

MATHS

BOOKS - MODERN PUBLICATION MATHS (KANNADA ENGLISH)

AREA UNDER CURVES

Multiple Choice Questions Level I

1. The area bounded by the circle $x^2 + y^2 = 2$

is equal to :

A. 4π sq. units

- B. $2\sqrt{2}\pi$ sq.units
- C. $4\pi^2$ sq. units
- D. 2π sq. units

Answer: D

2. The area of the region bounded by the curve

$$y=x^2$$
 and the line y = 16 is

A.
$$\frac{32}{3}$$

B. $\frac{256}{3}$
C. $\frac{64}{3}$
D. $\frac{128}{3}$

Answer: B

Watch Video Solution

3. The area of the region bounded by the parabola $y^2 = x$ and the straight line 2y=x is :

A.
$$rac{4}{3}$$
 sq. units

B.1 sq. unit

C.
$$\frac{2}{3}$$
 sq.units
D. $\frac{1}{3}$ sq. units

4. The area of the region bounded by the curve y=sin x between the ordinates x=0,
$$x = \frac{\pi}{2}$$
 and the x-axis is :

A. 2 sq. units

- B. 4 sq. units
- C. 3 sq. units
- D. 1 sq. unit

Answer: D

Watch Video Solution

5. The area of the region bounded by the curve

$$y=\sqrt{16-x^2}$$
 and x -axis is :

- A. 8π sq. units
- B. 20π sq. units
- C. 16π sq. units
- D. 256π sq. units

Answer: A

6. The area bounded by the curve $y = x^2$, the x-axis and the line $x = 2^{1/3}$ is divided into

two equal area by the line x=k. The value of k is

A.
$$2^{1/3} - 1$$

B. 1

:

$$C. 2^{-2/3}$$

D.
$$2^{-1/3}$$

Answer: B

7. The area $ig\{(x,y)\!:\!|x|\geq y\geq x^2ig\}$ is equal to

A.
$$\frac{1}{6}$$

B. $\frac{1}{3}$
C. $\frac{2}{3}$

:

D. None of these

Answer: B

8. The area $ig\{(x,y)\!:\!x^2\leq y\leq \sqrt{x}ig\}$ is equal to

A.
$$\frac{1}{3}$$

B. $\frac{2}{3}$
C. $\frac{1}{6}$

:

D. None of these

9. The area enclosed between the curves $y = x^2$ and $x = y^2$ is : A. $\frac{1}{3}$ B. $\frac{2}{3}$ C. $\frac{1}{6}$

D. None of these

Answer: A

10. The area enclosed between the curves

 $y^2 = 4x$ and the line y=x is

A.
$$\frac{8}{3}$$

B. $\frac{4}{3}$
C. $\frac{2}{3}$
D. $\frac{1}{2}$

Answer: A

11. Area enclosed between the curve $y=x^{1/3}$,

the y-axis and the lines y=-1, y=1 is :

A. 0

B.
$$\frac{1}{2}$$

C. $\frac{3}{2}$

D. None of these

Answer: B

12. Find the area of the parabola $y^2 = 4ax$

bounded by its latus rectum.

A.
$$\frac{8}{3}a^{2}$$

B. $\frac{16}{3}a^{2}$
C. $\frac{4}{3}a^{2}$
D. $\frac{2}{3}a^{2}$

Answer: A

13. The area between the hyperbola $xy = c^2$, the x-axis and the ordinates at a and b with a > b , is :

A.
$$c^2 \log\left(\frac{a}{b}\right)$$

B. $c^2 \log\left(\frac{b}{a}\right)$

C.
$$c^2 \log(ab)$$

D. None of these

Answer: B

14. The area of the region bounded by the curve $y = 2x - x^2$ and the line y=x is A. $\frac{1}{6}$ $\mathsf{B.}\,\frac{1}{4}$ $\mathsf{C}.\,\frac{1}{2}$ D. $\frac{1}{3}$

Answer: A

15. The area enclosed by the ellipse $rac{x^2}{a^2}+rac{y^2}{b^2}=1$ is :

A.
$$\pi^2 a b$$

- B. πab
- $\mathsf{C.}\,\pi a^2 b$
- D. $\pi a b^2$

Answer: C

16. If the area bounded by the curve y=f(x), the coordinate axes and the line $x = x_1$ is given by x_1 . e^{x_1} , then f(x) is equal to

A.
$$xe^x - e^x$$

$$\mathsf{B.}\,xe^x+e^x$$

 $\mathsf{C}. e^x$

D. xe^x

Answer: B

17. The area between $\frac{x^2}{a^2} + \frac{y^2}{b^2}$ =1 and st.line $\frac{x}{a} + \frac{y}{b} = 1$ is : x A. $\frac{1}{4}\pi ab - \frac{1}{2}ab$ B. $\frac{1}{4}ab$

C.
$$\frac{1}{2}ab$$

D. $\frac{1}{2}\pi ab$

18. The area of the figure bounded by y=sin x, y

cos x in the first quadrant is :

A.
$$2ig(\sqrt{3}-1ig)$$

B.
$$2\left(\sqrt{2}-1
ight)$$

$$\mathsf{C}.\sqrt{3}+1$$

D. None of these

Answer: D

19. The area bounded by the curves

$$y = xe^{x}, y = xe^{-x}$$
 and the line x=1 is :
A. $1 - \frac{1}{e}$
B. $\frac{1}{e}$
C. $\frac{2}{e}$
D. $1 - \frac{2}{e}$
Answer: C
Watch Video Solution

20. The area bounded by the curve $y=x^3$, x-

axis and two ordinates x=1 and x=2 is equals to

A.
$$\frac{15}{2}$$
 sq. units
B. $\frac{15}{4}$ sq. units
C. $\frac{17}{2}$ sq. units
D. $\frac{17}{4}$ sq. units

Answer: B

:

21. The area bounded by the curve $y = 4x - x^2$ and the x-axis is :

A.
$$\frac{30}{7}$$
 sq. units
B. $\frac{31}{7}$ sq. units
C. $\frac{32}{3}$ sq. units

D.
$$\frac{54}{3}$$
 sq. units

Answer: C

22. Area between the curve $y = 4 + 3x - x^2$

and x-axis in square units is :

A.
$$\frac{125}{3}$$

B. $\frac{125}{4}$
C. $\frac{125}{6}$

D. None of these

Answer: C

23. Area bounded by the curve y=x sin x and x -

axis between x=0 and x= 2π is :

A. 2π

B. 3π

C. 4π

D. None of these

Answer: C

24. The area bounded by the curve $y = 2x - x^2$ and the st.line y=-x is given by : A. $\frac{9}{2}$ B. $\frac{43}{6}$ C. $\frac{35}{6}$

D. None of these

Answer: A

25. The area enclosed between the curve $y = \log_e(x+e)$ and the coordinate axes is : A. 2 B.1 C. 4 D. 3

Answer: B

1. The area bounded by the curve $y = e^x, y = e^{-x}$ and the ordinates x=0 and x=2 is :

D. None of these

2. Area enclosed by y=1 and \pm 2x+y=2 (in square units) is :

A.
$$\frac{1}{2}$$

B. $\frac{1}{4}$

C. 1

D. 2

3. The area of the region bounded by y=|x-1| and y=1 is

A. 1

- B. 2
- C. $\frac{1}{2}$
- D. None of these

4. Area common to the circle $x^2 + y^2 = 64$ and the parabola $y^2 = 12x$ is :

D. None of these

5. The area enclosed between the curves y =

 x^3 and $y = \sqrt{x}$ is, (in square units)

A.
$$\frac{5}{12}$$

B. $\frac{5}{3}$
C. $\frac{5}{4}$

D. None of these

Answer: A

6. One value of k for which the area of the figure bounded by the curve $y = 8x^2 - x^5$, the st. lines x=1 and x=k and x-axis is equal to $\frac{16}{3}$ is :

A.-1

B. 3

C. 2

D.
$$\sqrt[3]{8-\sqrt{17}}$$

Answer: D

7. The area of the figure bounded by the curves $y = e^x, y = e^{-x}$, and st. line x=1 is :

A.
$$e+rac{1}{e}-2$$

B. $e+rac{1}{2}$
C. $e-rac{1}{e}$

D. None of these

8. The area of the figure bounded by the parabola $(y-2)^2$ =x-1 , the tangent to it at the point with ordinate 3 and the x-axis is :

A. 3

B. 6

C. 9

D. None of these

Answer: C

9. The triangle formed by the tangent to the curve $f(x) = x^2 + bx - b$ at the point (1,1) and the coordinate axes, lies in the first quadrant, if its area is 2, then the value of b is

:

B. 3

C. -3

D. 1

Answer: C

Answer: B

11. The area of the region bounded by the curves : y=|x-1| and y=3-|x| is :

A. 3 sq. units

B. 4 sq. units

C. 6 sq. units

D. 2 sq. units

Answer: B

12. Area bounded by the curves : $y = \sqrt{x}, x = 2y + 3$ in the first quadrant and x-axis is :

A. $2\sqrt{3}$

B. 18

C. 9

D.
$$\frac{34}{3}$$

Answer: C

13. The area of the region bounded by the curves : y=|x-2|, x=1,x=3 and the x-axis is :

A. 1

- B. 2
- C. 3
- D. 4

14. Area enclosed between curves $: y = ax^2$ and $x = ay^2$ (a > 0) is 1 sq. unit, then a is :

A.
$$rac{1}{\sqrt{3}}$$

B. $rac{1}{2}$

D.
$$\frac{1}{3}$$

15. The area enclosed between the curves : $y^2 = x$ and y=|x| is :

A. 1

B.
$$\frac{1}{6}$$

C. $\frac{1}{3}$
D. $\frac{2}{3}$

Answer: B

16. Let f(x) be a non-negative continuous function such that the area bounded by the curve y=f(x), x-axis and the ordinates $x = \frac{\pi}{4}$ and $x = \beta > \frac{\pi}{4}$ is : $\left(\beta \sin \beta + \frac{\pi}{4} \cos \beta + \sqrt{2}\beta\right)$. Then $f\left(\frac{\pi}{2}\right)$ is :

A.
$$\left(\frac{\pi}{2} - \sqrt{2} + 1\right)$$

B. $\left(\frac{\pi}{4} + \sqrt{2} - 1\right)$
C. $\left(1 - \frac{\pi}{4} + \sqrt{2}\right)$
D. $\left(1 - \frac{\pi}{4} - \sqrt{2}\right)$

Answer: C

Watch Video Solution

17. The parabolas $y^2 = 4x$ and $x^2 = 4y$ divide the square region bounded by the lines x=4, y=4 and the coordinate axes. If S_1 , S_2 , S_3 are respectively the areas of these parts numbered from top to bottom, then $S_1: S_2: S_3$ is:

A. 1:2:3

B. 1:2:1

C.1:1:1

D. 2:1:2

Answer: C

A. $\frac{1}{6}$

18. Find the area bounded the curves :
$$y = (x-1)^2, y = (x+1)^2$$
 and $y = rac{1}{4}$

B.
$$\frac{1}{3}$$

C. $\frac{2}{3}$
D. $\frac{1}{4}$

Answer: B

Watch Video Solution

19. The area of the plane region bounded by the curves $x + 2y^2 = 0$ and $x + 3y^2 = 1$ is equal to :

A.
$$\frac{4}{3}$$

B. $\frac{5}{3}$
C. $\frac{1}{3}$
D. $\frac{2}{3}$

Answer: A

Watch Video Solution

20. The area of the region between the curves

:
$$y = \sqrt{rac{1 + \sin x}{\cos x}}$$
 and $y = \sqrt{rac{1 - \sin x}{\cos x}}$

bounded by the lines x=0 and $x=rac{\pi}{4}$ is :

$$\begin{aligned} \mathsf{A} & \int_{0}^{\sqrt{2}-1} \frac{1}{(1+t^2)\sqrt{1-t^2}} dt \\ \mathsf{B} & \int_{0}^{\sqrt{2}+1} \frac{4t}{(1+t^2)\sqrt{1-t^2}} dt \\ \mathsf{C} & \int_{0}^{\sqrt{2}-1} \frac{4t}{(1+t^2)\sqrt{1-t^2}} dt \\ \mathsf{D} & \int_{0}^{\sqrt{2}+1} \frac{t}{(1+t^2)\sqrt{1-t^2}} dt \end{aligned}$$

Answer: C

21. The area of the region bounded by the parabola $(y-2)^2 = x-1$, the tangent to the parabola at the point (2,3) and the x-axis is

A. 3

:

B. 6

C. 9

D. 12

Answer: C

Latest Questions From Aieee Jee Examinations

1. The area bounded by the curves y=cos x and y=sin x between the ordinates x=0 and $x=rac{3}{2}\pi$ is : A. $4\sqrt{2} - 2$ B. $4\sqrt{2} + 2$ C. $4\sqrt{2} - 1$ D. $4\sqrt{2} + 1$

Answer: A

2. The area of the region enclosed by the curves : y=x ,x=e , $y=rac{1}{x}$ and the positive x-axis is :

A.
$$rac{1}{2}$$
 square unit

B. 1 square unit

C.
$$\frac{3}{2}$$
 square unit
D. $\frac{5}{2}$ square units

Answer: C

Watch Video Solution

3. Let the straight line x=b divide the area enclosed by $y=(1-x)^2, y=0$ and x=0 into two parts $R_1(0\leq x\leq b)$ and $R_2(b\leq x\leq 1)$ such that $R_1-R_2=rac{1}{4}$.Then b equals :

A.
$$\frac{3}{4}$$

B. $\frac{1}{2}$
C. $\frac{1}{3}$

D. $\frac{1}{4}$

Answer: B

Watch Video Solution

4. Let f:[-1,2] \rightarrow [0 , ∞) be a continuous function such that f(x)=f(1-x) for all $x \in$ [-1,2]. Let $R_1 = \int_{-1}^2 x f(x) dx$ and R_2 be the area of the region bounded by the y=f(x), x=-1, x=2 and the x-axis .Then :

A. $R_1=2R_2$

B. $R_1 = 3R_2$

$$C. 2R_1 = R_2$$

 $\mathsf{D.}\, 3R_1=R_2$

Answer: C

Watch Video Solution

5. The area bounded by the curves $y^2 = 4x$ and $x^2 = 4y$ is :

A.
$$\frac{32}{3}$$

B.
$$\frac{16}{3}$$

C. $\frac{8}{3}$

D. 0

Answer: B

Watch Video Solution

6. The area bounded between the parabolas : $x^2 = \frac{y}{4}$ and $x^2 = 9y$ and the straight line y=2 is :

A.
$$20\sqrt{2}$$

B. $\frac{10\sqrt{2}}{3}$
C. $\frac{20\sqrt{2}}{3}$
D. $10\sqrt{2}$

O Watch Video Solution

7. The area (in square units) bounded by the curves : $y = \sqrt{x}, 2y - x + 3 = 0$ x-axis , and

lying in the first quadrant is :

A. 36

B. 18 C. $\frac{27}{4}$

D. 9

Answer: D

Watch Video Solution

8. The area enclosed by the curves y=sin x + cos x and y |cos x -sin x| over the interval $[0, \pi/2]$ is :

A.
$$4(\sqrt{2}-1)$$

B. $2\sqrt{2}(\sqrt{2}-1)$
C. $2(\sqrt{2}+1)$
D. $2\sqrt{2}(\sqrt{2}+1)$

Answer: B

9. The area of the region described by :

A={(x,y):
$$x^2+y^2\leq 1$$
 and $y^2\leq 1-x$ } is :

A.
$$\frac{\pi}{2} - \frac{4}{3}$$

B. $\frac{\pi}{2} - \frac{2}{3}$
C. $\frac{\pi}{2} + \frac{2}{3}$
D. $\frac{\pi}{2} + \frac{4}{3}$

Answer: D

Watch Video Solution

10. The area (in sq. units) of the region described by : {(x,y): $y^2 \leq 2x$ and $y \geq 4x - 1$ }

A.
$$\frac{4}{32}$$

B. $\frac{5}{64}$
C. $\frac{15}{64}$
D. $\frac{9}{32}$

Answer: D

Recent Competitive Questions Question From Karnataka Cet Comed

1. The area of the region bounded by the curves : $y = x^2$ and $y = 4x - x^2$ in sq. units is :

A.
$$\frac{1}{3}$$

B. $\frac{16}{3}$
C. $\frac{8}{3}$
D. $\frac{4}{3}$

Answer: C

2. The area bounded by the curve : $y=\left\{egin{array}{ccc} x^2 & x < 0 \ x & x \geq 0 \end{array}
ight.+ ext{ and the line y=4 is :}$ A. $\frac{16}{3}$ B. $\frac{40}{3}$ C. $\frac{8}{3}$ D. $\frac{32}{3}$

Answer: B

3. If the area between $y = mx^2$ and $x = my^2$ (m > 0) is $\frac{1}{4}$ sq. unit, then the value of m is :

D.
$$\sqrt{3}$$

4. The area bounded by the curve $y = \sin\left(rac{x}{3}
ight), x$ -axis and lines x=0 and $x = 3\pi$ is

A. 9

B. 0

C. 6

D. 3

Answer: C

5. Area bounded by $y = x^3, y = 8$ and x = 0

is _____.

A. 2 sq. units

B. 14 sq. units

C. 12 sq. units

D. 6 sq. units

Answer: C

6. Area bounded by the curve $y=x^3$, the x-

axis and the ordinates x=-2 and x=1, is :

A.
$$-9$$
 sq. units
B. $-\frac{15}{4}$ sq. units
C. $\frac{15}{4}$ sq. units
D. $\frac{17}{4}$ sq. units

Watch Video Solution

Answer: D

7. The area in square units bounded by the normal at (1,2) to the parabola $y^2 = 4x$, x-axis and the curve is given by :

A.
$$\frac{10}{3}$$

B. $\frac{7}{3}$
C. $\frac{4}{3}$

D. None of these

8. The area of the region bound by Y-axis, y =

$$\cos x$$
 and y = $\sin x$, $0 \le x \le rac{\pi}{2}$ is

A.
$$\sqrt{2} - 1$$

B. $2(\sqrt{2} - 1)$
C. $\sqrt{2} + 1$

D.
$$\sqrt{2}$$

Answer: A

9. The area in square units of the region bounded by $y^2 = 9x$ and y = 3x is :

A. 2 B. $\frac{1}{4}$ C. $\frac{1}{2}$

Answer: C

