©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION MATHS (KANNADA

 ENGLISH)
CARTESIAN SYSTEM OF RECTANGULAR CO-ORDINATES AND STRAIGHT LINES

Multiple Choice Questions Level I

1. The inclination of the line $x-y+3=0$ with the positive direction of x-axis is :
A. 45°
B. 135°
C. -45°

- Watch Video Solution

2. The two lines $a x+b y=c$ and $a^{\prime} x+b^{\prime} y=c^{\prime}$ are perpendicular if
A. $a a^{\prime}+b b^{\prime}=0$
B. $a b^{\prime}=b a^{\prime}$
C. $a b+a^{\prime} b^{\prime}=0$
D. $a b^{\prime}+b a^{\prime}=0$

Answer: A

- Watch Video Solution

3. The equation of the line passing through $(1,2)$ and perpendicular to $x+y+7=0$ is :
A. $y-x+1=0$
B. $y-x-1=0$
C. $y-x+2=0$
D. $y-x-2=0$

Answer: B

- Watch Video Solution

4. The distance of the point $P(1,-3)$ from the line $2 y-3 x=4$ is
A. 13
B. $\frac{7}{13} \sqrt{13}$
C. $\sqrt{13}$
D. None of these

Answer: C

- Watch Video Solution

5. The coordinates of the foot of the perpendicular from the point $(2,3)$ on the line $x+y-11=0$ are $(-6,5)$ b. $(5,6)$ c. $(-5,6)$ d. $(6,5)$
A. $(-6,5)$
B. $(5,6)$
C. $(-5,6)$
D. $(6,5)$

Answer: B

D Watch Video Solution

6. The intercept cut off from Y-axis is twice that from X-axis by the line and line passes through $(1,2)$, then its equation is
A. $2 x+y=4$
B. $2 x+y+4=0$
C. $2 x-y=4$
D. $2 x-y+4=0$

Answer: A

- Watch Video Solution

7. A straight line through $P(1,2)$ is such that its intercept between the axes is bisected at P its equation :
A. $x+2 y=5$
B. $x-y+1=0$
C. $x+y-3=0$
D. $2 x+y-4=0$
8. Slope of a line which cuts off intercepts of equal lengths on the axes is
A. -1
B. 0
C. 2
D. $\sqrt{3}$

Answer: A

- Watch Video Solution

9. A point moves such teat its distance from the point $(4,0)$ is half that of its distance from the line $x=16$, find its locus.
A. $3 x^{2}+4 y^{2}=192$
B. $4 x^{2}+3 y^{2}=192$
C. $x^{2}+y^{2}=192$
D. None of these

Answer: A

- Watch Video Solution

10. A line cutting off intercept -3 from the Y - axis and the tangent at angle to the $X-$ axis is $\frac{3}{5}$, its equation is
A. $5 y-3 x+15=0$
B. $3 y-5 x+15=0$
C. $5 y-3 x-15=0$
D. None of these

Answer: A

11. Find the tangent of the angel between the lines whose intercepts n the axes are respectively $a,-b a d n b,-a$.
A. $\frac{a^{2}-b^{2}}{a b}$
B. $\frac{b^{2}-a^{2}}{2}$
C. $\frac{b^{2}-a^{2}}{2 a b}$
D. None of these

Answer: C

- Watch Video Solution

12. If the line $\frac{x}{a}+\frac{y}{b}=1$ passes through the points a $(2,-3)$ and $(4,-5)$, then $(a, b)=$
A. $(1,1)$
B. $(-1,1)$
C. $(1,-1)$
D. $(-1,-1)$

Answer: D

- Watch Video Solution

13. The distance of the point of intersection of the lines $2 x-3 y+5=0$ and $3 x+4 y=0$ from the line $5 x-2 y=0$ is
A. $\frac{130}{17 \sqrt{29}}$
B. $\frac{13}{17 \sqrt{29}}$
C. $\frac{130}{7}$
D. None of these

Answer: A

- Watch Video Solution

14. Show that the equations of eth straight lines passing through the point $(3,-2)$ and inclined at 60^{0} to the line
$\sqrt{3} x+y=1$ arey $+2=0$ andy $-\sqrt{3} x+2+3 \sqrt{3}=0$.
A. $y+2=0, \sqrt{3} x-y-2-3 \sqrt{3}=0$
B. $x-2=0, \sqrt{3} x-y+2+3 \sqrt{3}=0$
C. $\sqrt{3} x-y-2-3 \sqrt{3}=0$
D. None of these

Answer: A

- Watch Video Solution

15. The distance between the lines $y=m x+c_{1}$ and $y=m x+c_{2}$ is
A. $\frac{c_{1}-c_{2}}{\sqrt{m^{2}+1}}$
B. $\frac{\left|c_{1}-c_{2}\right|}{\sqrt{1+m^{2}}}$
C. $\frac{c_{2}-c_{1}}{\sqrt{1+m^{2}}}$
D. 0

Answer: B

- Watch Video Solution

16. If the co-ordinates of the middle point of the portion of the line intercepted between the co-ordinate axes is $(3,2)$, then the equation of the line will be:
A. $2 x+3 y=12$
B. $3 x+2 y=12$
C. $4 x-3 y=6$
D. $5 x-2 y=10$

Answer: A

- Watch Video Solution

17. Equation of the line passing through (1,2) and parallel to the line $y=3 x-1$ is :
A. $y+2=x+1$
B. $y+2=3(x+1)$
C. $y-2=3(x-1)$
D. $y-2=x-1$

Answer: C

- Watch Video Solution

18. Equation of diagonals of the square formed by the lines:
$x=0, y=0, x=1$ and $y=1$ are:
A. $y=x, y+x=1$
B. $y=x, x+y=2$
C. $2 y=x, y+x=1 / 3$
D. $y=2 x, y+2 x=1$

Answer: A

- Watch Video Solution

19. For specifying a straight line, how many geometrical parameters should be known?
A. 1
B. 2
C. 4
D. 3

Answer: B

20. The co-ordinates of the foot of perpendicular from the point $(2,3)$ on the line $y=3 x+4$ are given by:
A. $\left(\frac{37}{10}, \frac{-1}{10}\right)$
B. $\left(\frac{-1}{10}, \frac{37}{10}\right)$
C. $\left(\frac{10}{37},-10\right)$
D. $\left(\frac{2}{3}, \frac{-1}{3}\right)$

Answer: B

- Watch Video Solution

21. The ratio in which the line $3 x+4 y+2=0$ divides the distance between the lines $3 x+4 y+5=0$ and $3 x+4 y-5=0$ is:
A. 1: 2
B. 3:7
C. 2: 3
D. 2:5

Answer: B

- Watch Video Solution

22. One vertex of the equilateral triangle with centroid at the origin and one side as $x+y-2=0$ is :
A. $(-1,-1)$
B. $(2,2)$
C. $(-2,-2)$
D. $(2,-2)$

Answer: B

- Watch Video Solution

23.

$x+2 y-3=0,3 x+4 y-7=0,2 x+3 y-4=0$ and $4 x+5 y-6=0$
, then:
A. They are all concurrent
B. They are the sides of a quadrilateral
C. They are all parallel
D. None of these

Answer: D

- Watch Video Solution

24. The point $(4,1)$ undergoes the following three transformations successively:
(i) reflection about the line $y=x$ (ii) translation through a distance of 2 units along the positive direction of x-axis (ii) rotation through an angle
of $\frac{\pi}{4}$ about the origin in the counter-clockwise direction. The final position of the point is given by:
A. $\left(\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
B. $(-\sqrt{2}, 7 \sqrt{2})$
C. $\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
D. $(\sqrt{2}, 7 \sqrt{2})$

Answer: C

- Watch Video Solution

25. The point $(4,1)$ undergoes the following transformations:
(i) reflection about the line $y=x$ (ii) translation through a distance of 2 units along the positive x-axis. Then the final co-ordinates of the point are
A. $(4,3)$
B. $(3,4)$
C. $(1,4)$
D. $(7 / 2,7 / 2)$

Answer: B

- Watch Video Solution

26. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A. P., then st. line $a x+b y+c=0$ will always pass through a fixed point whose co-ordinates are:
A. $(1,-2)$
B. $(-1,2)$
C. $(1,2)$
D. $(-1,-2)$

Answer: A

27. The vertices of a triangle are $(0,0),(3,0)$ and $(0,4)$. Its orthocentre is at:
A. $(0,0)$
B. $\left(1, \frac{4}{3}\right)$
C. $\left(\frac{3}{2}, 2\right)$
D. None of these

Answer: A

- Watch Video Solution

28. One of the equations of the lines passing through the point $(3,-2)$ and inclined at 60° to the line $\sqrt{3} x+y=1$ is :
A. $y+2=0$
B. $x+2=0$
C. $x+y=2$
D. $x-y=\sqrt{3}$

Answer: A

- Watch Video Solution

29. If three lines $3 x-y=2,5 x+a y=3$ and $2 x+y=3$ are concurrent, then a is equal to :
A. 2
B. 3
C. -1
D. -2

Answer: D
30. The equations $a x+b y+c=0$ and $d x+e y+f=0$ represent the same st. line if and only if:
A. $a=d, b=e, c=f$
B. $\frac{a}{d}=\frac{b}{e}=\frac{c}{f}$
c. $\frac{a}{d}=\frac{b}{e}$
D. $c=f$

Answer: B

- Watch Video Solution

31. If p and p^{\prime} be perpendiculars from the origin upon the straight lines $x \sec \theta+y \operatorname{cosec} \theta=a$ and $x \cos \theta-y \sin \theta=a \cos 2 \theta$, then the value of the expression $4 p^{2}+p^{2}$ is :
A. a^{2}
B. $3 a^{2}$
C. $2 a^{2}$
D. $4 a^{2}$

Answer: A

- Watch Video Solution

32. The sum of squares of intercepts on the axes cut off by the tangents to the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}(a>0)$ at $\left(\frac{a}{8}, \frac{a}{8}\right)$ is 2 . Thus a has the value:
A. 1
B. 2
C. 4
D. 8

Answer: C

33. A line passes through $(2,2)$ and is perpendicular to the line $3 x+y=3$ Its y - intercept is \qquad
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. 1
D. $\frac{4}{3}$

Answer: D

- Watch Video Solution

34.

the
triangle
whose sides
are
$x+y-6=0,7 x+y-6=0$ and $x-7 y=6$, the co-ordinates of the incentre are:
A. $\left(\frac{12}{5}, \frac{6}{5}\right)$
B. $\left(\frac{3}{4},-\frac{1}{7}\right)$
C. $(-1,5)$
D. None of these

Answer: A

- View Text Solution

35. The equation of a line through the point $(1,2)$ whose distance from the point $(3,1)$ has the greatest possible value is :
A. $y=x$
B. $y=2 x$
C. $y=-2 x$
D. $y=-x$

Answer: B

36. If the lines $x+2 a y+a=0, x+3 b y+b=0$ and $x+4 c y+c=0$ are concurrent, then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in:
A. A.P.
B. G.P.
C. H.P.
D. None of these

Answer: C

- Watch Video Solution

37. If the algebraic sum of the perpendicular distances from the points (2, $0),(0,2)$ and $(1,1)$ to a variable st. line be zero, then the line passes thro' the point :
A. $(-1,1)$
B. $(1,1)$
C. $(1,-1)$
D. $(-1,-1)$

Answer: B

- Watch Video Solution

38.

A
point
equidistant
from the
lines
$4 x+3 y+10=0,5 x-12 y+26=0$ and $7 x+24 y-50=0$ is :
A. $(1,-1)$
B. $(1,1)$
C. $(0,0)$
D. $(0,1)$

Answer: C

39. If t_{1}, t_{2} and t_{3} are distinct, then the points: $\left(t_{1}, 2 a t_{1}, a t_{1}^{3}\right),\left(t_{2}, 2 a t_{2}+a t_{2}^{3}\right)$ and $\left(t_{3}, 2 a t_{3}+a t_{3}^{3}\right)$ are colinear if:
A. $t_{1}+t_{2}+t_{3}=0$
B. $t_{1} t_{2} t_{3}=1$
C. $t_{1}+t_{2}+t_{3}=1$
D. $t_{1}+t_{2}+t_{3}=t_{1} t_{2} t_{3}$

Answer: A

- Watch Video Solution

40. The locus of the mid-point of the portion of the line $x \cos \alpha+y \sin \alpha=p$, which is intercepted between the axes is :
A. $p^{2}\left(x^{2}+y^{2}\right)=4 x y$
B. $p\left(x^{2}+y^{2}\right)=4 x^{2} y^{2}$
C. $p^{2}(x+y)=x^{2} y^{2}$
D. $p^{2}\left(x^{2}+y^{2}\right)=4 x^{2} y^{2}$

Answer: D

- Watch Video Solution

41. The centroid of a triangle formed by the points $(0,0)$, $(\cos \theta, \sin \theta)$ and $(\sin \theta,-\cos \theta)$ lies on the line $y=2 x$. Then θ is :
A. $\tan ^{-1} 2$
B. $\tan ^{-1} \frac{1}{3}$
C. $\tan ^{-1} \frac{1}{2}$
D. $\tan ^{-1}(-3)$

Answer: D

42. The co-ordinates of the image of the origin 0 . w.r.t. st. line $x+y+1=0$ are :
A. $\left(\frac{-1}{2}, \frac{-1}{2}\right)$
B. $(-2,-2)$
C. $(1,1)$
D. $(-1,-1)$

Answer: D

- Watch Video Solution

43. A variable line intersects the co-ordinate axes at A and B and passes through a fixed point (a, b), then the locus of the vertex C of the rectangle OACB where O is the origin is :
A. $\frac{x}{a}+\frac{y}{b}=1$
B. $\frac{a}{x}+\frac{b}{y}=1$
C. $x+y=\frac{1}{a}+\frac{1}{b}$
D. $a x+b y=1$.

Answer: B

- Watch Video Solution

44. The reflection of the point $(4,-13)$ in the line $5 x+y+6=0$ is:
A. $(-1,-14)$
B. $(3,4)$
C. $(0,0)$
D. $(1,2)$

Answer: A

45. A line passing through $P(4,2)$ meets the x and y-axis at A and B respectively. If O is the origin, then locus of the centre of the circumcircle of $\triangle O A B$ is :
A. $x^{-1}+y^{-1}=2$
B. $2 x^{-1}+y^{-1}=1$
C. $x^{-1}+2 y^{-1}=1$
D. $2 x^{-1}+2 y^{-1}=1$.

Answer: B

- Watch Video Solution

46. If the point (a, a) falls between the lines $|x+y|=2$, then :
A. $|a|=2$
B. $|a|=1$
C. $|a|<1$
D. $|a|<\frac{1}{2}$

Answer: C

- Watch Video Solution

47. $A B C$ is an equilateral triangle such that the vertices B and C lie on two parallel lines at a distance 6. If A lies between the parallel lines at a distance 4 from one of them, then the length of a side of the equilateral triangle is :
A. 8
B. $\sqrt{\frac{88}{3}}$
C. $\frac{4 \sqrt{7}}{\sqrt{3}}$
D. None of these

Answer: C

48. The limiting position of the point of intersection of the lines $3 x+4 y=1$ and $(1+c) x+3 c^{2} y=2$ as c tends to 1 is :
A. $(4,-5)$
B. $(-5,4)$
C. $(5,-4)$
D. $(-4,5)$

Answer: B

- Watch Video Solution

49. Let the vertex of an equilateral triangle be the origin and the side opposite to it have the equaiton $x+y=1$. Then the co-ordinates of the orthocentre of the triangle are:
A. $\left(\frac{1}{3}, \frac{1}{3}\right)$
B. $\left(\frac{2}{3}, \frac{2}{3}\right)$
C. $\left(\frac{\sqrt{2}}{3}, \frac{\sqrt{2}}{3}\right)$
D. None of these

Answer: A

- Watch Video Solution

50. If the lines $x+2 a y+a=0, x+3 b y+b=0$ and $x+4 c y+c=0$ are concurrent, then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in :
A. A.P.
B. H.P.
C. G.P.
D. None of these

Answer: B

51. Area enclosed by $2|x|+3|y| \leq 6$ is :
A. 4 sq. units
B. 6 sq. units
C. 12 sq. units
D. 16 sq. units

Answer: C

- Watch Video Solution

52. If a, b, c are in A.P., a, x, b are in G.P., and b, y, c are in G.P., then (x, y) lies on :
A. a st. line
B. a circle
C. a parabola
D. an ellipse

Answer: B

- Watch Video Solution

53. Area bounded by the curves :
$y=|x|-1$ and $y=-|x|+1$ is :
A. 1
B. 2
C. 4
D. $2 \sqrt{2}$

Answer: B

D Watch Video Solution

54. Distance between the lines $5 x+12 y-1=0$ and
$10 x+24 y+k=0$ is 2 , then the value of k is :
A. -54
B. 50
C. $-54,50$
D. 53

Answer: C

- Watch Video Solution

55. Foot of perpendicular drawn from $(0,5)$ on the line $3 x-4 y-5=0$ is :
A. $(3,2)$
B. $(3,1)$
C. $(1,3)$
D. $(2,3)$
56. A line passes through $(2,2)$ and is perpendicular to the line $3 x+y=3$ Its y-intercept is \qquad
A. 1
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{4}{3}$

Answer: D

- Watch Video Solution

57. The points $(-1,1)$ and $(1,-1)$ are symmetrical about the line :
A. $y=x$
B. $y+x=0$
C. $x+y=1$
D. None of these

Answer: A

- Watch Video Solution

58. Let PS be the median of the triangle with vertices $P(2,2), Q(6,-1)$ and $R(7,3)$. The equation of the line passing through $(1,-1)$ and parallel to PS is
A. $2 x-9 y-7=0$
B. $2 x-9 y-11=0$
C. $2 x+9 y-11=0$
D. $2 x+9 y+7=0$

Answer: D

59. The number of integer values of m for which the x-co-ordinates of the point of intersection of the lines $3 x+4 y=9$ and $y=m x+1$ is also an integer is :
A. 2
B. 0
C. 4
D. 1

Answer: A

D Watch Video Solution

60. Area of the parallelogram formed by the lines
$y=m x, y=m x+1, y=n x$ and $y=n x+1$ equals :
A. $\frac{|m+n|}{(m-n)^{2}}$
B. $\frac{2}{|m+n|}$
C. $\frac{1}{(m+n)}$
D. $\frac{1}{|m-n|}$

Answer: D

- Watch Video Solution

61. A triangle with vertices $(4,0),(-1,-1),(3,5)$ is :
A. isosceles and right-angled
B. isosceles but not right-angled
C. right-angled but not isosceles
D. neither right-angled nor isosceles.

Answer: A

62. A st. line through the point $(2,2)$ intersects the lines $\sqrt{3} x+y=0$ and $\sqrt{3} x-y=0$ at the points A and B . The equation to the line $A B$ so that the triangle $O A B$ is equilateral is :
A. $x-2=0$
B. $y-2=0$
C. $x+y-4=0$
D. None of these

Answer: B

- Watch Video Solution

63. The incentre of the triangle with vertices $(1, \sqrt{3}),(0,0)$ and $(2,0)$ is
A. $\left(1, \frac{\sqrt{3}}{2}\right)$
B. $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$
C. $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$
D. $\left(1, \frac{1}{\sqrt{3}}\right)$

Answer: D

- Watch Video Solution

64. Three straight lines $2 x+11 y-5=0,4 x-3 y-2=0$ and $24 x+7 y-20=0:$
A. form a triangle
B. are only concurrent
C. are concurrent with one line bisecting the angle between the other two
D. None of these

Answer: C

65. A straight line through the origin O meets the parallel lines $4 x+2 y=9$ and $2 x+y+6=0$ at points P and Q respectively. Then the point O divides the segment $P Q$ in the ratio :
A. 1:2
B. 3:4
C. 2:1
D. 4: 3

Answer: B

- Watch Video Solution

66. Let $\mathrm{P}(-1,0), \mathrm{Q}(0,0)$ and $R(3,3 \sqrt{3})$ be three points. Then the equation of the bisector of the angle $P Q R$ is :
A. $\frac{\sqrt{3}}{2} x+y=0$
B. $x+\sqrt{3} y=0$
C. $\sqrt{3} x+y=0$
D. $x+\frac{\sqrt{3}}{2} y=0$

Answer: C

(D) Watch Video Solution

67. Let $0<\alpha<\pi / 4$ be a fixed angle. If $P=(\cos \theta, \sin \theta)$ and $Q=(\cos (\alpha-\theta), \sin (\alpha-\theta))$, then $\quad \mathrm{Q}$ is obtained from P by:
A. clockwise rotation around origin through an angle α
B. anticlockwise rotation around origin through an angle α
C. reflection in the line through origin with slope $\tan \alpha$
D. reflection in the line through origin with slope $\tan \frac{\alpha}{2}$.

Answer: D

68. Orthocentre of triangle whose vertices are $(0,0),(3,4),(4,0)$ is :
A. $\left(3, \frac{7}{3}\right)$
B. $\left(3, \frac{5}{4}\right)$
C. $(5,-2)$
D. $\left(3, \frac{3}{4}\right)$

Answer: D

- Watch Video Solution

69. $A(2,-3)$ and $B(-2,1)$ are the vertices of a triangle $A B C$. If the centroid of this triangle moves on the line $2 x+3 y=1$, then the locus of the vertex C is the line
A. $2 x+3 y=9$
B. $2 x-3 y=7$
C. $3 x+2 y=5$
D. $3 x-2 y=3$

Answer: A

- Watch Video Solution

70. The equation of the straight line passing through the point $(4,3)$ and making intercepts on the co-ordinate axes whose sum is -1 is :
A. $\frac{x}{2}+\frac{y}{3}=-1$ and $\frac{x}{-2}+\frac{y}{1}=-1$
B. $\frac{x}{2}-\frac{y}{3}=-1$ and $\frac{x}{-2}+\frac{y}{1}=-1$
C. $\frac{x}{2}+\frac{y}{3}=1$ and $\frac{x}{2}+\frac{y}{1}=1$
D. $\frac{x}{2}-\frac{y}{3}=1$ and $\frac{x}{-2}+\frac{y}{1}=1$

Answer: D

Multiple Choice Questions Level Ii

1. Area of the triangle with vertices $(\mathrm{a}, \mathrm{b})\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, where a, x_{1}, x_{2} are in GP. with common ratio r and b, y_{1}, y_{2} are in GP. with common ratio s is :
A. $a b(r-1)(s-1)(s-r)$
B. $\frac{1}{2} a b(r+1)(s+1)(s-r)$
C. $\frac{1}{2} a b(r-1)(s-1)(s-r)$
D. $a b(r+1)(s+1)(r-s)$

Answer: C

- Watch Video Solution

2. The medians $A D$ and $B E$ of a triangle with vertices $A(0, b), B(0,0)$ and $C(a, 0)$ are perpendicular ot each other if :
A. $b=\sqrt{2} a$
B. $a=\sqrt{-2 b}$
C. $b=\sqrt{-2 a}$
D. $a= \pm \sqrt{2 b}$

Answer: D

- Watch Video Solution

3. The points $(0,8 / 3),(1,3)$ and $(82,30)$ are vertices of:
A. An acute angled triangle
B. An isosceles triangle
C. An right-angled triangle
D. None of these

Answer: D

4. The straight lines $x+y=0,3 x+y-4=0$ and $x+3 y-4=0$ form a triangle, which is :
A. Isosceles
B. Equilateral
C. Right angled
D. None of these

Answer: A

Watch Video Solution

5. The equations of the sides of a triangle are :
$x+y-5=0, x-y+1=0$ and $y-1=0$, then the co-ordinates of the circumcentre are:
B. $(1,2)$
C. $(2,-2)$
D. $(1,-2)$

Answer: A

- Watch Video Solution

6. The slope of the line, which is drawn through the point $(1,2)$ so that its point of intersection with the line $x+y+3=0$ is at a distance $3 \sqrt{2}$ is :
A. $\frac{1}{\sqrt{3}}$
B. $\sqrt{3}$
C. 1
D. $\frac{\sqrt{3}-1}{2}$

Answer: C

7. The lines $y=m x, y+2 x=0, y=2 x+k$ and $y+m x=k$ form a rhombus if m is equal to :
A. -1
B. $\frac{1}{2}$
C. 1
D. 2

Answer: D

- Watch Video Solution

8. The equations to a pair of opposite sides of a parallelogram are $x^{2}-5 x+6=0$ and $y^{2}-6 y+5=0$. The equations to its diagonals are:
A. $4 x+y=0$ and $y=4 x-7$
B. $x+4 y=13$ and $y=4 x-7$
C. $4 x+y=13$ and $4 y=x-7$
D. None of these

Answer: D

- Watch Video Solution

9. The equation of a straight line passing through the point $(-5,4)$ and which cuts off an intercept of $\sqrt{2}$ units between the lines $x+y+1=0$ and $x+y-1=0$ is :
A. $x-2 y+13=0$
B. $2 x-y+14=0$
C. $x-y+9=0$
D. $x-y+10=0$

Answer: C

10. If x_{1}, x_{2}, x_{3} as well as y_{1}, y_{2}, y_{3} are in G.P. with the same common ratio, then the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$:
A. lie on a st. line
B. lie on an ellipse
C. lie on a circle
D. are vertices of a triangle

Answer: A

- Watch Video Solution

11. Let $P Q R$ be a right-angled isosceles triangle right-angled at $P(2,1)$. If the equation of the line QR is $2 x+y=3$, then the equation representing the pair of lines $P Q$ and $P R$ is :
A. $3 x^{2}-3 y^{2}+8 x y+20 x+10 y+25=0$
B. $3 x^{2}-3 y^{2}+8 x y-20 x-10 y+25=0$
C. $3 x^{2}-3 y^{2}+8 x y+10 x+15 y+20=0$
D. $3 x^{2}-3 y^{2}-8 x y-10 x-15 y-20=0$

Answer: B

- Watch Video Solution

12. If the quadrilateral formed by the lines $a x+b y+c z=0, a x+b^{\prime} y+c=0, a^{\prime} x+b y+c^{\prime}=0, a^{\prime} x+b^{\prime} y+c^{\prime}=$ have perpendicular diagonals, then :
A. $b^{2}+c^{2}=b^{2}+c^{\prime 2}$
B. $c^{2}+a^{2}=c^{\prime 2}+a^{\prime 2}$
C. $a^{2}+b^{2}=a^{\prime 2}+b^{\prime 2}$
D. None of these

Answer: C

D Watch Video Solution

13. If two vertices of a triangle are ($5,-1$) and $(-2,3)$ and if orthocentre lies at the origin, then the co-ordinates of third vertex are:
A. $(4,7)$
B. $(-4,-7)$
C. $(2,-3)$
D. $(5,-1)$

Answer: B

- Watch Video Solution

14. If the points $(1,2)$ and $(3,4)$ were to be on the same side of the line $3 x-5 y+a=0$, then :
A. $7<a<11$
B. $a=7$
C. $a=11$
D. $a<7$ or $a>11$

Answer: D

- Watch Video Solution

15. A straight rod of length 9 units slides with its ends A, B always on the X and Y -axis respectively. Then the locus of the centroid of $\triangle O A B$ is :
A. $x^{2}+y^{2}=3$
B. $x^{2}+y^{2}=9$
C. $x^{2}+y^{2}=1$
D. $x^{2}+y^{2}=81$
16. The vertices of a triangle are $(6,0),(0,6)$ and $(6,6)$. The distance between its circumcentre and centroid is :
A. $2 \sqrt{2}$
B. 2
C. $\sqrt{2}$
D. 1

Answer: C

- Watch Video Solution

17. $A(1,3)$ and $C(7,5)$ are two opposite vertices of a square. The equation of a side thro' A is :

$$
\text { A. } x+2 y-7=0 \text { or } 2 x-y+1=0
$$

B. $x-2 y+5=0$
C. $2 x+y-5=0$
D. None of these

Answer: A

- Watch Video Solution

18. The diagonals of a parallelogram PQRS are along the line $x+3 y=4$ and $6 x-2 y=7$. Then PQRS must be :
A. rectangle
B. square
C. cyclic quadrilateral
D. rhombus.

Answer: D

19. Let n be the number of points having rational co-ordinates equidistant from the point $(0, \sqrt{3})$, then:
A. $n>2$
B. $n \leq 2$
C. $n \geq 1$
D. $n=1$

Answer: B

- Watch Video Solution

20. If the vertices of an equilateral triangle have rational co-ordinates, then the triangle cannot be :
A. right-angled
B. equilateral
C. right-angled isosceles
D. isosceles.

Answer: B

- Watch Video Solution

21. If the lines $y=m_{r} x, r=1,2,3$ cut off equal intercepts on the transversal $x+y=1$, then $1+m_{1}, 1+m_{2}, 1+m_{3}$ are in :
A. A.P.
B. G.P.
C. H.P.
D. None of these

Answer: C

- Watch Video Solution

22. If $a=\frac{\tan \theta}{\tan 3 \theta}$, then the point $P\left(a, a^{2}\right)$:
A. may lie on the line $3 y=x$ or $y=3 x$
B. necessarily lies in the acute angle between the lines $y=3 x$ and $3 y=x$
C. necessarily lies in the obtuse angle between the lines $y=3 x$ and $3 y=$ x
D. $a \in\left(\frac{1}{3}, 3\right)$

Answer: B

- Watch Video Solution

23. If two sides of a triangle are represented by:
$2 x-3 y+4=0$ and $3 x+2 y-3=0$, then its orthocentre lies on the line :
A. $x-y+\frac{8}{15}=0$
B. $4 x+3 y+\frac{5}{13}=0$
C. $9 x-y+\frac{9}{13}=0$
D. $3 x-2 y+1=0$

Answer: C

- Watch Video Solution

24. The distance of the point $(1,2)$ from the line $x+y=0$ measured parallel to the line $3 x-y=2$ is:
A. $\frac{3 \sqrt{2}}{8}$
B. $\frac{3 \sqrt{10}}{4}$
C. 10
D. $5 \sqrt{5}$

Answer: B

25. If a, b, c are the pth, q th and rth terms of an H.P., then the lines $b c x+p y+1=0, c a x+q y+1=0$ and $a b x+r y+1=0:$
A. are concurrent
B. form a triangle
C. are parallel
D. None of these

Answer: C

- Watch Video Solution

26. If $\alpha \beta>0, a b>0$ and the variable line $\frac{x}{a}, \frac{y}{b}=1$ is drawn through the given point $P(\alpha, \beta)$, then the least area of the triangle formed by this line and the co-ordinate axes is:
A. $2 \alpha \beta$
B. $3 \alpha \beta$
C. $\alpha \beta$
D. None of these

Answer: A

- Watch Video Solution

27. A ray of light coming from the point $(1,2)$ is reflected at a point A on the x-axis and then passes through the point $(5,3)$. The co-ordinates of the point A are :
A. $\left(\frac{13}{5}, 0\right)$
B. $\left(\frac{5}{13}, 0\right)$
C. $(-7,0)$
D. None of these

Answer: A

28. If two vertices of an equilateral triangle have integral co-ordinates, then the third vertex will have :
A. integral co-ordinates
B. co-ordinates, which are rational
C. at least one co-ordinate irrational
D. co-ordinates, which are irrational.

Answer: C

- Watch Video Solution

29. Let $A(1,2)$ and $B(3,4)$ be two points. Let $C(x, y)$ be a point such that $(x-1)(x-3)+(y-2)(y-4)=0$. If ar $(\triangle A B C)=1$, then the maximum number of positions of C in $x y$-plane is :
A. 2
B. 4
C. 6
D. 8

Answer: B

- Watch Video Solution

30. If p, p be the lengths of perpendicular from $(0,0)$ on the lines:
$x \sec \theta+y \operatorname{cosec} \theta=2 a$ and $x \cos \theta+y \sin \theta=a \cos 2 \theta \quad$ respectively,
then $\left(\frac{p}{p^{\prime}}+\frac{p^{\prime}}{p}\right)^{2}$ equals:
A. $4 \cos ^{2} 4 \theta$
B. $4 \operatorname{cosec}^{2} 4 \theta$
C. $4 \sin ^{2} 4 \theta$
D. $4 \cot ^{2} 4 \theta$.
31. The points $P(2,3), Q(3,5), R(7,7)$ and $S(4,5)$ are such that:
A. P, Q, R and S are collinear
B. PQRS is a parallelogram
C. S lies on the boundary of the triangle PQR
D. S lies inside the triangle PQR

Answer: D

- Watch Video Solution

32. If P is a point (x, y) on the line $y=-3 x$ such that P and $\mathrm{Q}(3,4)$ are on opposite sides of the line $3 x-4 y=8$, then :
A. $x>\frac{8}{5}, y<\frac{-8}{15}$
B. $x>\frac{8}{15}, y<-\frac{8}{5}$
C. $x=\frac{8}{15}, y=\frac{-8}{5}$
D. None of these

Answer: B

- Watch Video Solution

33. Let $\mathrm{A}(-1,0), \mathrm{B}(0,0)$ and $C(3,3 \sqrt{3})$ be three points. Then the bisector of $\angle A B C$ is :
A. $x+\sqrt{3} y=0$
B. $x+\frac{\sqrt{3}}{2} y=0$
C. $\sqrt{3} x+y=0$
D. $\frac{\sqrt{3}}{2} x+y=0$

Answer: C

34. The position of a moving point in XY-plane at time t is given by $\left(u \cos \alpha, t, u \sin \alpha, t-\frac{1}{2} g t^{2}\right)$, where u, α, g are constants. The locus of the moving point is :
A. a circle
B. a parabola
C. an ellipse
D. a hyperbola

Answer: B

- Watch Video Solution

35. If the line $\mathrm{y}=\mathrm{mx}$ meets the lines $x+2 y-1=0$ and $2 x-y+3=0$ at the same point, then m equals :
A. 1
B. -1
C. 2
D. -2

Answer: B

- Watch Video Solution

36. Co-ordinates of the vertices of a triangle are $(2,0),(6,0)$ and $(1,5)$. The distance between circumcentre and orthocentre is :
A. 4
B. 5
C. 6
D. None of these

Answer: B

37. The equation of base of an equilateral triangle is $x+y=2$ and vertex is $(2,-1)$. Then the length of the side of the triangle equals:
A. $\sqrt{\frac{1}{3}}$
B. $\sqrt{3}$
C. $\sqrt{\frac{2}{3}}$
D. $\sqrt{\frac{3}{2}}$

Answer: C

- Watch Video Solution

38. The triangle formed by the tangent to the curve $f(x)=x^{2}+b x-b$ at the point $(1,1)$ and the co-ordinate axes, lies in the first quadrant. If its area is 2 , then the value of b is :
A. -1
B. 3
C. -3
D. 1

Answer: C

- Watch Video Solution

39. A square of side a lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle $\alpha\left(0<\alpha<\frac{\pi}{4}\right)$ with the positive direction of x-axis. The equation of its diagonal not passing through the origin is :
A. $y(\cos \alpha+\sin \alpha)+x(\sin \alpha-\cos \alpha)=a$
B. $y(\cos \alpha+\sin \alpha)+x(\sin \alpha+\cos \alpha)=a$
C. $y(\cos \alpha+\sin \alpha)+x(\cos \alpha-\sin \alpha)=a$
D. $y(\cos \alpha-\sin \alpha)-x(\sin \alpha-\cos \alpha)=a$.

Answer: C

40. If the equation of the locus of a point equidistant from the points $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ is:
$\left(a_{1}-a_{2}\right) x+\left(b_{1}-b_{2}\right) y+c=0$, then $\mathrm{c}=$
A. $a_{1}^{2}-a_{2}^{2}+b_{1}^{2}-b_{2}^{2}$
B. $\frac{1}{2}\left(a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}\right)$
C. $\sqrt{a_{1}^{2}+b_{1}^{2}-a_{2}^{2}-b_{2}^{2}}$
D. $\frac{1}{2}\left(a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2}\right)$

Answer: D

- Watch Video Solution

41. Locus of centroid of the triangle whose vertices are $(a \cos t, a \sin t),(b \sin t,-b \cos t)$ and (1,0), where t is a parameter, is :
A. $(3 x+1)^{2}+(3 y)^{2}=a^{2}-b^{2}$
B. $(3 x-1)^{2}+(3 y)^{2}=a^{2}-b^{2}$
C. $(3 x-1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
D. $(3 x+1)^{2}+(3 y)^{2}=a^{2}+b^{2}$

Answer: C

- Watch Video Solution

42. Triangle is formed by the co-ordinates (0,0), (0,21) and (21,0). Find the number of integral co-ordinates strictly inside the triangle (integral co-ordinates has both x and y) :
A. 190
B. 105
C. 231
D. 205
43. If non-zero numbers a, b, c are in H.P., then the straight line $\frac{x}{a}+\frac{y}{b}+\frac{1}{c}=0$ always passes through a fixed point. That point is :
A. ($-1,-2$)
B. $(-1,2)$
C. $\left(1,-\frac{1}{2}\right)$
D. $(1,-2)$

Answer: D

- Watch Video Solution

44. If a vertex of a triangle is $(1,1)$ and the mid-points of two sides through this vertex are $(-1,2)$ and $(3,2)$, then the centroid of the triangle is :
A. $\left(\frac{-1}{3}, \frac{7}{3}\right)$
B. $\left(-1, \frac{7}{3}\right)$
C. $\left(\frac{1}{3}, \frac{7}{3}\right)$
D. $\left(1, \frac{7}{3}\right)$

Answer: D

- Watch Video Solution

45. A straight line through the point $A(3,4)$ is such that its intercept between the axes is bisected at A. Its equation is :
A. $x+y=7$
B. $3 x-4 y+7=0$
C. $4 x+3 y=24$
D. $3 x+4 y=25$
46. If $\left(a, a^{2}\right)$ falls inside the angle made by the lines
$y=\frac{x}{2}, x>0$ and $y=3 x, x>0$, then a belongs to :
A. $\left(0, \frac{1}{2}\right)$
B. $(3, \infty)$
C. $\left(\frac{1}{2}, 3\right)$
D. $\left(-3,-\frac{1}{2}\right)$

Answer: C

- Watch Video Solution

47. The perpendicular bisector of the line segment joining $P(1,4)$ and $Q(k$,
3) has y-intercept -4 .

Then a possible value of k is :
A. -4
B. 1
C. 2
D. -2

Answer: A

- Watch Video Solution

48. The co-ordinates of a point on the line $x+y=3$ such that the point is at equal distances from the lines $|x|=|y|$ are :
A. $(0,3)$
B. $(3,0)$
C. $(-3,0)$
D. $(0,-3)$
49.

Consider
three
points
$P \equiv(-\sin (\beta-\alpha),-\cos \beta), Q \equiv(\cos (\beta-\alpha), \sin \beta)$ and $R \equiv(\cos \beta-$, where $0<\alpha, \beta, \theta<\frac{\pi}{4}$. Then:
A. Plies on the line segment RQ
B. Q lies on the line segment $P R$
$C . R$ lies on the line segment $Q P$
D. P, Q, R are non-collinear.

Answer: D

- Watch Video Solution

50.

$p\left(p^{2}+1\right) x-y+q=0$ and $\left(p^{2}+1\right)^{2} x+\left(p^{2}+1\right) y+2 q=0 \quad$ are perpendicular to a common line for :
A. no value of p
B. exactly one value of p
C. exactly two values of p
D. more than two values of p.

Answer: B

- Watch Video Solution

Latest Questions From Aieee Jee Examinations

1. The line L given by $\frac{x}{5}+\frac{y}{b}=1$ passes through the point $(13,32)$. The line K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}=1$. Then the distance between L and K is :
A. $\frac{23}{\sqrt{15}}$
B. $\sqrt{17}$
C. $\frac{17}{\sqrt{15}}$
D. $\frac{23}{\sqrt{17}}$

Answer: D

- Watch Video Solution

2. A straight line L through the point $(3,-2)$ is inclined at an angle 60° to the line $\sqrt{3} x+y=1$. If L also intersects the x -axis, then the equation of L is :
A. $y+\sqrt{3} x+2-3 \sqrt{3}=0$
B. $y-\sqrt{3} x+2+3 \sqrt{3}=0$
C. $\sqrt{3} y-x+3+2 \sqrt{3}=0$
D. $\sqrt{3} y+x-3+2 \sqrt{3}=0$

Answer: B

- Watch Video Solution

3. The lines $x+y=|a|$ and $a x-y=1$ intersect each other in the first quadrant. Then the set of all possible values of a is the interval :
A. $(0, \infty)$
B. $[1, \infty)$
C. $(-1, \infty)$
D. $(-1,1]$

Answer: B

- Watch Video Solution

4. If $A(2,-3)$ and $B(-2,1)$ are two vertices of a triangle and third vertex moves on the line $2 x+3 y=9$, then the locus of the centroid of the triangle is :
A. $x-y=1$
B. $2 x+3 y=1$
C. $2 x+3 y=3$
D. $2 x-3 y=1$

Answer: B

- Watch Video Solution

5. If the line $2 x+y=k$ passes through the point, which divides the line segment joining the points $(1,1)$ and $(2,4)$ in the ratio $3: 2$, then k equals:
A. $\frac{29}{5}$
B. 5
C. 6
D. $\frac{11}{5}$

Answer: C

- Watch Video Solution

6. A line is drawn through the point $(1,2)$ to meet the co-ordinate axes at P and Q such that it forms a triangle $O P Q$, where O is the origin. If the area of the triangle OPQ is least, then the slope of the line PQ is :
A. $-\frac{1}{4}$
B. -4
C. -2
D. $-\frac{1}{2}$

Answer: C

- Watch Video Solution

7. A ray of light along $x+\sqrt{3} y=\sqrt{3}$ gets reflected upon reaching x -axis, the equation of the reflected ray is :
A. $\sqrt{3} y=x-\sqrt{3}$
B. $y=\sqrt{3} x-\sqrt{3}$
C. $\sqrt{3} y=x-1$
D. $y=x+\sqrt{3}$

Answer: A

- Watch Video Solution

8. The x-co-ordinate of the incentre of the triangle that has the coordinates of mid-points of its sides as $(0,1),(1,1)$ and $(1,0)$ is :
A. $2-\sqrt{2}$
B. $1+\sqrt{2}$
C. $1-\sqrt{2}$
D. $2+\sqrt{2}$

Answer: A

9. For $a>b>c>0$, the distance between (1, 1) and the point of intersection of the lines:
$a x+b y+c=0$ and $b x+a y+c=0$
is less then $2 \sqrt{2}$. Then :
A. $a+b-c>0$
B. $a-b+c<0$
C. $a-b+c>0$
D. $a+b-c<0$

Answer: A

- Watch Video Solution

10. Let PS be the median of the triangle with vertices $P(2,2), Q(6,-1)$ and $R(7,3)$. The equation of the line passing through ($1,-1$) and parallel to PS is

$$
\text { A. } 2 x+9 y+7=0
$$

B. $4 x+7 y+3=0$
C. $2 x-9 y-11=0$
D. $4 x-7 y-11=0$

Answer: A

- Watch Video Solution

11. Let a, b, c and d be non-zero numbers. If the point of intersection of the lines $4 a x+2 a y+c=0$ and $5 b x+2 b y+d=0$ lies in the fourth quadrant is equidistant from the two axes, then :
A. $2 b c+3 a d=0$
B. $3 b c-2 a d=0$
C. $3 b c+2 a d=0$
D. $2 b c-3 a d=0$

Answer: B

12. The number of points, having both co-ordinates as integers, that lie in the interior of the triangle with vertices $(0,0),(0,41)$ and $(41,0)$, is :
A. 901
B. 861
C. 820
D. 780

Answer: D

- Watch Video Solution

Recent Competitive Questions Questions From Karnataka Cet Comed

1. The line joining $A(2,-7)$ and $B(6,5)$ is divided into 4 equal parts by the points P, Q and R such that $A Q=R P=Q B$. The mid-point of $P R$ is :
A. $(8,-2)$
B. $(4,-1)$
C. $(-8,1)$
D. $(4,12)$

Answer: B

- Watch Video Solution

2. Let $P \equiv(-1, Q), Q \equiv(0,0)$ and $R \equiv(3,3 \sqrt{3})$ be three points.

The equation of the bisector of the angle $P Q R$ is :
A. $\sqrt{3} x+y=0$
B. $x+\sqrt{3} y=0$
C. $\sqrt{3} x-y=0$
D. $x-\sqrt{3} y=0$

Answer: C

3. If the straight line $a x+b y+c=0$ always passes through ($1,-2$), then a, b, c are in:
A. H.P.
B. A.P.
C. G.P.
D. None of these

Answer: B

- Watch Video Solution

4. A straight line through $P(1,2)$ is such that the intercept between the axes is bisected at P. Then the equation of the straight line is :

$$
\text { A. } x+y=1
$$

B. $x+y=3$
C. $x+2 y=5$
D. $2 x+y=4$

Answer: D

- Watch Video Solution

5. The minimum area of the triangle formed by the variable line $3 \cos \theta x+4 \sin \theta y=12$ and co-ordinate axes is :
A. 144
B. $\frac{25}{2}$
C. $\frac{49}{4}$
D. 12

Answer: D

6. A straight line passes through the points $(5,0)$ and $(0,3)$. The length of perpendicular from the point $(4,4)$ on the line is :
A. $\frac{\sqrt{17}}{2}$
B. $\sqrt{\frac{17}{2}}$
C. $\frac{15}{\sqrt{34}}$
D. $\frac{17}{2}$

Answer: B

- Watch Video Solution

7. If the line through $A \equiv(4,-5)$ is inclined at an angle 45° with the positive direction of the x-axis, then the co-ordinates of the two points on opposite sides of A at a distance $3 \sqrt{2}$ are :
A. $(7,2),(1,8)$
B. $(7,2),(1,-8)$
C. $(7,-2),(1,-8)$
D. $(7,2),(-1,8)$

Answer: C

- Watch Video Solution

8. A line passes through (2,2) and is perpendicular to the line $3 x+y=3$ Its y - intercept is \qquad
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. $\frac{4}{3}$
D. 1

Answer: C

1

\square
\square
\square
\square
\square
 \square

$$
1
$$

促
\square

