Solution

17. The area between $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and st.line $\frac{x}{a}+\frac{y}{b}=1$ is $: \mathrm{x}$
A. $\frac{1}{4} \pi a b-\frac{1}{2} a b$
B. $\frac{1}{4} a b$
C. $\frac{1}{2} a b$
D. $\frac{1}{2} \pi a b$

Answer: A
18. The area of the figure bounded by $y=\sin x, y$ $\cos \mathrm{x}$ in the first quadrant is :
A. $2(\sqrt{3}-1)$
B. $2(\sqrt{2}-1)$
C. $\sqrt{3}+1$
D. None of these

Answer: D

- Watch Video Solution

19. The area bounded by the curves
$y=x e^{x}, y=x e^{-x}$ and the line $\mathrm{x}=1$ is :

$$
\begin{aligned}
& \text { A. } 1-\frac{1}{e} \\
& \text { B. } \frac{1}{e} \\
& \text { C. } \frac{2}{e} \\
& \text { D. } 1-\frac{2}{e}
\end{aligned}
$$

Answer: C
(Watch Video Solution
20. The area bounded by the curve $y=x^{3}$, x axis and two ordinates $\mathrm{x}=1$ and $\mathrm{x}=2$ is equals to
A. $\frac{15}{2}$ sq. units
B. $\frac{15}{4}$ sq. units
C. $\frac{17}{2}$ sq. units
D. $\frac{17}{4}$ sq. units

Answer: B
21. The area bounded by the curve $y=4 x-x^{2}$ and the x-axis is:
A. $\frac{30}{7}$ sq. units
B. $\frac{31}{7}$ sq. units
C. $\frac{32}{3}$ sq. units
D. $\frac{34}{3}$ sq. units

Answer: C

D Watch Video Solution

22. Area between the curve $y=4+3 x-x^{2}$
and x-axis in square units is :
A. $\frac{125}{3}$
B. $\frac{125}{4}$
C. $\frac{125}{6}$
D. None of these

Answer: C

D Watch Video Solution
23. Area bounded by the curve $y=x \sin x$ and x axis between $\mathrm{x}=0$ and $\mathrm{x}=2 \pi$ is :
A. 2π
B. 3π
C. 4π
D. None of these

Answer: C

D Watch Video Solution
24. The area bounded by the curve
$y=2 x-x^{2}$ and the st.line $\mathrm{y}=-\mathrm{x}$ is given by :
A. $\frac{9}{2}$
B. $\frac{43}{6}$
C. $\frac{35}{6}$
D. None of these

Answer: A
(Watch Video Solution
25. The area enclosed between the curve $y=\log _{e}(x+e)$ and the coordinate axes is:
A. 2
B. 1
C. 4
D. 3

Answer: B

D Watch Video Solution

Multiple Choice Questions Level Ii

1. The area bounded by the curve
$y=e^{x}, y=e^{-x}$ and the ordinates $\mathrm{x}=0$ and $x=2$ is :

> A. $\left(e-\frac{1}{e}\right)^{2}$
> B. $e^{2}-\frac{1}{e^{2}}$
C. $\left(e+\frac{1}{e}\right)^{2}$
D. None of these
2. Area enclosed by $y=1$ and $\pm 2 x+y=2$ (in square units) is :
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. 1
D. 2

Answer: A
3. The area of the region bounded by $y=|x-1|$ and $y=1$ is
A. 1
B. 2
C. $\frac{1}{2}$
D. None of these

Answer: A
4. Area common to the circle $x^{2}+y^{2}=64$ and the parabola $y^{2}=12 x$ is :
A. $\frac{16}{3}(4 \pi+\sqrt{3})$
B. $\frac{16}{3}(8 \pi-\sqrt{3})$
C. $\frac{16}{3}(4 \pi-\sqrt{3})$
D. None of these

Answer: A
5. The area enclosed between the curves $y=$ x^{3} and $y=\sqrt{x}$ is, (in square units)

> A. $\frac{5}{12}$
> B. $\frac{5}{3}$
> C. $\frac{5}{4}$
D. None of these

Answer: A
(Watch Video Solution
6. One value of k for which the area of the figure bounded by the curve $y=8 x^{2}-x^{5}$,
the st. lines $x=1$ and $x=k$ and x-axis is equal to $\frac{16}{3}$ is :
A. -1
B. 3
C. 2
D. $\sqrt[3]{8-\sqrt{17}}$

Answer: D
7. The area of the figure bounded by the curves $y=e^{x}, y=e^{-x}$, and st. line $\mathrm{x}=1$ is :
A. $e+\frac{1}{e}-2$
B. $e+\frac{1}{2}$
C. $e-\frac{1}{e}$
D. None of these

Answer: A

- Watch Video Solution

8. The area of the figure bounded by the parabola $(y-2)^{2}=x-1$, the tangent to it at the point with ordinate 3 and the x-axis is :
A. 3
B. 6
C. 9
D. None of these

Answer: C

D Watch Video Solution
9. The triangle formed by the tangent to the
curve $f(x)=x^{2}+b x-b$ at the point (1,1) and the coordinate axes, lies in the first quadrant, if its area is 2 , then the value of b is
A. -1
B. 3
C. -3
D. 1
10. The area bounded by the curves : $y=|x|-1$
and $y=-|x|+1$ is :
A. 1
B. 2
C. $2 \sqrt{2}$
D. 4

Answer: B
11. The area of the region bounded by the curves : $y=|x-1|$ and $y=3-|x|$ is :
A. 3 sq. units
B. 4 sq. units
C. 6 sq. units
D. 2 sq. units

Answer: B

- Watch Video Solution

12. Area bounded by the curves :
$y=\sqrt{x}, x=2 y+3$ in the first quadrant and x-axis is :
A. $2 \sqrt{3}$
B. 18
C. 9
D. $\frac{34}{3}$

Answer: C
13. The area of the region bounded by the curves : $y=|x-2|, x=1, x=3$ and the x-axis is :
A. 1
B. 2
C. 3
D. 4

Answer: A
14. Area enclosed between curves : $y=a x^{2}$ and $x=a y^{2}(\mathrm{a}>0)$ is 1 sq. unit, then a is :

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{3}} \\
& \text { B. } \frac{1}{2} \\
& \text { C. } 1 \\
& \text { D. } \frac{1}{3}
\end{aligned}
$$

Answer: A

- Watch Video Solution

15. The area enclosed between the curves : $y^{2}=x$ and $\mathrm{y}=|\mathrm{x}|$ is :
A. 1
B. $\frac{1}{6}$
C. $\frac{1}{3}$
D. $\frac{2}{3}$

Answer: B
16. Let $f(x)$ be a non-negative continuous
function such that the area bounded by the curve $\mathrm{y}=\mathrm{f}(\mathrm{x}), \mathrm{x}$-axis and the ordinates $x=\frac{\pi}{4}$ and $x=\beta>\frac{\pi}{4}$ is :
$\left(\beta \sin \beta+\frac{\pi}{4} \cos \beta+\sqrt{2} \beta\right)$.
Then $f\left(\frac{\pi}{2}\right)$ is :

$$
\begin{aligned}
& \text { А. }\left(\frac{\pi}{2}-\sqrt{2}+1\right) \\
& \text { В. }\left(\frac{\pi}{4}+\sqrt{2}-1\right) \\
& \text { С. }\left(1-\frac{\pi}{4}+\sqrt{2}\right) \\
& \text { D. }\left(1-\frac{\pi}{4}-\sqrt{2}\right)
\end{aligned}
$$

Answer: C

D Watch Video Solution

17. The parabolas $y^{2}=4 x$ and $x^{2}=4 y$ divide the square region bounded by the lines $x=4$, $\mathrm{y}=4$ and the coordinate axes. If S_{1}, S_{2}, S_{3} are respectively the areas of these parts numbered from top to bottom, then $S_{1}: S_{2}: S_{3}$ is :
A. $1: 2: 3$
B. 1:2:1
C. $1: 1: 1$
D. 2:1:2

Answer: C

- Watch Video Solution

18. Find the area bounded the curves :

$$
\begin{aligned}
& y=(x-1)^{2}, y=(x+1)^{2} \text { and } y=\frac{1}{4} \\
& \text { A. } \frac{1}{6}
\end{aligned}
$$

B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{1}{4}$

Answer: B

D Watch Video Solution

19. The area of the plane region bounded by
the curves $x+2 y^{2}=0$ and $x+3 y^{2}=1$ is equal to :
A. $\frac{4}{3}$
B. $\frac{5}{3}$
C. $\frac{1}{3}$
D. $\frac{2}{3}$

Answer: A

D Watch Video Solution

20. The area of the region between the curves
$: y=\sqrt{\frac{1+\sin x}{\cos x}} \quad$ and $\quad y=\sqrt{\frac{1-\sin x}{\cos x}}$
bounded by the lines $\mathrm{x}=0$ and $x=\frac{\pi}{4}$ is :

$$
\begin{aligned}
& \text { A. } \int_{0}^{\sqrt{2}-1} \frac{1}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t \\
& \text { B. } \int_{0}^{\sqrt{2}+1} \frac{4 t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t \\
& \text { C. } \int_{0}^{\sqrt{2}-1} \frac{4 t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t \\
& \text { D. } \int_{0}^{\sqrt{2}+1} \frac{t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t
\end{aligned}
$$

Answer: C

D Watch Video Solution

21. The area of the region bounded by the parabola $(y-2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the x-axis is
A. 3
B. 6
C. 9
D. 12

Answer: C

Latest Questions From Aieee Jee Examinations

1. The area bounded by the curves $y=\cos x$ and
$\mathrm{y}=\sin \mathrm{x}$ between the ordinates $\mathrm{x}=0$ and
$x=\frac{3}{2} \pi$ is :
A. $4 \sqrt{2}-2$
B. $4 \sqrt{2}+2$
C. $4 \sqrt{2}-1$
D. $4 \sqrt{2}+1$

Answer: A

- Watch Video Solution

2. The area of the region enclosed by the
curves : $\mathrm{y}=\mathrm{x}, \mathrm{x}=\mathrm{e}, y=\frac{1}{x}$ and the positive x axis is :
A. $\frac{1}{2}$ square unit
B. 1 square unit
C. $\frac{3}{2}$ square unit

5
D. $\frac{5}{2}$ square units

Answer: C

D Watch Video Solution

3. Let the straight line $\mathrm{x}=\mathrm{b}$ divide the area enclosed by $y=(1-x)^{2}, y=0$ and $\mathrm{x}=0$ into two parts $R_{1}(0 \leq x \leq b)$ and $R_{2}(b \leq x \leq 1)$
such that $R_{1}-R_{2}=\frac{1}{4}$.Then b equals :
A. $\frac{3}{4}$
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$

Answer: B

D Watch Video Solution

4. Let $f:[-1,2] \rightarrow[0, \infty)$ be a continuous
function such that $f(x)=f(1-x)$ for all $x \in[-1,2]$.
Let $R_{1}=\int_{-1}^{2} x f(x) d x$ and R_{2} be the area of the region bounded by the $y=f(x), x=-1, x=2$ and the x-axis .Then :

$$
\text { A. } R_{1}=2 R_{2}
$$

B. $R_{1}=3 R_{2}$
C. $2 R_{1}=R_{2}$
D. $3 R_{1}=R_{2}$

Answer: C

- Watch Video Solution

5. The area bounded by the curves $y^{2}=4 x$
and $x^{2}=4 y$ is :

$$
\text { A. } \frac{32}{3}
$$

B. $\frac{16}{3}$
C. $\frac{8}{3}$
D. 0

Answer: B

D Watch Video Solution

6. The area bounded between the parabolas: $x^{2}=\frac{y}{4}$ and $x^{2}=9 y$ and the straight line $\mathrm{y}=2$ is :
A. $20 \sqrt{2}$
B. $\frac{10 \sqrt{2}}{3}$
C. $\frac{20 \sqrt{2}}{3}$
D. $10 \sqrt{2}$

Answer: C

D Watch Video Solution
7. The area (in square units) bounded by the
curves : $y=\sqrt{x}, 2 y-x+3=0$ x-axis, and
lying in the first quadrant is :
A. 36
B. 18
C. $\frac{27}{4}$
D. 9

Answer: D

D Watch Video Solution

8. The area enclosed by the curves $y=\sin x+$ $\cos x$ and $y|\cos x-\sin x|$ over the interval
$[0, \pi / 2]$ is :
A. $4(\sqrt{2}-1)$
B. $2 \sqrt{2}(\sqrt{2}-1)$
C. $2(\sqrt{2}+1)$
D. $2 \sqrt{2}(\sqrt{2}+1)$

Answer: B

D Watch Video Solution

9. The area of the region described by :
$\mathrm{A}=\left\{(\mathrm{x}, \mathrm{y}): x^{2}+y^{2} \leq 1\right.$ and $\left.y^{2} \leq 1-x\right\}$ is:
A. $\frac{\pi}{2}-\frac{4}{3}$
B. $\frac{\pi}{2}-\frac{2}{3}$
C. $\frac{\pi}{2}+\frac{2}{3}$
D. $\frac{\pi}{2}+\frac{4}{3}$

Answer: D

D Watch Video Solution

10. The area (in sq. units) of the region described by : $\left\{(\mathrm{x}, \mathrm{y}): y^{2} \leq 2 x\right.$ and $\left.y \geq 4 x-1\right\}$ is :
A. $\frac{4}{32}$
B. $\frac{5}{64}$
C. $\frac{15}{64}$
D. $\frac{9}{32}$

Answer: D

D Watch Video Solution

Recent Competitive Questions Question From Karnataka Cet Comed

1. The area of the region bounded by the
curves : $y=x^{2}$ and $y=4 x-x^{2}$ in sq. units is :

> A. $\frac{1}{3}$
> B. $\frac{16}{3}$
> C. $\frac{8}{3}$
> D. $\frac{4}{3}$

Answer: C

- Watch Video Solution

2. The area bounded by the curve :
$y=\left\{\begin{array}{ll}x^{2} & x<0 \\ x & x \geq 0\end{array}+\right.$ and the line $\mathrm{y}=4$ is $:$
A. $\frac{16}{3}$
B. $\frac{40}{3}$
C. $\frac{8}{3}$
D. $\frac{32}{3}$

Answer: B

- Watch Video Solution

3. If the area between $y=m x^{2}$ and $x=m y^{2}$
$(m>0)$ is $\frac{1}{4}$ sq. unit, then the value of m is :
A. $\pm 3 \sqrt{2}$
B. $\pm \frac{2}{\sqrt{3}}$
C. $\sqrt{2}$
D. $\sqrt{3}$

Answer: B

- Watch Video Solution

4. The area bounded by the curve
$y=\sin \left(\frac{x}{3}\right), x$-axis and lines $\mathrm{x}=0$ and $x=3 \pi$ is
A. 9
B. 0
C. 6
D. 3

Answer: C

D Watch Video Solution
5. Area bounded by $y=x^{3}, y=8$ and $x=0$ is \qquad
A. 2 sq. units
B. 14 sq. units
C. 12 sq. units
D. 6 sq. units

Answer: C

D Watch Video Solution
6. Area bounded by the curve $y=x^{3}$, the x axis and the ordinates $\mathrm{x}=-2$ and $\mathrm{x}=1$, is :
A. -9 sq. units
B. $-\frac{15}{4}$ sq. units
C. $\frac{15}{4}$ sq. units
D. $\frac{17}{4}$ sq. units

Answer: D

D Watch Video Solution
7. The area in square units bounded by the normal at $(1,2)$ to the parabola $y^{2}=4 x$, x -axis and the curve is given by :
A. $\frac{10}{3}$
B. $\frac{7}{3}$
C. $\frac{4}{3}$
D. None of these

Answer: A

- Watch Video Solution

8. The area of the region bound by Y-axis, $y=$ $\cos \mathrm{x}$ and $\mathrm{y}=\sin \mathrm{x}, 0 \leq x \leq \frac{\pi}{2}$ is
A. $\sqrt{2}-1$
B. $2(\sqrt{2}-1)$
C. $\sqrt{2}+1$
D. $\sqrt{2}$

Answer: A

D Watch Video Solution
9. The area in square units of the region bounded by $y^{2}=9 x$ and $y=3 x$ is:
A. 2
B. $\frac{1}{4}$
C. $\frac{1}{2}$
D. 1

Answer: C

- Watch Video Solution

