

MATHS

BOOKS - MODERN PUBLICATION MATHS (KANNADA ENGLISH)

CIRCLES AND SYSTEMS OF CIRCLES

1. $y^2 - 2x - 2y + 5 = 0$ is a :

A. Circle with centre (1, 1)

B. Parabola with vertex (1,2)

C. Parabola with directrix $x = \frac{3}{2}$ D. Parabola with directrix $x = \frac{1}{2}$

Answer: C

2. The equation $x^2 + y^2 + x + y + 1 = 0$ represents whose centre is:

A. Origin

B. (-1,-1)

$$\mathsf{C}.\left(-\frac{1}{2},\ -\frac{1}{2}\right)$$
$$\mathsf{D}.\left(\frac{1}{2},\frac{1}{2}\right)$$

Answer: C

Watch Video Solution

3. If one end of the diameter of the circle $x^2 + y^2 - 8x - 4y + c = 0$ is

(-3, 2), then the other end is :

A. (5, 3)

B. (6,2)

C. (1,-8)

D. (11,2)

Answer: D

Watch Video Solution

4. The value of k for which the circles $x^2 + y^2 - 3x + ky - 5 = 0$ and $4x^2 + 4y^2 - 12x - y - 9 = 0$ become concentric is:

A.
$$\frac{1}{8}$$

B. $-\frac{1}{8}$
C. $\frac{1}{4}$
D. $-\frac{1}{4}$

Answer: D

5. The number of tangents, which can be drawn from the point (1, 2) to the circle x^2+y^2 = 5 is :

A. 1

B. 2

C. 3

D. 0

Answer: A

Watch Video Solution

6. The radius of the circle inscribed in the triangle formed by the lines x =

0, y = 0 and 4x + 3y - 24 = 0 is :

A. 12

B. 2

 $\mathsf{C.}\,2\sqrt{2}$

Answer: B

7. The equation of the chord of the circle $x^2+y^2-4x=0$, whose midpoint is (1, 0) is :

A. y = 2 B. y=1

C. x=2

D. x=1

Answer: D

8. The locus of the mid-points of chords of the circle $x^2 + y^2 = 4$, which subtend a right angle at the origin, is:

A. x+y=2 B. $x^2 + y^2 = 2$ C. $x^2 + y^2 = 1$ D. x+y=1

Answer: B

Watch Video Solution

9. The length of the tangent from (5, 1) to the circle $x^2 + y^2 + 6x - 4y - 3 = 0$ is :

A. 81

B. 29

C. 7

Answer: C

Watch Video Solution

10. The equations of tangents drawn from the origin to the circle $x^2+y^2-2rx-2hy+h^2=0$ are :

A. x=0 only

B. y = 0 only

C. x=0,
$$ig(h^2-r^2ig)x-2rhy=0$$

D.
$$ig(h^2-r^2ig)x+2rhy=0, x=0$$

Answer: C

11. If x = 7 touches the circle $x^2+y^2-4x-y-12=0$, then the co-

ordinates of the point of contact are :

A. (7,3)

B. (7,4)

C. (7,8)

D. (7,2)

Answer: A

Watch Video Solution

12. The equation of the circle passing through the point (4, 5) and having centre at (2, 2) is :

A.
$$x^2 + y^2 + 4x + 4y - 5 = 0$$

B. $x^2 + y^2 - 4x - 4y - 5 = 0$
C. $x^2 + y^2 - 4x - 13 = 0$

D.
$$x^2 + y^2 - 4x + 4y + 5 = 0$$

Answer: B

13. The length of the chord joining the points (4 cos heta, 4 sin heta) and (4 cos (heta + 60°), 4 sin (heta + 60°)) of the circle $x^2 + y^2 = 16$ is :

A. 16

B. 2

C. 8

D. 4

Answer: D

14. If the equation $k rac{{{\left({x + 1}
ight)}^2 }}{3} + rac{{{\left({y + 2}
ight)}^2 }}{4}$ =1 represents a circle, then the

value of k is:

A.
$$\frac{3}{2}$$

B. 1

$$\mathsf{C}.\,\frac{3}{4}$$

D. None of these

Answer: C

Watch Video Solution

15. The equation of a diameter of the circle $x^2 + y^2 = 2ay$ that is perpendicular to the straight line x + 2y = 4 is :

A. 2x - y + a = 0

B. x + 2y - a=0

C. 2x - 2y + a = 0

D. None of these.

Answer: A

Watch Video Solution

16. The chord of contact of tangents drawn from any point on the circle $x^2 + y^2 = a^2$ to the circle $x^2 + y^2 = b^2$ touches the circle $x^2 + y^2 = c^2$.

Then a, b, c are in:

A. A.P.

B. G.P.

C. H.P.

D. None of these.

Answer: B

17. If the line 2x-y + k = 0 is a diameter of the circle $x^2 + y^2 + 6x - 6y + 5 = 0$, then k is: A. 6 B. 9 C. 12 D. None of these

Answer: B

Watch Video Solution

18. If one end of diameter of the circle $2x^2+2y^2-4x-8y+2=0$ is

(3,2), then the other end is :

A. (2,3)

B. (4,-2)

C. (2,-1)

D. (-1,2)

Answer: D

Watch Video Solution

19. The condition that the line (x + g) cos heta + (y +f) sin heta = k is a tangent to $x^2 + y^2 + 2gx + 2fy + c = 0$:

A. $g^2+f^2=c^2+k$

$$\mathsf{B}.\,g^2+f^2=c+k$$

$$\mathsf{C}.\,g^2+f^2=c+k^2$$

D. None of these

Answer: C

20. If the straight line 3x + 4y = k touches the circle $x^2 + y^2 - 10x$ = 0,

then the value of k is:

A. 2 or 20

 ${\sf B.}-2 \ {\rm or} \ {\rm 20}$

 $\mathrm{C.}-1\,\mathrm{or}\,20$

 $\mathrm{D.}-10~\mathrm{or}~40$

Answer: D

Watch Video Solution

21. If
$$2x^2 + \lambda xy + 2y^2 + (\lambda - 4)x + 6y - 5 = 0$$
 represents a circle, then its radius is:

A. $2\sqrt{2}$

 $\mathsf{B.}\, 3\sqrt{2}$

C. $2\sqrt{3}$

D. None of these

Answer: D

22. Length of the chord of the circle $x^2 + y^2 + 4x - 7y + 12 = 0$ along the y-axis is:

A. 1

$$\mathsf{B.}\,\frac{1}{2}$$

C. 2

D. 3

Answer: A

23. Angle between a pair of tangents drawn from a point P to the circle $x^2+y^2+4x-6y+9\sin^2 heta+13\cos^2 heta=0$ is 2 heta . Then the locus of P is:

A.
$$x^2 + y^2 + 4x - 6y - 9 = 0$$

B. $x^2 + y^2 + 4x - 6y + 4 = 0$
C. $x^2 + y^2 + 4x - 6y + 9 = 0$
D. $x^2 + y^2 + 4x - 6y - 4 = 0$

Answer: C

Watch Video Solution

24. The four distinct points (2, 3), (0, 2), (4, 5) and (0, k) are concyclic if the value of k is:

A. 1

B. 5

C. 17

D. 19

Answer: C

Watch Video Solution

25. A variable chord of the circle $x^2 + y^2 - 2ax = 0$ is drawn through the origin. Then the locus of the centre of the circle drawn on this chord as diameter is:

A.
$$x^2 + y^2 - ay = 0$$

B. $x^2 + y^2 + ay = 0$
C. $x^2 + y^2 + ax = 0$
D. $x^2 + y^2 - ax = 0$

Answer: D

26. OA and OB are tangents drawn from the origin O to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ where c > 0, C being the centre of the circle. Then ar (quad. OACB) is:

A.
$$\sqrt{c(g^2+f^2-c)}$$

B. $rac{1}{2}\sqrt{c(g^2+f^2-c)}$
C. $c\sqrt{g^2+f^2-c}$
D. $\sqrt{rac{g^2+f^2-c}{c}}$

Answer: A

Watch Video Solution

27. Locus of a moving point such that tangents from it to the two circles :

 $x^2+y^2-5x-3=0$ and $3x^2+3y^2+2x+4y-6=0$ are equal, is :

A. 7x + 4y - 3 = 0

B. 3x - 4y + 9 = 0

C. 17x + 4y + 3 = 0

D. 13x - 4y + 15 = 0.

Answer: C

Watch Video Solution

28. The lines 3x - 4y + 4 = 0 and 6x - 8y - 7 = 0 are tangents to the same

circle. The radius of the circle is :

A.
$$\frac{1}{4}$$

B. $\frac{1}{2}$
C. $\frac{3}{2}$
D. $\frac{3}{4}$

Answer: C

29. The equation of the circle, which touches the axes of co-ordinates and the line $\frac{x}{3} + \frac{y}{4} = 1$ and whose centre lies in the first quadrant is: $x^2 + y^2 - 2cx - 2cy + c^2 = 0$ If c is :

A. 4,5

B. 3,4

C. 2,3

D. 1,6

Answer: D

Watch Video Solution

30. Number of feet of normals from the point (7, - 4) to the circle $x^2+y^2=5$ is :

C. 3

D. 4

Answer: B

Watch Video Solution

31. If
$$\left(m_i, \frac{1}{m_i}\right)$$
, i = 1, 2, 3, 4 are concyclic points, then the value of $m_1m_2m_3m_4$ is :

 $\mathsf{A.}-1$

B. 0

C. 1

D. None of these

Answer: C

32. A circle of radius 5 units touches both the axes and lies in the first quadrant. If the circle makes one complete roll on x-axis along the positive direction of x-axis, then its equation in new position is:

A.
$$x^2 + y^2 - 20\pi x - 10y + 100\pi^2 = 0$$

B. $x^2 + y^2 + 20\pi x + 10y + 100\pi^2 = 0$
C. $x^2 + y^2 + 20\pi x - 10y + 100\pi^2 = 0$

D. None of these

Answer: D

Watch Video Solution

33. The equation of the image of the circle $x^2 + y^2$ + 16x - 24y + 183 = 0 by

the line mirror 4x + 7y + 13 = 0 is :

A.
$$x^2 + y^2 + 32x + 4y + 235 = 0$$

B.
$$x^2 + y^2 + 32x - 4y - 235 = 0$$

C. $x^2 + y^2 + 32x + 4y - 235 = 0$
D. $x^2 + y^2 + 32x - 4y + 235 = 0$

Answer: A

Watch Video Solution

34. If the chord of contact of tangents drawn from the (h, k) to the circle $x^2 + y^2 = a^2$ subtends a right at the centre, then:

A.
$$h^2+k^2=a^2$$

- B. $h^2-k^2=a^2$
- $\mathsf{C}.\,2\big(h^2+k^2\big)=a^2$

D.
$$h^2+k^2=2a^2$$

Answer: D

35. Two circles $x^2 + y^2 = 6$ and $x^2 + y^2 - 6x + 8 = 0$ are given. Then the equation of the circle through their points of intersection and the point (1, 1) is :

A.
$$x^2 + y^2 - 6x + 4 = 0$$

B. $x^2 + y^2 - 3x + 1 = 0$
C. $x^2 + y^2 - 4y + 2 = 0$

D. None of these

Answer: B

Watch Video Solution

36. If a circle passes through the point (a, b) circle $x^2 + y^2 - k^2 = 0$ orthogonally, then the equation of the locus of its centre is :

A.
$$2ax+2by-\left(a^2+b^2+k^2
ight)=0$$

B.
$$2ax + 2by - (a^2 - b^2 + k^2) = 0$$

C. $x^2 + y^2 - 3ax - 4by + (a^2 + b^2 - k^2) = 0$
D. $x^2 + y^2 - 2ax - 3by + (a^2 - b^2 - k^2) = 0$

Answer: A

Watch Video Solution

37. Circles
$$x^2+y^2-2x-4y=0$$
 and $x^2+y^2-8y-4=0$

A. Touch each other externally

- B. Touch each other internally
- C. Do not touch each other
- D. None of these

Answer: B

38.	The	circles	$x^2 + y^2 + 4x + 6y + 3 = 0$	and
$2ig(x^2+y^2ig)+6x+4y+c=0$ will cut orthogonally if c is :				
A. 4				
B. 1	8			
C. 1	2			
C. 1.	Z			
D. 1	6			

Answer: B

Watch Video Solution

39. The equation of the circle described on the common chord of circles $x^2 + y^2 - 8x + y - 15 = 0$ and $x^2 + y^2 - 4x + 4y - 42 = 0$ as diameters is :

A.
$$x^2 + y^2 - x + 2y + 4 = 0$$

B. $x^2 + y^2 + 10x - 2y + 12 = 0$

 $\mathsf{C}.\, x^2 + y^2 - 12x - 2y + 12 = 0$

D.
$$x^2 + y^2 - 5x + 3y + 7 = 0$$

Answer: C

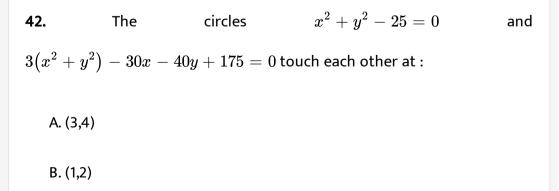
Watch Video Solution

40. The equation of the circle passing through the point (1, 1) and the point of intersection of: $x^2 + y^2 + 13x - 3y = 0$ and $2x^2 + 2y^2 + 4x - 7y - 25 = 0$ is : A. $4x^2 + 4y^2 - 30x - 10y - 25 = 0$ B. $4x^2 + 4y^2 + 30x - 13y - 25 = 0$ C. $4x^2 + 4y^2 - 17x - 10y + 25 = 0$

D. None of these

Answer: B

41. The two circles $x^2+y^2-2x-3=0$ and $x^2+y^2-4x-6y-8=0$ are such that :


A. They intersect each other

B. They touch each other

C. One lies inside the other

D. None of these.

Answer: A

C. (4,5)

D. None of these

Answer: A

Watch Video Solution

43. The circles
$$x^2 + y^2 - 12x - 12y = 0$$
 and $x^2 + y^2 + 6x + 6y = 0$:

A. Intersect in two points

B. Touch each other internally

C. Touch each other externally

D. None of these.

Answer: C

44. Length of the common chord of the circles $: x^2 + y^2 + 2x + 6y = 0$ and $x^2 + y^2 - 4x - 2y - 6 = 0$ is :

A.
$$\frac{2}{5}\sqrt{106}$$

B. $\frac{5}{2}\sqrt{106}$

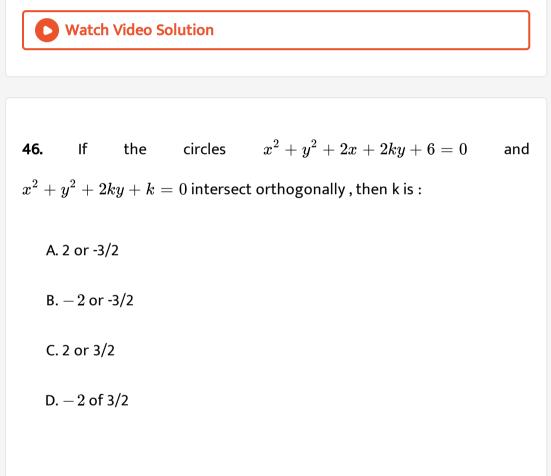
C.
$$\sqrt{106}$$

D. None of these

Answer: A

Watch Video Solution

45. The equation of circle through the intersection of circles: $x^2 + y^2 - 3x - 6y + 8 = 0$ and $x^2 + y^2 - 2x - 4y + 4 = 0$ and touching the line x+2y=5 is :


A.
$$x^2 + y^2 - x - 2y = 0$$

 $\mathsf{B.}\,x^2+y^2=4$

C.
$$x^2 + y^2 + 4 = 0$$

D. None of these

Answer: A

Answer: A

47. The circles whose equations are : $x^2 + y^2 + c^2 = 2ax$ and $x^2 + y^2 + c^2 - 2by = 0$ will touch each other externally if:

A.
$$\frac{1}{c^2} + \frac{1}{a^2} = \frac{1}{b^2}$$

B. $\frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{a^2}$
C. $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}$

D. None of these

Answer: C

Watch Video Solution

48. The circle, which passes through the origin and whose centre lies on the line y = x and cutting the circle $x^2 + y^2 - 4x - 6y + 10 = 0$ orthogonally is :

A.
$$x^2+y^2-x-y=0$$

B.
$$x^2 + y^2 - 6x - 4y = 0$$

C.
$$x^2+y^2-2x-2y=0$$

D.
$$x^2 + y^2 + 2x + 2y = 0$$

Answer: C

Watch Video Solution

49. Length of common chord of the circles: $(x-1)^2+(y+1)^2=r^2$ and $(x+1)^2+(y-1)^2=r^2$ is :

A.
$$\sqrt{r^2-2}$$

B. $r+2$
C. $rac{1}{2}\sqrt{r^2-2}$

D.
$$2\sqrt{r^2-2}$$

Answer: D

50. The point from which the tangents to the circles: $x^2 + y^2 - 8x + 40 = 0, 5x^2 + 5y^2 - 25x + 80 = 0, x^2 + y^2 - 8x + 16y +$ are equal in length is :

A.
$$\left(8, \frac{15}{2}\right)$$

B. $\left(8, -\frac{15}{2}\right)$
C. $\left(-8, \frac{15}{2}\right)$
D. $\left(-8, -\frac{15}{2}\right)$

Answer: B

51. For the two circles: $x^2 + y^2$ =16 and $x^2 + y^2 - 2y$ =0 there :

A. is one pair of common tangents

B. are two pairs of common tangents

C. are three common tangents

D. is no common tangent.

Answer: D

52. The common tangents to the circles $x^2 + y^2 + 2x = 0$ and $x^2 + y^2 - 6x = 0$ form a triangle which is:

A. isosceles

B. equilateral

C. right-angled

D. None of these

Answer: A

53. The equation of the circle, which cuts orthogonally : $x^2 + y^2 + 3x - 5y + 6 = 0$ and $4x^2 + 4y^2 - 28x + 29 = 0$ and whose centre lies on 3x+4y+1=0 is :

A.
$$x^2 + y^2 + \frac{3x}{2} + \frac{5}{4} = 0$$

B. $x^2 + y^2 + \frac{y}{2} + \frac{29}{4} = 0$
C. $x^2 + y^2 + \frac{7x}{2} + \frac{7y}{2} + 5 = 0$

D. None of these

Answer: D

Watch Video Solution

54. Angle of intersection of two circles is given by :

$$egin{aligned} \mathsf{A}.\cos heta&=rac{r_1^2+r_2^2-d^2}{r_1^2r_2^2}\ \mathsf{B}.\sec heta&=rac{r_1^2+r_2^2-d^2}{2r_1^2r_2^2}\ \mathsf{C}.\sec heta&=rac{2r_1r_2}{r_1^2+r_2^2-d^2} \end{aligned}$$

D. None of these

Answer: C

Watch Video Solution

55. The circles $x^2 + y^2 + x + y = 0$ and $x^2 + y^2 + x - y = 0$ intersect at an angle :

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

Answer: C

56. The circles $x^2 + y^2 = r^2$ and $x^2 + y^2 - 10x + 16 = 0$ intersect each

other in distinct points if:

A.rgt8

B. r lt 2

C. 2 lt r lt 8

D. $2 \leq r \leq 8$

Answer: C

Watch Video Solution

57. The triangle PQR is inscribed in the circle $x^2 + y^2 = 25$. If Q and R have coordinates (3, 4) and (- 4, 3) respectively, then $\angle QPR$ is equal to :

A. $\pi/2$

B. $\pi/3$

 $\mathsf{C.}\,\pi\,/\,4$

D. $\pi/6$

Answer: C

58. Let PQ and RS be tangents at the extremities of the diameter PR of a circle of radius r. If PS and RQ intersect at a point X on the circumference of the circle, then 2r equals:

A.
$$\sqrt{\frac{PQ.}{RS}}$$

B. $\frac{PQ + RS}{2}$
C. $\frac{2PQ. RS}{PQ + RS}$
D. $\sqrt{\frac{PQ^2 + RS^2}{2}}$

Answer: A

59. The equation of the tangent to the circle $x^2 + y^2 + 4x - 4y + 4 = 0$ which makes equal intercepts on the positive coordinate axes is:

A. x+4=2 B. $x + y = 2\sqrt{2}$ C. x + y = 4D. x + y = 8

Answer: B

Watch Video Solution

60. The lines 2x - 3y = 5 and 3x - 4y = 7 are diameters of a circle having area

as 154 sq. units. Then the equation of the circle is:

A.
$$x^{2} + y^{2} + 2x - 2y = 47$$

B. $x^{2} + y^{2} - 2x + 2y = 47$
C. $x^{2} + y^{2} - 2x + 2y = 62$

D.
$$x^2 + y^2 + 2x - 2y = 62$$

Answer: B

61. If the tangent at a point P on the circle $x^2 + y^2 + 6x + 6y = 2$, meets the straight line 5x- 2y + 6 = 0 at a point Q on the y-axis, then the length of PQ is:

A. 4 B. 2√5 C. 5

D. $3\sqrt{5}$

Answer: C

62. If a > 2b > 0, then the positive value of m for which $y = mx - b\sqrt{1 - m^2}$ is a common tangent to $x^2 + y^2 = b^2$ and $(x - a)^2 + y^2 = b^2$ is :

A.
$$\frac{2b}{\sqrt{a^2 - 4b^2}}$$
B.
$$\frac{\sqrt{a^2 - 4b^2}}{2b}$$
C.
$$\frac{2b}{a - 2b}$$
D.
$$\frac{b}{a - 2b}$$

Answer: A

63. If two circle
$$(x-1)^2 + (y-3)^2 = r^2$$
 and $x^2 + y^2 - 8x + 2y + 8 = 0$ intersect in

two distinct points, then

A. r lt 2

B.r=2

C. r gt 2

D. 2 lt r lt 8

Answer: D

Watch Video Solution

64. A square is formed by two pairs of straight lines $x^2 - 8x + 12 = 0$ and $y^2 - 14y + 45 = 0$. A circle is inscribed in it. The centre of the circle is:

A. (7,4)

B. (4,7)

C. (6,5)

D. (5,6)

Answer: B

65. A variable circle passes through the fixed point A (p, q) and touches x-axis. The locus of the other end of the diameter through A is :

A.
$$(x-p)^2=4qy$$

B.
$$(x-q)^2=4py$$

$$\mathsf{C.}\left(y-p\right)^{2}=4qx$$

D.
$$\left(y-q
ight)^2=4px$$

Answer: A

Watch Video Solution

66. If a circle passes through the point (a, b) and cuts $x^2 + y^2 = 4$ orthogonally, then the locus of its centre is :

A.
$$2ax+2by+\left(a^2+b^2+4
ight)=0$$

B.
$$2ax + 2by - (a^2 + b^2 + 4) = 0$$

C.
$$2ax - 2by + \left(a^2 + b^2 + 4
ight) = 0$$

D.
$$2ax - 2by - \left(a^2 + b^2 + 4
ight) = 0$$

Answer: B

Watch Video Solution

67. If the lines 2x + 3y + 1 = 0 and 3x - y - 4 = 0 lie along diameters of a circle of circumference 10π , then the equation of the circle is :

A.
$$x^2 + y^2 - 2x + 2y - 23 = 0$$

B. $x^2 + y^2 - 2x - 2y - 23 = 0$
C. $x^2 + y^2 + 2x + 2y - 23 = 0$
D. $x^2 + y^2 + 2x - 2y - 23 = 0$

Answer: A

68. The intercept on the line y = x by the circle $x^2 + y^2 - 2x = 0$ is AB. Equation of the circle on AB as diameter is :

A.
$$x^2 + y^2 - x - y = 0$$

B. $x^2 + y^2 - x + y = 0$
C. $x^2 + y^2 + x + y = 0$
D. $x^2 + y^2 + x - y = 0$

Answer: A

Watch Video Solution

69. If one of the diameters of the circle $x^2 + y^2 - 2x - 6y + 6 = 0$ is a chord to the circle with centre (2, 1), then the radius of the circles is :

A. $\sqrt{3}$

B. $\sqrt{2}$

C. 3

Answer: C

70. The radius of the circle having centre at (2, 1) whose one of the chords is a diameter of the circle :

A. 1

B. 2

C. 3

D. $\sqrt{3}$

Answer: C

Watch Video Solution

Mcqs Level Ii

1. The equation of the circle in the first quadrant touching each coordinate axis at a distance of one unit from the origin is:

A.
$$x^2 + y^2 - 2x - 2y + 1 = 0$$

B. $x^2 + y^2 - 2x - 2y - 1 = 0$
C. $x^2 + y^2 - 2x - 2y = 0$
D. $x^2 + y^2 - 2x + 2y - 1 = 0$

Answer: A

Watch Video Solution

2. The equation of the circle having centre (1, 2) and passing through the point of intersection of the lines: 3x+y=14 and 2x+5y=18 is :

A.
$$x^2 + y^2 - 2x + 4y - 20 = 0$$

B. $x^2 + y^2 - 2x - 4y - 20 = 0$
C. $x^2 + y^2 + 2x - 4y - 20 = 0$

D.
$$x^2 + y^2 + 2x + 4y - 20 = 0$$

Answer: A

3. The area of the circle centred at (1, 2) and passing through (4,6) is :

A. 5π

 $\mathrm{B.}\,10\pi$

 $\mathsf{C.}\,25\pi$

D. None of these

Answer: C

4. Equation of a circle which passes through (3, 6) and touches the axes is:

A.
$$x^2 + y^2 + 6x + 6y + 3 = 0$$

B.
$$x^2 + y^2 - 6x - 6y - 9 = 0$$

C.
$$x^2 + y^2 - 6x - 6y + 9 = 0$$

D. None of these

Answer: C

Watch Video Solution

5. Equation of the circle with centre on the y-axis and pussing through the origin und the point (2, 3) is :

A.
$$3x^2 + 3y^2 - 13y = 0$$

B.
$$3x^2 + 3y^2 + 13x + 3 = 0$$

 $\mathsf{C.}\, 6x^2 + 6y^2 - 26xy = 0$

D.
$$x^2 + y^2 + 13x + 3 = 0$$

Answer: A

6. The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is:

A.
$$x^2 + y^2 = 9a^2$$

B. $x^2 + y^2 = 16a^2$
C. $x^2 + y^2 = 4a^2$
D. $x^2 + y^2 = a^2$

Answer: C

7. The tangent to the circle $x^2 + y^2$ = 9, which is parallel to y-axis and does not lie in the third quadrant, touches the circle at the point:

A. (3,0)

B. (-3,0)

C. (0,3)

D. (0,-3)

Answer: A

Watch Video Solution

8. The angle between the tangents from the origin to the circle $\left(x-7
ight)^2+\left(y+1
ight)^2=25\,\mathrm{is}:$

A.
$$\frac{\pi}{3}$$

B. $\frac{\pi}{6}$
C. $\frac{\pi}{2}$

D.
$$\frac{\pi}{8}$$

Answer: C

Watch Video Solution

9. The circle on the chord x cos α + y sin α -p= 0 of the circle $x^2+y^2-2=0$ as diameter is:

A.
$$x^2+y^2-a^2-2p(x\coslpha+y\sinlpha-p)(x\sinlpha+y\coslpha)=0$$

B.
$$\left(x\coslpha+y\sinlpha-p
ight)^2+x^2+y^2-a^2=0$$

C.
$$x^2+y^2-a^2-2p(x\coslpha+y\sinlpha-p)=0$$

D. None of these

Answer: C

10. The equation to the circle which intersects the circles: $x^2 + y^2 - 6y + 1 = 0$ and $x^2 + y^2 - 4y + 1 = 0$ orthogonally and touch the line 3x+4y+5=0 is given by :

A.
$$4(x^2 + y^2) + 15x - 4 = 0$$

B. $4(x^2 + y^2) + 15x + 4 = 0$
C. $x^2 + y^2 - 1 = 0$
D. $x^2 + y^2 + 1 = 0$

Answer: C

View Text Solution

11. The number of integral values of k for which : $x^2 + y^2 + kx + (1 - k)y + 5 = 0$ represents a circle whose radius cannot exceed 5, is: B. 16

C. 18

D. 20

Answer: B

View Text Solution

12. If the centroid of an equilateral triangle is (1, 1) and its one vertex is (-1,

2), then the equation of the circumcentre is :

A.
$$x^2 + y^2 + 2x + 2y - 3 = 0$$

B.
$$x^2 + y^2 + 2x - 2y - 3 = 0$$

C.
$$x^2 + y^2 - 2x - 2y - 3 = 0$$

D.
$$x^2 + y^2 + 2x + 2y + 3 = 0$$

Answer: C

13. A foot of the normal from the point (4, 3) to a circle is (2, 1) and a diameter of the circle has the equation 2x - y = 2. Then the circle is:

A.
$$x^2 + y^2 - 2x - 1 = 0$$

B. $x^2 + y^2 - 2y - 1 = 0$
C. $x^2 + y^2 + 2x - 1 = 0$

D.
$$x^2 + y^2 + 2y - 1 = 0$$

Answer: A

Watch Video Solution

14. A tangent to the circle $x^2 + y^2 = 1$ through the point (0, 5) cuts the centre $x^2 + y^2 = 4$ at P and Q. The tangents to the circle $x^2 + y^2 = 4$ at P and Q meet at R. Then the co-ordinates of R are :

A.
$$\left(-\frac{8}{5}\sqrt{6}, -\frac{4}{5}\right)$$

$$B.\left(\frac{8}{5}\sqrt{6}, \frac{4}{5}\right)$$
$$C.\left(8, 5\sqrt{6}, -\frac{4}{5}\right)$$

D. None of these

Answer: B

Watch Video Solution

15. The abscissae of two points P and Q are the roots of the equation $x^2 + 2ax - b^2 = 0$ and their ordinates are the roots of the equation $x^2 + 2a'x - b^2 = 0$. Then the radius of the circle having PQ as diameter is :

A.
$$\sqrt{a^2 + a^{\,\prime 2}}$$

B. $\sqrt{b^2 + b^{\,\prime 2}}$
C. $\sqrt{a^2 + b^2 + a^{\,\prime 2} + b^{\,\prime 2}}$

D. None of these

Answer: C

16. If the polar of a point P w.r.t. the circle $x^2+y^2=a^2$ touches the circle

 $\left(x-a
ight)^2+y^2=a^2$, then P lies on:

A.
$$x^2+2ay=a^2$$

$$\mathsf{B.}\,x^2-2ay=a^2$$

$$\mathsf{C}.\,y^2-2ax=a^2$$

D.
$$y^2+2ax=a^2$$

Answer: D

17. The locus of the poles of the line ax + by + c = 0 w.r.t. circles which

touch the x-axis at the origin is:

A. (ax+by)y=cx

B. (bx-ay)y=cx

C. (ax-by)x=cy

D. (ax-by)y=cx

Answer: B

Watch Video Solution

18. Length of tangent drawn from any point on the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ to the circle : $x^2 + y^2 + 2gx + 2fy + c' = 0$ is :

A. $\sqrt{c'-c}$ B. $\sqrt{c-c'}$ C. $\sqrt{cc'}$ D. $\sqrt{\frac{c}{c'}}$

Answer: A

19. The tangents drawn from the origin to the circle : $x^2 + y^2 - 2gx - 2fy + f^2 = 0$ are perpendicular if:

- A. $g^2+f^2=1$
- $\mathsf{B}.\,g^2-f^2=1$
- $\mathsf{C}.\,g^2-f^2=0$
- D. None of these

Answer: C

20. If a circle of constant radius 3k passes through the origin and meets

the axes in A and B, then the locus of the centroid of riangle OAB is :

A.
$$x^2 + y^2 = k^2$$

B. $x^2 + y^2 = 2k^2$
C. $x^2 + y^2 = 3k^2$
D. $x^2 + y^2 = 4k^2$

Answer: D

21. If the chord of contact of tangents from a point P (x_1, y_1) to the circle $x^2 + y^2 = a^2$ touches the circle $(x - a)^2 + y^2 = a^2$, then the locus of (x_1, y_1) is :

A. a circle

B. a parabola

C. an ellipse

D. a hyperbola.

Answer: B

22. The equation of a circle which has a tangent 3x + 4y = 6 and two normals given by (x - 1)(y-2) = 0 is :

A.
$$x^2 + y^2 - 4x - 2y + 4 = 0$$

B. $x^2 + y^2 - 2x - 4y + 4 = 0$
C. $x^2 + y^2 - 2x - 4y + 5 = 0$
D. $(x - 3)^2 + (y - 4)^2 = 25$

Answer: B

23. The tangent to $x^2 + y^2 = 9$, which is parallel to y-axis and does not

lie in the third quadrant, touches the circle at the point :

A. (0,-3)

B. (0,3)

C. (-3,0)

D. (3,0)

Answer: D

Watch Video Solution

24. The circle $x^2 + y^2 - 6x - 10y + k = 0$ does not touch or intersect the x-axis and the point (1, 4) lies inside the circle, then:

A. 25 < k < 29

 $\mathsf{B}.\,9 < k < 25$

 $\mathsf{C}.\,9 < k < 29$

D. None of these.

Answer: A

25. Two tangents to the circle $x^2+y^2=4$ at the points A and B meet at

P (- 4, 0). Then the area of the quadrilateral PAOB, O being the origin, is :

A. 4

B. $4\sqrt{3}$

 $\mathsf{C.}\,6\sqrt{2}$

D. None of these

Answer: B

Watch Video Solution

26. If the radical axis of the circles $x^2 + y^2 + 2gx + 2fy + c = 0$ and $2x^2 + 2y^2 + 3x + 8y + 2c = 0$ touches the circle : $x^2 + y^2 + 2x + 2y + 1 = 0$, then :

A.
$$g=rac{3}{4}, f
eq 2$$

B. $g
eq rac{3}{4}, f=2$
C. $g=rac{3}{4}, f=2$

D. None of these

Answer: C

Watch Video Solution

27. The equation of the circle having its centre on the line x +2y - 3 = 0 and passing through the points of intersection of the circles $x^2 + y^2 - 2x - 4y + 1 = 0$ and $x^2 + y^2 - 4x - 2y + 4 = 0$ is :

A. $x^2 + y^2 - 6x + 7 = 0$ B. $x^2 + y^2 - 3x + 4 = 0$ C. $x^2 + y^2 - 2x - 2y + 1 = 0$ D. $x^2 + y^2 + 2x - 4y + 4 = 0$

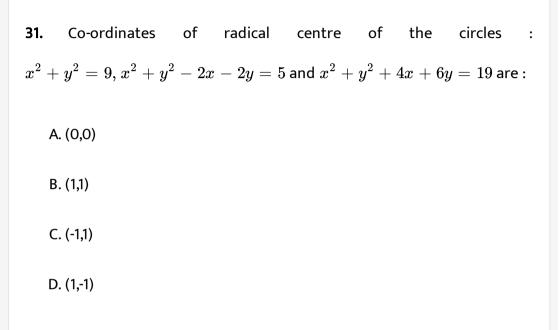
Answer: A

28. The number of common tangents to the circles $x^2 + y^2 = 4$ and $x^2 + y^2 - 6x - 8y - 24 = 0$ is, A. 0 B. 1 C. 3 D. 4

Answer: B

29. Number of common tangents to the circles : $x^2 + y^2 - 6x - 14y + 48 = 0$ and $x^2 + y^2 - 6x = 0$ is :

A. 0	
B. 1	
C. 2	
D. 4	


Answer: D

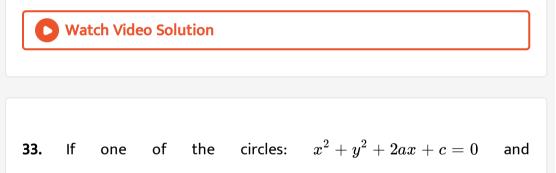
Watch Video Solution

30. The locus of the centre of a circle which cuts orthogonally the circle $x^2 + y^2 - 20x + 4 = 0$ and which touches x = 2 is :

A. $y^2 = 16x$ B. x^2 =16 y C. y^2 =16x+4 D. x^2 = 16y+4

Answer: A

Answer: B


Watch Video Solution

32. The equation of the family of circles, which same radical axis, as the circles :

$$x^2+y^2$$
=4 and $x^2+y^2+2x+4y=6$ is :

A.
$$x^2 + y^2 + 2\lambda x + \lambda y - (4 + \lambda) = 0$$

B. $x^2 + y^2 + \lambda x + 2\lambda y - (4 + \lambda) = 0$
C. $x^2 + y^2 + \lambda (x - 2y - 1) = 4$
D. $x^2 + y^2 + \lambda (x + 2y - 4) = 1$, where λ is a parameter.

Answer: B

 $x^2+y^2+2bx+c=0$ lies within the other , then :

A. ab gt 0, c lt 0

B. ab gt 0, c gt 0

C. ab lt 0, c gt 0

D. None of these

Answer: B

34. The radius of the smallest circle, which passes through the points of intersection of the circles : $x^2 + y^2 + 2x - 3 = 0$ and $x^2 + y^2 + 3x - y = 0$ is : A. 1 B. 2 C. $\sqrt{2}$

D. $\sqrt{3}$

Answer: C

View Text Solution

35. The equation of the four circles are $(x \pm a)^2 + (y \pm a)^2 = a^2$. The radius of the smallest circle, which touches all the four circles, is:

A. $2\sqrt{2}a$

B. $\left(\sqrt{2}-1
ight)a$ C. $\left(\sqrt{2}+1
ight)a$ D. $\left(2+\sqrt{2}
ight)a$

Answer: B

Watch Video Solution

36. The circles : $x^2 + y^2 + 2g_1x - a^2 = 0$ and $x^2 + y^2 + 2g_2x - a^2 = 0$ cut each other orthogonally. Let p_1 and p_2 be the perpendiculars from (0, a) and (0, - a) on the common tangent of these circles. Then p_1p_2 equals :

A.
$$\frac{a^2}{2}$$

B. a^2
C. $a^2 + 2$
D. $2a^2$

Answer: B

37. If the circle $x^2+y^2+2gx+2fy+c=0$ bisects the circumference of the circle $x^2+y^2+2g'x+2f'y+c'=0$, then :

A. 2g(g-g')+2f(f-f')=c'-c

- B. 2g'(g-g')+2f'(f-f')=c-c'
- C. 2g'(g-g')+2f'(f-f')=c'-c
- D. 2g(g-g')+2f(f-f')=c-c'

Answer: B

38. Let AB be a chord of the circle $x^2 + y^2 = a^2$ subtending a right angle

at the centre. Then the locus of the centroid of triangle PAB as P moves

on the circle is:

A. a parabola

B. a circle

C. an ellipse

D. a pair of st. lines

Answer: B

Watch Video Solution

39. Locus of centroid of the triangle whose vertices are (a cos t, a sin t),(b sin t , - b cos 1) and (1, 0), where 't' is a parameter, is :

A.
$$(3x - 1)^2 + (3x)^2 = a^2 + b^2$$

B. $(3x + 1)^2 + (3y)^2 = a^2 + b^2$
C. $(3x + 1)^2 + (3y)^2 = a^2 - b^2$
D. $(3x - 1)^3 + (3y)^2 = a^2 - b^2$

40. If the circles $x^2 + y^2 + 2ax + cy + a = 0$ and $x^2 + y^2 - 3ax + dy - 1 = 0$ intersect in two distinct points P and Q, then the line 5x + by - a = 0 passes through P and Q for :

A. no value of a

B. exactly one value of a

C. exactly two values of a

D. infinitely many values of a.

Answer: A

41. If a circle passes through the point (a, b) and cuts the circle $x^2 + y^2 = p^2$ orthogonally, then the equation of the locus of its centre is:

A.
$$2ax + 2by - (a^2 - b^2 + p^2) = 0$$

B. $x^2 + y^2 - 3ax - 4by + (a^2 + b^2 - p^2) = 0$
C. $2ax + 2by - (a^2 + b^2 + p^2) = 0$
D. $x^2 + y^2 - 2ax - 3by + (a^2 - b^2 - p^2) = 0$

Answer: C

Watch Video Solution

42. If the pair of lines $ax^2 + 2(a + b)xy + by^2 = 0$ lie along diameters of a circle and divide the circle into four sectors such that the area of one of the sectors is thrice the area of another sectors, then:

A.
$$3a^2 - 2ab + 3b^2 = 0$$

B.
$$3a^2 - 10ab + 3b^2 = 0$$

$$\mathsf{C.}\, 3a^2 + 2ab + 3b^2 = 0$$

D.
$$3a^2 + 10ab + 3b^2 = 0$$

Answer: C

Watch Video Solution

43. If the lines 3x - 4y - 7 = 0 and 2x - 3y - 5 = 0 are two diameters of a circle

of area 49π square units, then the equation of the circle is:

A.
$$x^2 + y^2 + 2x - 2y - 47 = 0$$

B. $x^2 + y^2 + 2x - 2y - 62 = 0$
C. $x^2 + y^2 - 2x + 2y - 62 = 0$
D. $x^2 + y^2 - 2x + 2y - 47 = 0$

Answer: D

44. Let 'C' be the circle with centre (0,0) and radius 3 units. The equation of the locus of the mid points of chords of the circle 'C' that subtend an angle of $2\pi/3$ at its centre is:

A. $x^2 + y^2 = rac{3}{2}$ B. $x^2 + y^2 = 1$ C. $x^2 + y^2 = rac{27}{4}$ D. $x^2 + y^2 = rac{9}{4}$

Answer: D

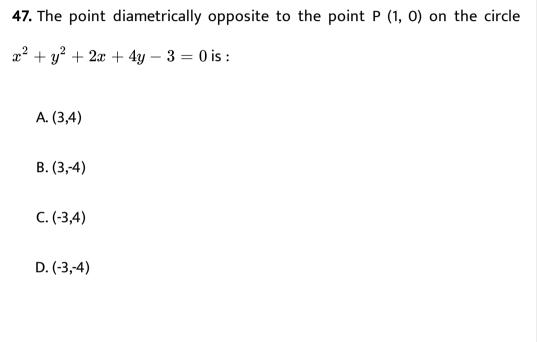
Watch Video Solution

45. Let ABCD be a quadrilateral with area 18, with side AB parallel to the side CD and AB = 2 CD. Let AD be perpendicular to AB and CD. If a circle is drawn inside the quadrilateral ABCD touching all the sides, then its radius

A. 3

B. 2 C. $\frac{3}{2}$

D. 1


Answer: B

46. Consider a family of circles which are passing through the point (-1, 1) and are tangent to x-axis. If (h,k) are the co-ordinates of the centre of the circle, then the set of values of k is given by the interval :

A.
$$k \geq rac{1}{2}$$

B. $-rac{1}{2} \leq k \leq rac{1}{2}$
C. $k \leq rac{1}{2}$
D. $0 < k < rac{1}{2}$

Answer: D

48. If P and Q are the points of intersection of the circles $x^2 + y^2 + 3x + 7y + 2p - 5 = 0$ and $x^2 + y^2 + 2x + 2y - p^2 = 0$, then

there is a circle passing through P, Q and (1, 1) for :

A. all values of p

B. all except one value of p

C. all except two values of p

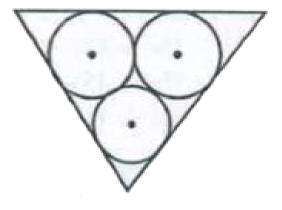
D. exactly one value of p.

Answer: B

Watch Video Solution

49. If a variable circle 'C' touches the x-axis and touches the circle $x^2 + (y-1)^2 = 1$ externally, then the locus of centre of 'C' can be:

A.
$$x^2 = 4y \cup \{(0,4) \colon y < 0\}$$


B.
$$(x-1)^2 + y^2 = 1$$

$$\mathsf{C}.\,x^2 = 4y$$

D.
$$x^2 = 4y \cup \{(0,y) : y \in R\}$$

Watch Video Solution

50. Three coins of unit radius are placed in an equilateral triangle as shown in the following figure. The area of that equilateral triangle is :

- A. $6+4\sqrt{3}$
- B. $20 + 8\sqrt{3}$
- $\mathsf{C.}\,7+4\sqrt{3}$

D. None of these

51. Tangents drawn from the point P (1, 8) to the circle $x^2 + y^2 - 6x - 4y - 11 = 0$ touch the circle at the points A and B. The equation of the circumcircle of the triangle PAB is:

A.
$$x^2 + y^2 + 4x - 6y + 19 = 0$$

B. $x^2 + y^2 - 4x - 10y + 19 = 0$
C. $x^2 + y^2 - 2x + 6y - 29 = 0$
D. $x^2 + y^2 - 6x - 4y + 19 = 0$

Answer: B

Watch Video Solution

Aieee Jee Examination

1. The circle $x^2 + y^2 = 4x + 8y + 5$ intersects the line 3x-4y=m at two distinct points if :

A. -85 lt m lt -35

 ${\rm B.} - 35 < m < 15$

C. 15 lt m lt 65

D. 35 lt m lt 85

Answer: B

Watch Video Solution

2. The two circles : $x^2 + y^2 = ax$ and $x^2 + y^2 = c^2$ (c > 0) touch each other if :

A. 2|a|=c

B. |a|=c

C. a=2c

D. |a|=2c

Answer: B

3. The circle passing through the point (-1,0) and touching the y-axis at (0,

2) also passes through the point:

A.
$$\left(-\frac{3}{2},0\right)$$

B. $\left(-\frac{5}{2},2\right)$
C. $\left(-\frac{3}{2},\frac{5}{2}\right)$
D. (-4,0)

Answer: D

4. The equation of the circle passing through the points (1, 0) and (0, 1) and having smallest radius is :

A.
$$x^2 + y^2 - 2x - 2y + 1 = 0$$

B. $x^2 + y^2 - x - y = 0$
C. $x^2 + y^2 + 2x + 2y - 7 = 0$
D. $x^2 + y^2 + x + y - 2 = 0$

Answer: B

Watch Video Solution

5. The length of the diameter of the circle which touches the x-axis at the point (1, 0) and passes through the point (2, 3) is:

A.
$$\frac{10}{3}$$

B. $\frac{3}{5}$
C. $\frac{6}{5}$

D.
$$\frac{5}{3}$$

Watch Video Solution

6. The locus of the mid-point of the chord of contact of tangents drawn from points lying on the straight line 4x - 5y = 20 to the circle $x^2 + y^2 = 9$ is:

A.
$$20ig(x^2+y^2ig) - 36x + 45y = 0$$

B.
$$20 ig(x^2 + y^2ig) + 36x - 45y = 0$$

C.
$$36 ig(x^2 + y^2ig) - 20x + 45y = 0$$

D.
$$36ig(x^2+y^2ig)+20x-45y=0$$

Answer: A

7. The circle passing through (1.-2) and touching the axis of x at (3, 0) also passes through the point:

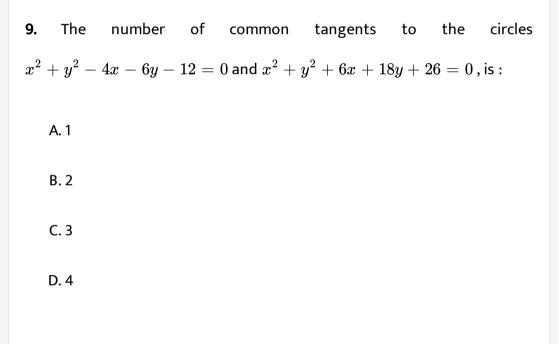
A. (2,-5) B. (5,-2)

C. (-2,5)

D. (-5,2)

Answer: B

Watch Video Solution


8. Let C be the circle with centre at (1, 1) and radius = 1. If T is the circle centred at (0, y), passing through origin and touching the circle C externally, then the radius of T is equal to :

A.
$$\frac{\sqrt{3}}{2}$$

B. $\frac{1}{2}$

C.
$$\frac{1}{4}$$

D. $\frac{\sqrt{3}}{\sqrt{2}}$

Answer: C

Answer: C

1. Two circles are centred at (2, 3) and (5, 6,) which intersect each other. If the radii are equal, the equation of the common chord is:

A. x-y-8=0

B. x+y-8=0

C. x-y+1=0

D. x+y+1=0

Answer: B

Watch Video Solution

2. Equation of the circle centred at (4, 3), touching the circle $x^2 + y^2 = 1$

externally is:

A.
$$x^2 + y^2 - 8x + 6y + 9 = 0$$

B.
$$x^2 + y^2 + 8x - 6y + 9 = 0$$

C. $x^2 + y^2 + 8x + 6y + 9 = 0$
D. $x^2 + y^2 - 8x - 6y + 9 = 0$

Answer: D

Watch Video Solution

3. The points (1,0),(0,1),(0,0) and (2k,3k), $k \neq 0$ are concyclic if k =

A.
$$\frac{5}{13}$$

B. $\frac{-5}{13}$
C. $-\frac{1}{5}$
D. $\frac{1}{5}$

Answer: A

4. The circle $x^2 + y^2 - 8x + 4y + 4 = 0$ touches

A. y-axis but not x -axis

B. x-axis but not y-axis

C. both x and y axes

D. neither x-axis nor y-axis.

Answer: A

Watch Video Solution

5. The Locus of the centre of the circle of radius 3, which rolls on the outside of the circle $x^2 + y^2 + 3x - 6y - 9 = 0$ is :

A.
$$x^2 + y^2 + 3x - 6y - 31 = 0$$

B. $x^2 + y^2 + 3x - 6y - \frac{29}{4} = 0$
C. $x^2 + y^2 + 3x - 6y - 45 = 0$
D. $x^2 + y^2 + 3x - 6y + 31 = 0$

Answer: C

~		Video	Solution
	vvalch	video	SOlution

6. The length of the chord of the circle $x^2 + y^2 + 3x + 2y - 8 = 0$ intercepted by the y-axis is

A. 3 B. 8 C. 9 D. 6

Answer: D

7. The number of real circles culting orthogonally the circle $x^2+y^2+2x-2y+7=0$ is

A. 0

B. 1

C. 2

D. infinitely many

Answer: A

Watch Video Solution

8. Equation of circle with centre (-a, -b) and radius $\sqrt{a^2-b^2}$ is

A.
$$x^2 + y^2 - 2ax - 2by - 2b^2 = 0$$

B.
$$x^2+y^2+2ax+2by+2a^2=0$$

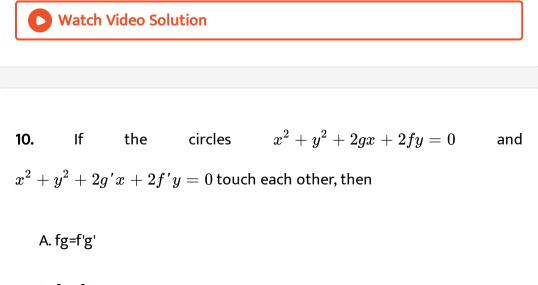
C.
$$x^2 + y^2 + 2ax + 2by + 2b^2 = 0$$

D.
$$x^2 + y^2 - 2ax - 2by + 2b^2 = 0$$

Answer: C

9. If a circle with the point (-1, 1) as the centre touches the line x + 2y + 9 =

0, then the co-ordinates of the point of contact are:

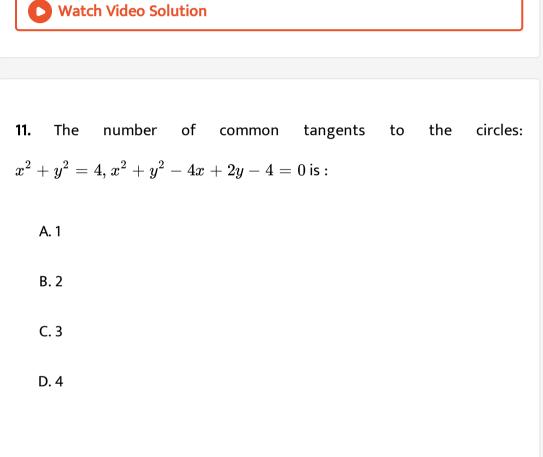

A. (-3,3)

B. (-3,-3)

C. (0,0)

 $\mathsf{D}.\left(\frac{7}{3},\frac{17}{3}\right)$

Answer: B



B. f'g=fg'

C. ff'=gg'

D. None of these

Answer: B

Answer: B

12. The length of the tangent drawn from any point on the circle : $x^2 + y^2 - 4x + 2y - 4 = 0$ to the circle $x^2 + y^2 - 4x + 6y = 0$ is :

A. 8

B.4

C. 2

D. None of these

Answer: C