

MATHS

BOOKS - MODERN PUBLICATION MATHS (KANNADA ENGLISH)

BINOMIAL THEOREM

Mcq S Level I

1. The total number of terms in the expansion of $\left(x+a\right)^{51}-\left(x-a\right)^{51}$ after simplification is

A. 102

B. 23

C. 26

D. none of these

Answer: C

Watch Video Solution

- **2.** If the coefficients of x^7 and x^8 in $\left(2+\frac{x}{3}\right)^n$ are equal, then n is
 - A. 56
 - B. 55
 - C. 45
 - D. 15

Answer: B

3. If
$$\left(1+x+x^2\right)^n=a_0+a_1x+a_2x^2+\ldots+a_{2n}x^{2n}$$
 , then $a_0+a_2+a_4+\ldots+a_{2n}$ equals

A.
$$\frac{3^{n}+1}{2}$$
B. $\frac{3^{n}-1}{2}$
C. $\frac{1-3^{n}}{2}$

D.
$$3^n + \frac{1}{2}$$

Answer: A

Watch Video Solution

4. The coefficients of x^p and x^q (p and q are positive integers in the expansion of $(1+x)^{p+q}$ are:

A. equal

B. equal with opposite sign

C. reciprocal of each other

D. none of these

Answer: A

Watch Video Solution

5. The number of terms in the expansion of $(a+b+c)^n, \,$ where $n\in N$ is:

A.
$$\frac{(n+1)(n+2)}{2}$$

B. n + 1

 $\mathsf{C.}\,n+2$

D. (n + 1)n.

Watch Video Solution

6. The ratio of the coefficient of x^{15} to the term independent of ${\bf x}$

in
$$\left(x^2+rac{2}{x}
ight)^{15}$$
 is

- A. 12:32
- B. 1:32
- C. 32:12
- D. 31:1

Answer: B

7. If
$$z=\left(rac{\sqrt{3}}{2}+rac{i}{2}
ight)^5+\left(rac{\sqrt{3}}{2}-rac{i}{2}
ight)^5$$
 , then:

A.
$$Rc(z)=0$$

B.
$$Im(z)=0$$

C.
$$Re(z) > 0, Im(z) > 0$$

D.
$$Re(z) > 0$$
, $Im(z) < 0$

Answer: B

8. The total number of terms in the expansion
$$\left(x+a\right)^{100}+\left(x-a\right)^{100}$$
 after simplification is

- C. 51
- D. none of these

- **9.** Given the integers $r>1,\, n>2$ and coefficients of (3r)th and (r+2)nd terms in the binomial expansion of $(1+x)^{2n}$ are equal, then:
 - A. n=2r
 - B. n=3r
 - C. n=2r+1
 - D. none of these

Answer: A

Watch Video Solution

10. The two successive terms in the expansion of $\left(1+x\right)^{24}$ whose coefficients are in the ratio 1:4 are

- A. 3rd and 4th
- B. 4th and 5th
- C. 5th and 6th
- D. 6th and 7th

Answer: C

11. The coefficients of x^n in the expansion of $(1+x)^{2n}$ and $(1+x)^{2n-1}$ are in the ratio

- A. 1:2
- B. 1:3
- C.3:1
- D.2:1

Answer: D

Watch Video Solution

12. If the coefficients of 2nd, 3rd and 4th terms in the expansion of $\left(1+x\right)^n$ are in A.P., then the value of n is:

A. 2

- B. 7
- C. 11
- D. 14

Answer: B

- **13.** If A and B are coefficients of x^n in the expansion of $\left(1+x
 ight)^{2n} ext{ and } \left(1+x
 ight)^{2n-1}$ respectively, then $rac{A}{B}$ equals:
 - A. 1
 - B. 2
 - $\mathsf{C.}\,\frac{1}{2}$
 - D. $\frac{1}{n}$

Watch Video Solution

14. If the middle term of $\left(\frac{1}{x} + x \sin x\right)^{10}$ is equal to $7\frac{7}{8}$ then value of x is :

A.
$$2n\pi+rac{\pi}{6}$$

B.
$$n\pi + \frac{\pi}{6}$$

C.
$$n\pi+\left(\,-\,1\right)^{n}rac{\pi}{6}$$

D.
$$n\pi+(\,-1)^nrac{\pi}{3}$$

Answer: C

15. The number of terms in the expansion of $(1+3x+3x^2+x^3)^6$ is:

A. 8

B. 9

C. 19

D. 24

Answer: C

Watch Video Solution

16. The number of terms in the expansion of $\left(1+5x+10x^2+10x^3+5x^4+x^5
ight)^{20}$ is

A. 100

B. 101

C. 120

D. none of these

Answer: B

Watch Video Solution

17. The number of terms in $(1+x)^{101} \left(1+x^2-x\right)^{100}$ is:

A. 302

B. 301

C. 202

D. 101

Answer: C

18. The number of integral terms in the expanion of
$$\left(5^{1/2}+7^{1/6}\right)^{642}$$
 is

B. 108

C. 103

D. 109

Answer: B

Watch Video Solution

19. The number of non-zero terms in the expansion of $\left(1+3\sqrt{2}x\right)^{9}+\left(1-3\sqrt{2}x\right)^{9}$ is

- A. 9
- B. 0
- C. 5
- D. 10

20. The 5th term from the end in the expansion of
$$\left(\frac{x^3}{2} - \frac{2}{x}\right)^{12}$$
 is

A.
$$\frac{7920}{x^4}$$

$$\frac{7920}{x^4}$$

C.
$$7920x^4$$

D.
$$-7920x^4$$

Watch Video Solution

- **21.** The unit digit of $17^{1983} + 11^{1983} 7^{1983}$ is
 - A. 1
 - B. 2
 - C. 3
 - D. 0

Answer: A

22. If the coefficient of x^7 in the expansion of $\left(ax^2+b^{-1}x^{-1}\right)^{11}$ is equal to the coefficient of x^{-7} in $\left(ax-b^{-1}x^{-2}\right)^{11}$, then ab equals:

A. 1

B. 2

C. 3

D. 4

Answer: A

Watch Video Solution

23. The coefficient of x^{17} in

(x-1)(x-2)(x-3)...(x-18) is:

- A. 342
- B. $\frac{171}{2}$
- $\mathsf{C.}-171$
- D. 684

- **24.** The greatest integer which divides the number $101^{100}-1$ is:
 - A. 100
 - B. 1000
 - C. 10000
 - D. 100000

Watch Video Solution

- **25.** The coefficient of x^k in the expansion of $1+(1+x)+(1+x)^2+\ldots+(1+x)^n$ is
 - A. nC_k
 - B. $^{n+1}C_k$
 - C. $^{n+1}C_{k+1}$
 - D. none of these

Answer: C

26. The coefficient of x^{99} in

$$(x+1)(x+3)(x+5)...(x+199)$$
 is

D. none of these

Answer: B

Watch Video Solution

27. If in the expansion of $\left(1+x\right)^n, a,b,c$ are three consecutive coefficients, then n equals

A.
$$\frac{ac + ab + bc}{b^2 + ac}$$

$$\text{B. } \frac{2ac+ab+bc}{b^2-ac}$$

C.
$$\dfrac{ab+ac}{b^2-ac}$$

D. none of these

Answer: B

Watch Video Solution

28. If $(1+\alpha x)^n=1+8x+24x^2+\ldots$, then the value of

- α and n is
 - A. 2,4
 - B. 2,3
 - C.3,6
 - D. 1,2

Answer: B

Watch Video Solution

- **29.** Sum of all coefficients in the binomial expansion of $\left(x^2+x-3
 ight)^{319}$ is
 - **A.** 1
 - B. 2
 - C. -1
 - D. 0

Answer: C

30. If the coefficient of x^7 and x^8 in $\left(2+\frac{x}{3}\right)^n$ are equal, then n is

A. 56

B. 55

C. 45

D. 15

Answer: B

Watch Video Solution

31. Sum of coefficient of even powers of x in the expansion of $(1+x+x^2+x^3)^5$ is:

A. 256

- B. 128
- C. 512
- D. 64

Watch Video Solution

32. In a binomial expansion $(1+x)^n,\,n$ is a positive integer, the coefficients of 5th, 6th and 7th terms are in A.P., then the value of n is

- **A.** 7
- B. 5
- C. 3
- D. 10

Answer: D

Watch Video Solution

33. In the expansion of $(1+x)^{50}$, the sum of the coefficients of odd powers of x is :

- A. 0
- B. 2^{49}
- $c. 2^{50}$
- D. 2^{51}

Answer: B

34. If in the expansion of $(a+x)^n, P \, \text{ and } \, Q$ represent the sum of odd and even terms respectively, then P^2-Q^2 equals

A.
$$\left(a^2-x^2\right)^n$$

B.
$$\left(a^2-x^2\right)^{2n}$$

C.
$$\left(a^2+x^2\right)^{2n}$$

D.
$$(a^2 + x^2)^n$$

Answer: A

Watch Video Solution

35. The coefficient of x^4 in the expansion of $\left(1+x+x^2+x^3\right)^n$ is:

A. nC_4

 $\mathtt{B.}^{\,n}C_4 + {}^nC_2$

C. ${}^{n}C_{4} + {}^{n}C_{2} + {}^{n}C_{4} \cdot {}^{n}C_{2}$

D. ${}^nC_4 + {}^nC_2 + {}^nC_1 \cdot {}^nC_2$

Answer: D

Watch Video Solution

36. Which one is correct?

A.
$$(1999)^{2000} > (2000)^{1999}$$

 $\mathsf{B.} \left(1998\right)^{1999} < \left(1999\right)^{1998}$

 $\mathsf{C.} \left(100\right)^{41} < \left(101\right)^{40}$

D. $26^{25} < 25^{26}$

Answer: A

$$^{15}C_0^2 - ^{15}C_1^2 + ^{15}C_2^2 - \ldots \, - ^{15}C_{15}^2$$
 is:

$$B. - 15$$

D. 51

Answer: C

Watch Video Solution

38. The value of

$$C_0 + 3C_1 + 5C_2 + 7C_3 + \ldots + (2n+1)C_n$$
 is:

A.
$$2^n$$

 $\mathsf{B.}\, 2^n + n.2^{n-1}$

C. $(n+1).2^n$

D. none of these

Answer: C

Watch Video Solution

39. The value of

$$C_1 + 4C_2 + 7C_3 + \ldots + (3n-2)C_n$$
 is

A.
$$(3n-4)^{2n+1}$$

B.
$$(3n-4)2^{n-1}+2$$

$$\mathsf{C.}\,(3n-4)2^n$$

D.
$$(3n-4)2^{n-1}+1$$

Answer: B

Watch Video Solution

- **40.** $C_0 C_1 + C_2 C_3 + \ldots + (-1)^n C_n$ is equal to
 - A. 2^n
 - B. $2^{n} 1$
 - C.0
 - D. 2^{n-1}

Answer: C

Watch Video Solution

41. $\dfrac{1}{1!(n-1)!}+\dfrac{1}{3!(n-3)!}+\dfrac{1}{5!(n-5)!}+\ldots$ Equals:

A.
$$\frac{2^n}{n!}$$

$$\mathsf{B.}\;\frac{2^{n-1}}{n!}$$

D. none of these

Answer: B

Watch Video Solution

42. The middle term in the expansion of $(1+x)^{2n}$ is:

A.
$$\frac{(2n)!}{n!}x^n$$

B.
$$\dfrac{(2n)\,!}{n\,!(n-1)\,!}x^{n+1}$$

$$n!(n-1)!$$
 C. $\dfrac{(2n)!}{{(n!)}^2}x^n$

D.
$$\dfrac{(2n)\,!}{(n+1)\,!(n-1)\,!}x^n$$

Watch Video Solution

43. The middle term in the expansion of $\left(x+\frac{1}{2x}\right)^{2n}$, is

A.
$$\frac{1.3.5.\ldots(2n-3)}{n!}$$

B.
$$\frac{1.3.5.\ldots(2n-1)}{n!}$$

C.
$$\frac{1.3.5...(2n+1)}{n!}$$

D. none of these

Answer: B

- A. 4th
- B. 3rd
- C. 10th
- D. none of these

- **45.** Coefficient of the term independent of x in $\left(2x-\frac{3}{x}\right)^6$ is
 - A. 4320
 - B. 216
 - $\mathsf{C.}-216$
 - $\mathsf{D.}-4320$

Answer: D

Watch Video Solution

46. The fourth term in binomial expansion of $\left(x^2 - \frac{1}{x^3}\right)^n$ in independent of x, when n is equal to:

A. 2

B. 3

C. 4

D. none of these

Answer: D

47. In the expansion of $\left(x^2 + \frac{2}{x}\right)^n$ for positive integer n has a term independent of x, then n is

- A. 23
- B. 18
- C. 16
- D. 0

Answer: B

Watch Video Solution

48. The term independent of x in the expansion of $\left(2x+\frac{1}{3x}\right)^6$ is:

$$\frac{160}{9}$$

B.
$$\frac{80}{9}$$

$$\mathsf{C.}\ \frac{160}{27}$$

$$\mathsf{D.}\;\frac{80}{3}$$

Watch Video Solution

49. If the expansion of $\left(x^2+\frac{2}{x}\right)^n$ for positive integer n has

13th term independennt of x, then the sum of divisors of n is:

- A. 36
- B. 38
- C. 39
- D. 32

Watch Video Solution

50. If $x=\frac{1}{3}$, then the greatest term in the expansion of $(1+4x)^8$ is the

- A. 4th term
- B. 5th term
- C. 6th term
- D. 3rd term

Answer: C

51. The largest term in the expansion of $(3+2x)^{50}$ where $x=\frac{1}{5}$ is:

A. 5th

B. 51st

C. 7th

D. 6th

Answer: C

Watch Video Solution

52. The greatest coefficient in the expansion of $\left(1+x\right)^{2n+2}$ is:

A.
$$\dfrac{\left(2n\right)!}{\left(n!\right)^2}$$
B. $\dfrac{\left(2n+2\right)!}{\left[\left(n+1\right)!\right]^2}$

C.
$$\frac{(2n+2)!}{n!(n+1)!}$$
D. $\frac{(2n)!}{n!(n+1)!}$

Answer: B

53. Let $a_n=rac{1000^n}{n!}$ for $n\in N$. Then a_n is greatest when:

C. n=999

Answer: C

54. If x is nearly equal to 1, then: $\frac{mx^m - nx^n}{m-n}$ equals:

A. x^{m+n}

B. x^{m-n}

 $\mathsf{C}.\,x^m$

D. x^n

Answer: A

Watch Video Solution

55. Remainder when 7^{103} is divided by 125 is:

A. 17

B. 125

C. 118

D. 19

Answer: C

Watch Video Solution

56. In the expansion of the following expression:

 $1+(1+x)+(1+x)^2+\ldots+(1+x)^n$, the coefficient of $x^k (0 \le k \le n)$ is:

A. $^{n+1}C_{k+1}$

B. nC_k

C. ${}^nC_{n-k-1}$

D. none of these

Answer: A

Watch Video Solution

57. Let n be an odd natural number of greater than 1. then the number of zeros at the end of the sum $999^n + 1$ is:

A. 3

B. 4

C. 2

D. none of these

Answer: A

58. $101^{100} - 1$ is divisible by

A. 100

B. 101

C. 99

D. 1001

Answer: A

Watch Video Solution

59. If the seventh terms from the beginning and the end in the expansion of $\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{2}}\right)^n$ are equal, then n equals:

A. 9

B. 12

C. 15

D. 18

Answer: B

Watch Video Solution

- **60.** If {x} denotes the fractional part of x, then $\left\{ rac{3^{2n}}{8}
 ight\}, n \in N$ is:
 - A. $\frac{3}{8}$
 - B. $\frac{7}{8}$
 - c. $\frac{1}{8}$

D. none of these

Answer: C

61. The number of terms whose values depend on x in the expansion of $\left(x^2-2+\frac{1}{x^2}\right)^n$ is:

- A. 2n+1
- B. 2n
- C. n
- D. none of these

Answer: B

- **62.** The coefficient of x^3 in the expansion of $\left(1-x+x^2\right)^5$ is
 - A. 10

$$B. - 20$$

$$C. -50$$

$$D.-30$$

Answer: D

Watch Video Solution

63. The coefficient of x^6 in:

$$\left[(1+x)^6 + (1+x)^7 + \ldots + (1+x)^{15}
ight]$$
 is:

A.
$$^{16}C_{9}$$

B.
$$^{16}C_5 - {^6}C_5$$

C.
$$^{16}C_6-1$$

D. none of these

Watch Video Solution

64. If the rth term is the middle term in the expansion of

$$\left(x^2-rac{1}{2x}
ight)^{20}$$
 , then the (r+3)th term is:

A.
$$^{20}C_{14}\cdot rac{1}{2^{14}}\cdot x$$

B.
$$^{20}C_{12}\cdot rac{1}{2^{12}}\cdot x^2$$

C.
$$-rac{1}{2^{13}}\cdot{}^{20}C_7\cdot x$$

D. none of these

Answer: C

65. The sum of last ten coefficients in the expansion of $\left(1+x\right)^{19}$ when expanded in ascending powers of x is

A. 2^{18}

 $B.2^{19}$

 $\mathsf{C.}\ 2^{18}-{}^{19}C_{10}$

D. none of these

Answer: B

66.

Watch Video Solution

The

sum

$$rac{1}{2}{}^{10}C_0 - {}^{10}C_1 + 2$$
. ${}^{10}C_2 - 2^2 \cdot {}^{10}C_3 + \ldots + 2^9 \cdot {}^{10}C_{10}$ equals:

A.
$$\frac{1}{2}$$

В. О

c.
$$\frac{1}{2} \cdot 3^{10}$$

D. none of these

Answer: A

Watch Video Solution

67. For
$$2 \leq r \leq n, \binom{n}{r} + 2 \binom{n}{r-1} \binom{n}{r-2} =$$

A.
$$\binom{n+1}{r-1}$$

$$\mathsf{B.}\,2\binom{n+1}{r+1}$$

$$\mathsf{C.}\,2{n+2\choose r}$$

D.
$$\binom{n+2}{r}$$

Answer: D

68. The coefficient of
$$x^5$$
 in $\left(1+2x+3x^2+\dots
ight)^{-3/2}$ is:

A. 21

B. 25

C. 26

D. none of these

Answer: D

69. If |x|<1, then coefficient of x^n in expansion of: $\left(1+x+x^2+x^3+\dots\right)^2$ is

$$B.n-1$$

$$\mathsf{C.}\,n+2$$

$$\mathsf{D}.\,n+1$$

Answer: D

Watch Video Solution

70. The sum
$$\sum_{i=0}^m \binom{10}{i} \binom{20}{m-i}$$
 (where $\left(\frac{p}{q}\right)=0$, if $p< q$) is maximum, when m is:

D. 20

Watch Video Solution

71. The number of integral terms in the expansion of $\left(\sqrt{3}+\sqrt[8]{5}\right)^{256}$ is

- A. 33
- B. 34
- C. 35
- D. 32

Answer: A

72. If x is positive, the first negative term in the expansion of $(1+x)^{27/5}$ is:

A. 5th term

B. 8th term

C. 6th term

D. 7th term

Answer: B

Watch Video Solution

73. Coefficient of t^{24} in $\left(1+t^2\right)^{12} \left(1+t^{12}\right) \left(1+t^{24}\right)$ is:

A. $^{12}C_5+3$

B. $^{12}C_6+1$

c.
$${}^{12}C_6$$

D.
$$^{12}C_6 + 2$$

Answer: D

Watch Video Solution

74. The coefficient of the middle term in the binomial expansion in powers of x of $(1+\alpha x)^4$ and of $(1-\alpha x)^6$ is the same of α equals:

A.
$$-\frac{5}{3}$$

B.
$$\frac{10}{3}$$

$$\mathsf{C.} - \frac{3}{10}$$

D.
$$\frac{3}{5}$$

Watch Video Solution

75. The coefficient of x^n in the expansion of $(1+x)(1-x)^n$ is

A.
$$n - 1$$

B.
$$(-1)^n(1+n)$$

C.
$$(-1)^{n-1}(n-1)^2$$

D.
$$(-1)^{n-1}n$$
.

Answer: B

1. If 7 divides $32^{32^{32}}$, the remainder is:

A. 1

B. 0

C. 4

D. 6

Answer: C

Watch Video Solution

2. The number of terms free from radical sign in the expansion of $\left(1+3^{1/3}+7^{1/7}\right)^{10}$ is:

A. 1

B. 6

C. 11

D. none of these

Answer: B

Watch Video Solution

- **3.** The number of irrational terms in the expansion of $\left(\sqrt[8]{5} + \sqrt[6]{2}\right)^{100}$ is:
 - A. 97
 - B. 98
 - C. 96
 - D. 99

Answer: A

....

4. The number of rational terms in the expansion of $\left(1+\sqrt{2}+\sqrt[3]{3}\right)^6$ is:

Answer: B

Watch Video Solution

5. If x+y=1, then $\displaystyle\sum_{r=0}^n r^{2n} C_r x^r y^{n-r}$ equals:

- A. nxy
- B. nx(n+ny)
- C. nx(nx+y)
- D. none of these

- **6.** If n is a positive integer, which of the following two will always be integers:
- (I) $\left(\sqrt{2}+1\right)^{2n}+\left(\sqrt{2}-1\right)^{2n}$
- (II) $\left(\sqrt{2}+1\right)^{2n}-\left(\sqrt{2}-1\right)^{2n}$
- (III) $\left(\sqrt{2}+1
 ight)^{2n+1}+\left(\sqrt{2}-1
 ight)^{2n+1}$

(IV)
$$\left(\sqrt{2}+1
ight)^{2n+1}-\left(\sqrt{2}-1
ight)^{2n+1}$$

- A. Only I and II
 - B. Only I and III
 - C. Only I and IV
- D. Only II and III

Watch Video Solution

7. The value of x for which the sixth term in the expansion of

$$\left[2^{\log_2\left(\sqrt{9^{x-1}+7}
ight)}+rac{1}{2^{1/5\log_2\left(3^{x-1}+1
ight)}}$$
 is 84, is

- A. 4
- B. 3
- C. 2
- D. 5

Watch Video Solution

- **8.** If the third term in $\left(x+x^{\log_{10}x}
 ight)^5$, is 10^6 , then x may be:
 - A. 1
 - B. 10
 - ${\rm C.}\,10^{-7/2}$
 - $D. 10^2$

Answer: B

9. If the 6th term in the expansion of $\left(\frac{1}{x^{8/3}} + x^2 \log_{10} x\right)^8$ is 5600, then x equals:

A. 1

 $B.\log_e 10$

C. 10

D. x does not exist

Answer: C

Watch Video Solution

10. If three consecutive coefficients in the expansion of $\left(1+x\right)^n$ are in the ratio 1:3:5, then the value of n is:

A. 6

- B. 7
- C. 8
- D. 9

Answer: B

Watch Video Solution

11. For integer n>1, the digit at unit's place in the number

$$\sum_{r=0}^{100} r! + 2^{2^n}$$
 is:

- A. 0
- B. 1
- C. 2

D. none of these

Answer: A

Watch Video Solution

- **12.** The digit at unit's place in $2^{9^{100}}$ is:
 - A. 2
 - B. 4
 - C. 6
 - D. 8

Answer: A

13. If in the expansion of $(1+x)^m(1-x)^n$ the coefficients of x and x^2 are 3 and -6 respective then m is

A. 6

B. 9

C. 12

D. 24

Answer: C

Watch Video Solution

14. The coefficient of x^{53} in the expansion of:

$$\sum_{m=0}^{100} {}^{100}C_m (x-3)^{100-m} 2^m$$
 is:

A. $^{100}C_{47}$

B.
$$^{100}C_{53}$$

$$\mathsf{C.}-{}^{100}C_{53}$$

D.
$$-{}^{100}C_{54}$$

Watch Video Solution

15. The coefficient of x^4 in the expansion of :

$$(1+x+x^2+x^3)^n$$
 is:

A.
nC_4

$$\mathsf{B.}^{\,n}C_4+{}^nC_2$$

C.
$${}^nC_4 + {}^nC_2 + {}^nC_4 \cdot {}^nC_2$$

D.
$${}^nC_4 + {}^nC_2 + {}^nC_1 \cdot {}^nC_2$$

Answer: D

Watch Video Solution

16. In the expansion of $\left(1+x+x^3+x^4\right)^4$, the coefficient of x^4 is:

- A. $^{40}C_4$
- B. $^{10}C_4$
- C. 210
- D. 310

Answer: D

17. If the sum of the coefficient in the expansion of $\left(\alpha^2x^2-2\alpha x+1\right)^{51}$ vanishes, then lpha equals:

A. 2

B. -1

C. 1

D.-2

Answer: C

Watch Video Solution

18. If $\left(3\sqrt{3}+5\right)^{2n+1}=p+f$, where p is an integer and f is a proper fraction, then f(p+f) equals:

A. 5^{n+1}

B. 3^{2n+1}

C. 2^{2n+1}

D. 3^{2n+1}

Answer: C

Watch Video Solution

19. The larger of $99^{50} + 100^{50}$ and 101^{50} is:

A. $99^{50} + 100^{50}$

B. both are equal

 $\mathsf{C.}\ 101^{50}$

D. none of these

Answer: C

20. Find the value of x in the expansion of $\left[x+x^{\log_{10}x}\right]^5$, if the third term in the expansion is 10,00,000:

A. 10

B. 11

C. 12

D. none of these

Answer: A

21. Value of
$$2C_0+rac{2^2}{2}C_1+rac{2^3}{3}C_2+\ldots+rac{2^{11}}{11}C_{10}$$
 is:

22. Sum to
$$(n+1)$$
 terms of the $\frac{C_0}{2}-\frac{C_1}{2}+\frac{C_2}{4}-\frac{C_3}{5}+\ldots$ is:

A. $\frac{3^{11}-1}{11}$

B. $\frac{2^{11}-1}{11}$

C. $\frac{11^3 - 1}{11}$

D. $\frac{11^2 - 1}{11}$

Answer: A

series:

A.
$$\frac{1}{n+1}$$

B.
$$\dfrac{1}{n+2}$$
C. $\dfrac{1}{n(n+1)}$

Answer: D

Watch Video Solution

23. If n is an even integer, then:

$$C_0^2-C_1^2+C_2^2-C_3^2+\ldots+(-1)^nC_n^2$$
 is:

A. $^{2n}C_n$

$$\mathsf{B.} \, (\, -1)^{n2n} C_n$$

C.
$$(-1)^{n2n}C_{n-1}$$

D. none of these

Answer: D

View Text Solution

24. If $(1+x)^n=C_0+C_1x+C_2x^2+\ldots+C_nx^n$, then the value of :

$$C_1 + 2C_2 + 3C_3 + \ldots + nC_n$$
 is:

A. $n.2^{n-1}$

B.
$$(n+2)2^n$$

C.
$$(n+1)2^{n-1}$$

D.
$$(n+2)$$
. $^{2n-1}$

Answer: A

Watch Video Solution

25. If m,n,r are positive integers such that r < m, n, then:

$${}^{m}C_{r} + {}^{m}C_{r-1}{}^{n}C_{1} + {}^{m}C_{r-2}{}^{n}C_{2} + \ldots + {}^{m}C_{1}{}^{n}C_{r-1} + {}^{n}C_{r}$$

equals:

A.
$$(^nC_r)^2$$

B. $^{m+n}C_n$

C.
$$^{m+n}C_r + {}^{m_{C_-}(r)} + {}^{n}C_r$$

D. none of these

Answer: B

26. If in the expansion of
$$\left(2a-\frac{a^2}{4}\right)^9$$
, the sum of middle terms is S, then the following is true:

A.
$$S=igg(rac{63}{32}igg)a^{14}(a+8)$$

B.
$$s = \left(\frac{63}{32}\right) a^{14} (a-8)$$

C.
$$S = \left(\frac{63}{32}\right) a^{13} (a-8)$$

D.
$$S=\left(rac{63}{32}
ight)\!a^{13}(a-8)$$

Watch Video Solution

27. The term independent of x in the expansion of $(1+x)^n \left(1-rac{1}{x}
ight)^n$ is:

A.
$$C_0^2 + 2C_1^2 + \ldots + (n+1)C_n^2$$

B.
$$(C_0 + C_1 + \ldots + C_n)^2$$

C.
$$C_0^2 + C_1^2 + \ldots + C_n^2$$

D. none of these

Answer: D

28. The greatest value of the term independent of x in the expansion of $\left(x\sin\alpha+x^{-1}\cos\alpha\right)^{10},\, \alpha\in R$, is:

A.
$$2^5$$

B.
$$\frac{10!}{(5!)^2}$$

c.
$$\frac{1}{2^5} \cdot \frac{10!}{(5!)^2}$$

D. none of these

Answer: C

Watch Video Solution

29. If the largest interval to which x belongs so that the greatest term in $(1+x)^{2n}$ has the greatest coefficient is $\left(\frac{10}{11},\frac{11}{10}\right)$, then n equals:

B. 10

C. 11

D. none of these

Answer: B

Watch Video Solution

denotes the greater integer function, then Rf is equal to:

30. Let $R = \left(5\sqrt{5} + 11\right)^{2n+1}$ and f = R - [R], where []

A.
$$4^{2n+1}$$

B. 4^{2n}

C. 4^{2n-1}

D. none of these

Answer: A

Watch Video Solution

31. If the coefficients of the middle term of $(1+x)^{2n+2}$ is p and the coefficient of middle terms in the expansion of $(1+x)^{2n+1}$ are q and r, then

A.
$$p+q=r$$

C.
$$p=q+r$$

D.
$$p+q+r=0$$

Answer: C

32.
$$\sum_{r=1}^{n} \left(\sum_{p=0}^{r-1} {^{n}C_{r}}^{r}C_{p}2^{p} \right)$$
 is equal to:

A.
$$4^n-3^n+1$$

B.
$$4^n - 3^n - 1$$

$$\mathsf{C.}\,4^n-3^n+2$$

D.
$$4^n-3^n$$

Answer: D

33. The term independent of x in the expression of $(1+x+2x^3)\left(\frac{3}{2}x^2-\frac{1}{3x}\right)^9$ is:

A.
$$\frac{7}{18}$$

B.
$$\frac{17}{54}$$

D.
$$\frac{7}{18} - \frac{2}{27}$$

C. $\frac{7}{18} + \frac{2}{27}$

Answer: B

Watch Video Solution

34. If $\dfrac{1}{1!11!}+\dfrac{1}{3!9!}+\dfrac{1}{5!7!}=\dfrac{2^p}{q!}$ and f(x+y)=f(x). f(y)

A.
$$f^{\prime}(p)=q$$

B. f'(q) = p

C.
$$f'(p)
eq f'(q)$$

for all x and y, f(1) = 1, f'(0) = 10, then:

Answer: B

If

A. 99

B. 100

C. 101

Answer: B

D. none of these

Watch Video Solution

then n equals:

36. Find the coefficient of x^6y^3 in the expansion of $\left(x+2y\right)^9$

 $\left(1+x
ight)^n = \sum_{r=0}^n a_r x^r \; ext{and} \; b_r = 1 + rac{a_r}{a_{r-1}}, \; \; ext{and} \; \prod_{r=1}^n b_r = rac{\left(101
ight)^{100}}{100!}$

- A. 4:2:1
- B. 2:4:1
- C. 1: 2: 4
- D.2:3:4

Answer: C

- **37.** If C_r stands for nC_r and $\sum_{r=1}^n \frac{r\cdot C_r}{C_{r-1}}=210$, then n equals:
 - A. 19
 - B. 20
 - C. 21
 - D. none of these

Answer: B

Watch Video Solution

38. For a positive integer n,

let
$$a(n) = 1 + rac{1}{2} + rac{1}{3} + rac{1}{4} + \ldots + rac{1}{2^n - 1}$$
 Then:

A.
$$a(100) \leq 100$$

B.
$$a(100) > 100$$

D.
$$a(200) \ge 100$$
.

Answer: D

39. In the binomial expansion of $(a-b)^n, n \geq 5$, the sum of the 5th and 6th terms is zero. Then $\frac{a}{b}$ equals:

A.
$$\frac{n-5}{6}$$

B.
$$\frac{n-4}{5}$$

$$\mathsf{C.}\,\frac{5}{n-4}$$

$$\mathsf{D.}\;\frac{6}{n-5}.$$

Answer: B

Watch Video Solution

40. The value of

$$\begin{pmatrix} 30 \\ 0 \end{pmatrix} \begin{pmatrix} 30 \\ 10 \end{pmatrix} + \begin{pmatrix} 30 \\ 1 \end{pmatrix} \begin{pmatrix} 30 \\ 11 \end{pmatrix} + \begin{pmatrix} 30 \\ 2 \end{pmatrix} \begin{pmatrix} 30 \\ 12 \end{pmatrix} + \dots \begin{pmatrix} 30 \\ 20 \end{pmatrix} \begin{pmatrix} 30 \\ 30 \end{pmatrix}$$

is:

A.
$$\binom{60}{20}$$
B. $\binom{30}{10}$

C.
$$\binom{30}{20}$$

Answer: B

41.

, then (m,n) is

A. (20,45)

if

$$\operatorname{and}\ a_1=a_2=$$

$$(1-y)^m(1+y)^n=1+a_1y+a_2y^2+\ldots\ldots, \ \ {
m and} \ \ a_1=a_2=10$$

$$a_1 \quad a_2$$

Answer: D

Watch Video Solution

42. In the binomial expansion of $(a-b)^n, n \geq 5$, the sum of 5th and 6th terms is zero then $\frac{a}{b}$ equals:

A.
$$\frac{6}{n-5}$$

$$\operatorname{B.}\frac{n-5}{6}$$

$$\mathsf{C.}\ \frac{n-4}{5}$$

D.
$$\frac{5}{n-4}$$

Answer: C

43. If a_1, a_2, a_3, a_4 are coefficients of any four consecutive terms in the expansion of $(1+x)^n$, then $\frac{a_1}{a_1+a_2}+\frac{a_3}{a_3+a_4}$ equals:

A.
$$\frac{a_2}{a_2 + a_3}$$
B. $\frac{1}{2} \frac{a_2}{a_2 + a_3}$

C.
$$\dfrac{2a_2}{a_2+a_3}$$

D.
$$\frac{2a_3}{a_2 + a_3}$$

Answer: C

Watch Video Solution

44. If n is a positive integer and $C_k = {}^n C_k$, then the value of

$$\sum_{k=1}^n k^3 \left(rac{C_k}{C_{k-1}}
ight)^2$$
 equals:

$$A. \frac{n(n+1)(n+2)}{12}$$

B.
$$\dfrac{n{(n+1)}^2}{12}$$
C. $\dfrac{n{(n+2)}^2{(n+1)}}{12}$

D. none of these

Answer: D

If
$$(1+x)^n = 1 + C_1 x + C_2 x^2 + \ldots + C_n x^n$$
, then:

$$C_1^2 - 2C_2^2 + 3C_3^2 - \ldots \, - 2nC_{2n}^2$$
 is:

A.
$$n^2$$

B.
$$(-1)^{n-1}n$$

C.
$$(-1)^{n-1}n$$
. $^{2n-1}C_n$

$$D.-n^2$$

Answer: C

View Text Solution

46. Let n be an odd integer. If $\sin n\theta = \sum_{r=0}^n b_r \sin^r \theta$ for every value of θ , then

A.
$$b_0 = 1, b_1 = 3$$

B.
$$b_0 = 0, b_1 = n$$

C.
$$b_0 = -1, b_1 = n$$

D.
$$b_0=0, b_1=n^2=n^2-3n+3$$

Answer: B

47. The coefficient of x^{50} in the expression:

$$\left(1+x
ight)^{1000}+2x(1+x)^{999}+3x^2(1+x)^{998}+\ldots \ +1001x^{1000}$$

is:

A. $^{1000}C_{50}$

B. $^{1001}C_{50}$

C. $^{1002}C_{50}$

D. $^{1000}C_{51}$

Answer: C

View Text Solution

48. The last term in the binomial expression of $\left(\sqrt[3]{2} - \frac{1}{\sqrt{2}}\right)^n$ is

 $\left(\frac{1}{3}\cdot\frac{1}{\sqrt[3]{9}}\right)^{\log_3 8}$. Then the 5th term from the beginning is

A.
$$^{10}C_6$$

B.
$$2\cdot{}^{10}C_4$$

C.
$$rac{1}{2}{}^{10}C_4$$

D. none of these

Answer: A

Watch Video Solution

49. Let $n\in N$. If $(1+x)^n=a_0+a_1x+a_xx^2+\ldots+a_n$ x^n and $a_{n-3},a_{n-2},a_{n-2},a_{n-1}$ are in A.P. then:

A. a_1, a_2, a_3 are in A.P.

B. a_1, a_2, a_3 are in H.P.

C. n=6

D. n=14

Answer: A

Watch Video Solution

50. If the coefficient of rth, (r+1)th and (r+2)th terms in the binomial expansion of $(1+y)^m$ are in A.P. then m and r satisfy the equation:

A.
$$m^2 - m(4r+1) + 4r^2 + 2 = 0$$

B.
$$m^2 - m(4r - 1) + 4r^2 - 2 = 0$$

C.
$$m^2 - m(4r - 1) + 4r^2 + 2 = 0$$

D.
$$m^2 - m(4r+1) + 4r^2 - 2 = 0$$

Answer: D

51. If the coefficient of x^7 in $\left[ax^2+\left(\frac{1}{bx}\right)\right]^{11}$ equals the coefficient of x^{-7} in $\left[ax-\left(\frac{1}{bx^2}\right)\right]^{11}$, then a and b satisfy the relation:

D.
$$\frac{a}{b} = 1$$

Answer: C

52. If x is so small that x^3 and higher powers of x may be neglected, then $\dfrac{(1+x)^{3/2}-\left(1+\frac{1}{2}x\right)^3}{(1-x)^{1/2}}$ may be approximated

as:

A.
$$3x+rac{3}{8}x^2$$

B.
$$1 - \frac{3}{8}x^2$$

$$\mathsf{C.}\,\frac{x}{2}-\frac{3}{8}x^2$$

D.
$$-\frac{3}{8}x^2$$

Answer: D

Watch Video Solution

53. If the expansion in powers of x of the function

$$\dfrac{1}{(1-ax)(1-bx)}$$
 is $a_0+a_1x+a_2x^2+a_3x^3+\ldots$ then a_n

is:

A.
$$\frac{b^n - a^n}{b - a}$$
$$a^n - b^n$$

B. $\frac{a^n-b^n}{b-a}$

D.
$$\dfrac{b^{n+1}-a^{n+1}}{b-a}$$

C. $\dfrac{a^{n+1}-b^{n+1}}{b-a}$

Watch Video Solution

$$^{20}C_0 - ^{20}C_1 + ^{20}C_2 - ^{20}C_3 + \ldots + ^{20}C_{10}$$
 is:

A.
$$\frac{1}{2}^{20}C_{10}$$

В. О

C.
$$^{20}C_{10}$$

D.
$$-{}^{20}C_{10}$$

Answer: A

Water viaco solution

55. The remainder left out when $8^{2n}-\left(62\right)^{2n+1}$ is divided by 9 is

A. 0

B. 2

C. 7

D. 8

Answer: B

Watch Video Solution

Latest Question From Aieee Jee Examinations

1. For r=0,1, . . . ,10 let A_r, B_r and C_r denote respectively, the coefficient of x^r in the expansions of :

$$(1+x)^{10}$$
, $(1+x)^{20}$ and $(1+x)^{30}$.

Then $\sum_{r=1}^{10} \left(B_{10}B_r - C_{10}A_r
ight)$ is equal to:

A.
$$B_{10} - C_{10}$$

B.
$$A_{10}ig(B_{10}^2-C_{10}A_{10}ig)$$

C. 0

D.
$$C_{10} - B_{10}$$

Answer: D

Watch Video Solution

2. The coefficient of x^7 in the expansion of $\left(1-x-x^2+x^3\right)^6$ is:

- A. 144
- $\mathsf{B.}-132$
- $\mathsf{C.}-144$
- D. 132

Answer: C

Watch Video Solution

3. If n is a positive integer, then:

$$\left(\sqrt{3}+1
ight)^{2n}-\left(\sqrt{3}-1
ight)^{2n}$$
 is:

- A. an irrational number
- B. an odd positive integer
- C. an even positive integer
- D. a rational number other than positive integers

Answer: A

Watch Video Solution

4. The term independent of x in expansion of

$$\left(rac{x+1}{x^{2/3}-x^{1/3}+1}-rac{x-1}{x-x^{1/2}}
ight)^{10}$$
 is:

- A. 120
- B. 210
- C. 310
- D. 4

Answer: B

5. If the coefficients of x^3 and x^4 in the expansion of $\left(1+ax+bx^2\right)(1-2x)^{18}$ in powers of x are both zero, then (a,b) is equal to:

A.
$$\left(14, \frac{251}{3}\right)$$
B. $\left(14, \frac{272}{3}\right)$
C. $\left(16, \frac{272}{3}\right)$

D. $\left(16, \frac{251}{3}\right)$

Answer: C

6. The sum of coefficients of integeral powers of x in the binomial expansion of $\left(1-2\sqrt{x}\right)^{50}$ is:

B.
$$rac{1}{2}ig(3^{50}ig)$$
C. $rac{1}{2}ig(3^{50}-1ig)$

A. $\frac{1}{2}(3^{50}+1)$

D. $\frac{1}{2}(2^{50}+1)$

Answer: A

Rcq S Recent Competitive Questions Questions From Karnataka Cet Comed

1. If the value of
$$C_0+2C_1+3C_2+\ldots+(n+1)C_n=576$$
, then n is

- B. 5
- C. 6
- D. 9

Answer: A

- **2.** If x^r occurs in the expansion of $\left(x+\frac{1}{x}\right)^n$, then is coefficient is
- A. $\frac{n!}{\left(r!\right)^2}$
 - B. $\frac{n!}{(r+1)!(r-1)!}$
 - $\mathsf{C.}\;\frac{n\,!}{\left(\frac{n+r}{2}\right)!\left(\frac{n-r}{2}\right)!}$
 - D. $\frac{n!}{\left[\left(\frac{r}{2}\right)!\right]^2}$

Answer: C

Watch Video Solution

3. If $C_0, C_1, C_2, \ldots, C_n$ are binomial coefficients of order n, then the value of $\frac{C_1}{2} + \frac{C_2}{4} + \frac{C_3}{6} + \ldots =$

A.
$$\frac{2^n+1}{n+1}$$

B.
$$\frac{2^n - 1}{n + 1}$$

$$\mathsf{C.}\ \frac{2^n+1}{n-1}$$

D.
$$\frac{2^n}{n+1}$$

Answer: B

4. If 215 and 22nd lens in the expansion of $\left(1+x\right)^{44}$ one is equal, then x is equal to

A.
$$\frac{21}{22}$$

$$\mathsf{B.}\;\frac{23}{24}$$

c.
$$\frac{8}{7}$$

D.
$$\frac{7}{8}$$

Answer: D

Watch Video Solution

5. If in the expansion of $(1+px)^n, n\in N$, the coefficial of x and x^2 are 8 and 24, than the values of n and p are:

A. n=3,p=2

Answer: D

Watch Video Solution

6. The middle term of expansion $\left(\frac{10}{x} + \frac{x}{10}\right)^{10}$ is

A.
$${}^{7}C_{5}$$

B.
$8C_5$

C.
$9C_5$

D. $^{10}C_5$

Answer: D

