

MATHS

BOOKS - MODERN PUBLICATION MATHS (KANNADA ENGLISH)

DIFFERENTIAL EQUATIONS

Multiple Choice Questions Level I

1. The solution of the differential equations

$$2x\frac{dy}{dx} - y = 3$$
 re[resemts a family of :

A. straight lines

B. circles

C. parabolas

D. ellipses

Answer: C

2. The integrating factor of the differential equation:

 $rac{dy}{dx}(x\log x) + y = 2\log x$ is :

A.
$$e^x$$

 $B.\log x$

C. log (logx)

D. x

Answer: B

3. Solution of the differential equation

$$rac{dx}{x}+rac{dy}{y}=0$$
 is

A.
$$\dfrac{1}{x}+\dfrac{1}{y}=c$$

$$B. \log x. \log y = c$$

$$\mathsf{C}.\,xy=c$$

D.
$$x + y = c$$

Answer: C

Watch Video Solution

4. Find the general solution of the differential equation $x \frac{dy}{dx} + 2y = x^2, (x
eq 0)$

A.
$$y=rac{x^2+c}{4x^2}$$

$$\mathtt{B.}\,y = \frac{x^2}{4} + c$$

C.
$$y=rac{x^4+c}{x^2}$$

D. $y=rac{x^4+c}{4x^2}$

D.
$$y=rac{x^4+}{4x^2}$$

Answer: D

Watch Video Solution

The differential equation $y rac{dy}{dx} + x = c$ 5. represents

A. Family of hyperbolas

B. Family of parabolas

C. Family of ellipses

D. Family of circles.

Answer: D

Watch Video Solution

6. The general solution $e^x \cos y dx - e^x \sin y dy = 0$ is :

of

A. $e^x \cos y = k$

 $B. e^x \sin y = k$

 $\mathsf{C.}\,e^x=k\cos y$

 $\mathsf{D.}\,e^x=k\sin y.$

Answer: A

Watch Video Solution

7. Family $y=Ax+A^3$ of curves will correspond to a differential equation of order :

A. 3

B. 2

C. 1

D. not defined

Answer: C

8. General solution of $\dfrac{dy}{dx} + y \tan x = \sec x$ is :

A.
$$y \sec x = \tan x + c$$

B. y tan
$$x = \sec x + c$$

C.
$$tan x = y tan x + c$$

D.
$$x \sec x = \tan y + c$$

Answer: A

9. The general solution of $\dfrac{dy}{dx}=2xe^{x^2-y}$ is

A.
$$e^{x^2-y}=c$$

$$\mathsf{B.}\,x^{-y} + e^{x^2} = c$$

$$\mathsf{C.}\, e^y = e^{x^2} + c$$

$$\mathsf{D.}\,e^{x^2}+y=c$$

Answer: C

Watch Video Solution

10. The solution of $\frac{dy}{dx}+y=e^{-x},$ y(0)=0 is :

A.
$$y=e^x(x-1)$$

B.
$$y = xe^{-x}$$

C.
$$y = x e^{-x} + 1$$

D.
$$y = (x+1)e^{-x}$$

Answer: B

11. The order of the differential equation whose general solution is given by
$$y=(C_1+C_2)\cos(x+C_3)-C_4e^{x+c_5},$$
 where

 $C_1,\,C_2,\,C_3,\,C_4,\,C_5$ are aritrary constants , is :

- A. 5
- B. 4
- C. 3
- D. 2

Answer: C

Watch Video Solution

12. If f(x) and g(x) are two solutions of the differential equations a $\frac{d^2y}{dx^2} + x^2\frac{dy}{dx} + y = e^x$, then f(x) - g(X) is the solution of :

$$y=e^{x}$$

A.
$$a^2rac{d^2y}{dx^2}+rac{dy}{dx}+y=e^x$$

$$y = e^x$$

$$y = e^x$$

$$y=e^x$$

$$y=e^{x}$$

$$e^x = e^x$$

$$y = e$$

$$y = \epsilon$$

$$_{\scriptscriptstyle -} x$$

$$y =$$

13. The solution of the differential equation

$$e^x$$

$$-y =$$

$$_{ ilde{-}}x$$

$$\vdash y$$
 —

$$=e^x$$

B.
$$a^2rac{d^2y}{dx^2}+y=e^x$$

$$dx^2$$

$$\frac{l^2y}{}$$

$$\mathsf{C}.\,a\frac{d^2y}{d^2y}$$
 +

$$a\frac{d^2y}{dx^2} + y =$$

C.
$$a \frac{d^2y}{2} + \frac{d^2y}{2}$$

Answer: D

$$\frac{l^2y}{l^2} + y = 0$$

$$\mathsf{C.}\,a\frac{d^2y}{dx^2}+y=e^x$$

Watch Video Solution

 $rac{dy}{dx}+rac{y}{x}=x^2$ is :

 $A. x + y = \frac{x^2}{2} + c$

$$rac{d^2y}{dx^2} + y = e^a$$

$$rac{dy}{dx^2} + y = e^x$$

$$\frac{y}{2} + y = e^x$$

$$y + y = e^x$$

D. $arac{d^2y}{dx^2}+x^2rac{dy}{dx}+y=0$

$$rac{dy}{dx^2} + y = e^x$$

$$rac{y}{2} + y = e^x$$

$$\operatorname{B.} x - y = \frac{1}{3}x^3 + c$$

$$\mathsf{C}.\, xy = rac{1}{4} x^4 + c$$

D.
$$y-x=rac{1}{4}x^4+c$$

Answer: C

Watch Video Solution

14. Solution of differential equation :

$$dy - \sin x \sin y dx = 0$$
 is :

A.
$$e^{\cos x} \tan \frac{y}{2} = c$$

B.
$$e^{\cos x} \tan y = c$$

 $\mathsf{C}.\cos x \tan y = c$

 $\mathsf{D}.\cos x\sin y=c$

Answer: A

Watch Video Solution

15. Solution of differential equation :

$$rac{dy}{dx} + ay = e^{mx}$$
 is :

$$A. (a+m)y = e^{mx} + c$$

B.
$$ye^{ax} = me^{\max} + c$$

$$\mathsf{C.}\, y = e^{mx} + ce^{-ax}$$

D.
$$(a + m)y = e^{mx} + ce^{-ax}$$

Answer: D

16. The general solution of
$$(1+x)ydx=(1-y)xdy$$
 is :

A.
$$x - y + \log(x/y) = c$$

$$\mathsf{B.}\,x + y + \log(xy) = c$$

$$\mathsf{C.}\,x + y + \log(x/y) = c$$

$$\mathsf{D}.\,x-y+\log(xy)=c$$

Answer: C

Watch Video Solution

17. The general solution of the differential equations $: x(1+y^2)dx + y(1+x^2)dy = 0$ is :

A.
$$\left(1+x^2\right)\left(1+y^2\right)=c$$

B.
$$(1+x^2) = c(1+y^2)$$

C.
$$(1+y^4) = c(1+x^2)$$

D.
$$\left(1+x^2\right)\left(1+y^2\right)=0$$
, is constant.

Answer: A

18. Equation of the curve passing through , (3,9) ,

which satisfies the differential equation $rac{dy}{dx}=x+rac{1}{x^2}, \ ext{is}:$

A. $6xy = 3x^3 - 29x + 6$

 $B. 6xy = 3x^3 - 6 + 29x$

 $\mathsf{C.}\,6xy = 3x^3 - 6x$

D. None of these

Answer: B

19. The differential equation of all parabolas having their axes of symmetry coinciding with the x- axis is .

A.
$$xy_2 + y_1 = 0$$

$$B. yy_2 + y_1^2 = 0$$

C.
$$xy_1 + y_2 = 0$$

D. None of these

Answer: B

20. A particle moves in a st. line with a velocity given by $\frac{dx}{dt}=x+1$, (x is the distacne descirbed) . The time taken by a prticle to transverse a distance of 99 metres is :

A.
$$2\log_{10}e$$

B.
$$\log_{10} e$$

C.
$$2\log_e 10$$

D. None of these

Answer: C

21. Family of curves $y=e^x(A\cos x+B\sin x)$ represents the differential equation :

A.
$$rac{d^2y}{dx^2}=2rac{dy}{dx}-y$$

B.
$$rac{d^2y}{dx^2}=2rac{dy}{dx}-2y$$

C.
$$rac{d^2y}{dx^2}=arac{dy}{dx}-2y$$

D.
$$rac{d^2y}{dx^2}=2rac{dy}{dx}+y$$

Answer: B

22. A solution of the differential differential

equation
$$\left(rac{dy}{dx}
ight)^2 - xrac{dy}{dx} + y = 0$$
 is :

A.
$$y = 2$$

$$B. y = 2x$$

C.
$$y = 2x - 4$$

D.
$$y=2x^2-4$$

Answer: C

23. The degree of the differential equation :

$$rac{d^3y}{dx^3}+7igg(rac{d^2y}{dx^2}igg)^2=x^2\lograc{d^2y}{dx^2}$$
 is :

A. 2

B. 3

C. 1

D. None of these

Answer: D

24. The degree of the differential equation of all curves having normal of constant length c is :

- A. 2
- B. 3
- C. 4
- D. None of these

Answer: A

25. The solution of $\dfrac{dy}{dx}=\dfrac{px+q}{ry+s}$ represents a parabola if :

A.
$$p = 0$$
, $r = 0$

B.
$$p = 1, q = 2$$

C.
$$p=0, r
eq 0$$

D.
$$p = 1, r = 1$$

Answer: C

26. The differential equations of all conics having centre at te origin is of order :

A. 2

B. 3

C. 4

D. 5

Answer: B

27. If f(x)=f'(x) and f(1)=2 , then f(3) equals:

A.
$$e^2$$

B.
$$2e^2$$

$$\mathsf{C.}\,3e^2$$

D.
$$4e^2$$

Answer: B

28. The family $y=ax+a^3$ of curves is represented by the differential equation of degree .

- A. one
- B. two
- C. three
- D. None of these

Answer: A

29. Solution of the differential equation

$$xdy - ydx = 0$$

represents a

A. a st. line passing through (0,0)

B. circle having centre at (0,0)

C. parabola having vertex at (0,0)

D. a rectangular hyperbola

Answer: A

30. Integral curve staisfying $\dfrac{dy}{dx}=\dfrac{x^2+y^2}{x^2-y^2}$, y (1) =

1 has the slope at the point (1,0) of the curve equal

to:

A. - 1

B. 1

C. - 5/3

D.5/3

Answer: B

31. The differential equation $y\frac{dy}{dx}+x=a$ (a being a constant) represents :

A. set of circles with centres on x - axis

B. set of circles with centres on y - axis

C. set of parabolas

D. set of ellipses

Answer: A

A. a st . line

B. a circle

C. a parabola

D. a point

Answer: A

33. Solution of
$$\frac{d^2y}{dx^2} = \log x$$
 is

A.
$$y=rac{1}{2}x^2\log x-rac{3}{4}x^2+C_1x+C_2$$

B.
$$y=rac{1}{2}x^2\log x+rac{3}{4}x^2+C_1x+C_2$$

C.
$$y=rac{-1}{2}x^2\log x-rac{3}{4}x^2+C_1x+C_2$$

D. None of these

Answer: A

Watch Video Solution

34. The differential equation of all non - vertical lines in a plane is:

A.
$$rac{d^2y}{dx^2}=0$$

B.
$$rac{d^2x}{dy^2}=0$$

C.
$$rac{dy}{dx}=0$$

D.
$$rac{dx}{dy}=0$$
.

Answer: A

Watch Video Solution

35. The solution of the equation $\dfrac{d^2y}{dx^2}=e^{-2x}$ is :

A.
$$\frac{1}{4}e^{-2x}$$

B.
$$\frac{1}{4}e^{-2x} + cx + d$$

C.
$$\frac{1}{4}e^{-2x} + cx^2 + d$$

D.
$$\frac{1}{4}e^{-2x} + cx + d$$
.

Answer: B

Watch Video Solution

36. The order and degree of the differential equation $\left(1+3\frac{dy}{dx}\right)^{2/3}=4\frac{d^3y}{dx^3}$ are :

A.
$$\left(1, \frac{2}{3}\right)$$

B.(3,1)

C.(3,3)

D.(1,2)

Answer: C

37. The degree and order of the differential equation of the family of all parabolas whose axis is x - axis, are respectively:

A. 1,2

B.3,2

C. 2,3

D. 2,1

Answer: A

Watch video Solution

38. The differential equation for the family of curves $x^2+y^2-2ay=0$, where a is an arbitrary constant , is :

A.
$$2(x^2 - y^2)y' = xy$$

$$\mathsf{B.}\, 2\big(x^2+y^2\big)y'=xy$$

$$\mathsf{C.}\,\big(x^2-y^2\big)y'=2xy$$

D.
$$\left(x^2+y^2\right)y'=2xy$$

Answer: C

39. The differential equation representing the family of curves $y^2=2c\big(x+\sqrt{c}\big)$, where c>0 , is a parameter is of order and degree as follows :

- A. order 1, degree 1
- B. order 1, degree 2
- C. order 2, degree 2
- D. order 1, degree 3

Answer: D

40. The differential equation which represents the family of curves $y=c_1e^{c_2x}$ where c_1 and c_2 are arbitrary constants , is :

A.
$$y'=y^2$$

$$\mathsf{B}.\,y$$
 '' $=y$ ' y

$$\mathsf{C}.\,yy'\,'=y'$$

D.
$$yy'' = (y')^2$$

Answer: D

Multiple Choice Questions Level Ii

1. The solution of the differential equation

$$x^2rac{dy}{dx}-xy=1+\cosrac{y}{x}$$
 is

A.
$$an rac{y}{2x} = c - rac{1}{2x^2}$$

$$\operatorname{B.}\tan\frac{y}{x} = c + \frac{1}{x}$$

$$\mathsf{C.}\cos\frac{y}{x} = 1 + \frac{c}{x}$$

D.
$$x^{2} = (c + x^{2}) \cdot \tan \frac{y}{x}$$
.

Answer: A

2. The solution of the equation $x+y\frac{dy}{dx}=2y$ is :

A.
$$\log\Bigl(rac{x}{x-y}\Bigr)=c+y-x$$

$$\mathsf{B.}\log(y-x) = c + \frac{x}{y-x}$$

C.
$$xy^2=c^2(x+2y)$$

D.
$$y^2=cig(x^2+2yig)$$

Answer: B

3. The differential equation of all circles which pass

through origin and whose centres lie on y - axis is :

A.
$$\left(x^2-y^2
ight)rac{dy}{dx}-2xy=0$$

$$\mathsf{B.}\,\big(x^2-y^2\big)\frac{dy}{dx}+2xy=0$$

C.
$$\left(x^2-y^2\right)rac{dy}{dx}-xy=0$$

D.
$$\left(x^2-y^2\right)rac{dy}{dx}+xy=0$$

Answer: A

4. The curve for which the slope of the tangent at any point equals the ratio of the abscissa to the ordinate of the point is:

A. an ellipse

B. a circle

C. a rectangular hyperbola

D. None of these

Answer: C

5. The slope of the tangent at (x,y) to a curve passing through $(1,\pi/4)$ is given by $\frac{y}{x}-\cos^2\frac{y}{x}$

A.
$$y = x an^{-1} [\log e / x]$$

, then the equation of the curve is :

B.
$$y = an^{-1} \log(e/x)$$

$$\mathsf{C}.\,y = x\tan^{-1}(x/e)$$

D. None of these

Answer: A

6. Solution of y $dx - xdy = x^2$ ydx is :

A.
$$ye^{x^2}=cx^2$$

$$\mathsf{B.}\, ye^{\,-\,x^2} = cx^2$$

C.
$$y^2e^{x^2}=cx^2$$

D.
$$y^2e^{-x^2}=cx^2$$

Answer: C

7.

Solution

of

$$(x+y-1)dx + (2x+3y-3)dy = 0$$
 is :

A.
$$y+x+\log(x+y-2)=c$$

$$\mathsf{B}.\,y + 2x + \log(x + y - 2) = c$$

C.
$$2y + x + \log(x + y - 2) = c$$

D.
$$2y + 2x + \log(x + y - 2) = c$$

Answer: B

8. The equation of the curve, which does not pass through (0,0) and having the portion of the tangent included between the co - ordinate axes is bisected at the point of contact, is:

A. a st. line or an ellipse

B. a circle or an ellipse

C. a parabola

D. a hyperbola

Answer: D

9. The solution of the differential equation:

$$\left(1+y^2
ight)+\left(x-e^{ an^{-1}y}
ight)rac{dy}{dx}=0$$
 is :

A.
$$2xe^{ an^{-1}y} = e^{2 an^{-1}y} + k$$

$$\operatorname{B.} x e^{\tan^{-1} y} = \tan^{-1} y + k$$

C.
$$xe^{2\tan^{-1}y} = e^{\tan^{-1}y} + k$$

D.
$$(x-2) = ke^{-\tan^{-1}y}$$

Answer: A

is

$$(t+1)rac{dy}{dx}-ty=1,$$
 $y(0)=-1$ At $t=1,$ the

soulution is:

A.
$$e + \frac{1}{2}$$

$$\mathsf{B.}-\frac{1}{2}$$

c.
$$\frac{1}{2}$$

D.
$$e-rac{1}{2}$$

Answer: B

11. The differential equation for the family of curves $x^2+y^2-2ay=0$, where a is an arbitrary constant , is :

A.
$$(x^2-y^2)y'=xy$$

B.
$$2(x^2+y^2)y'=xy$$

C.
$$\left(x^2-y^2\right)y'=2xy$$

D.
$$\left(x^2+y^2\right)y'=2xy$$

Answer: C

12. The solution of the differential equation :

$$ydx+ig(x+x^2yig)dy=0$$
 is :

A.
$$\frac{1}{xy} + \log y = 0$$

$$\mathtt{B.} - \frac{1}{xy} + \log y = c$$

$$\mathsf{C.} - \frac{1}{xy} = c$$

$$D. \log y = cx$$

Answer: B

13. If $x\frac{dy}{dx}=y(\log y-\log x+1)$, then the solution of the equation is :

A.
$$x \log \left(\frac{y}{x} \right) = cy$$

$$\mathsf{B}.\,y\log\!\left(\frac{x}{y}\right) = cx$$

$$\mathsf{C.}\log\Bigl(\frac{x}{y}\Bigr) = cy$$

$$D.\log\left(\frac{y}{x}\right) = cx$$

Answer: D

14. x dy=y $dx+y^2$ and y(1)=1 , then y

(-3) is equal to:

A. 1

B. 5

C. 4

D. 3

Answer: D

15. The differential equation whose solution is $Ax^2+By^2=1$, where A and B are arbitrary constants , is of :

A. second order and second degree

B. first order and second degree

C. first order and first degree

D. second order and first degree

Answer: D

16. The differential equation of all circles passing through the origin and having their centres on the x - axis is :

A.
$$x^2=y^2+3xyrac{dy}{dx}$$

B.
$$y^2=x^2+2xyrac{dy}{dx}$$

C.
$$y^2=x^2-2xyrac{dy}{dx}$$

D.
$$x^2=y^2+xyrac{dy}{dx}$$

Answer: B

17. The normal to a curve at P (x,y) meets the x - axis at G . If the distance of G from the origin is twice the abscissa of P, then the curve is a :

A. parabola

B. circle

C. hyperbola

D. ellipse

Answer: C

18.

If

$$y=y(x) ext{ and } rac{2+\sin x}{y+1}igg(rac{dy}{dx}igg)= \ -\cos x, y(0)=1$$

$$\mathsf{C.}-rac{1}{3}$$

then $y\left(\frac{\pi}{2}\right)$ equals :

A. $\frac{1}{3}$

B. $\frac{2}{3}$

D. 1

Answer: A

19. If
$$\left(x^2+y^2\right)dy=xy$$
 dxand y (1) = 1 . If $f(x_0)=e,$ then x_0 is equal to :

A.
$$e\sqrt{2}$$

B.
$$e\sqrt{3}$$

$$\mathsf{C.}\,2e$$

D.
$$e\sqrt{5}$$

Answer: B

20. The differential equation : $\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{y}$ determines a family of circles with :

A. variable radius and a fixed centre at (0,1)

B. variable radius and a fixed centre at (0,-1)

C. fixed radius 1 and variable centres along x - axis.

D. fixed radius 1 and variable centres along y -

Answer: C

Latest Questions From Aieee Jee Examinations

1. The solution of differential equation

$$\cos x dy = y (\sin x - y) dx, \, 0 < x < \pi/2$$
 is

$$A. \sec x = (\tan x + c)y$$

$$B. y \sec x = \tan x + c$$

$$\mathsf{C}.\,y\tan x = \sec x + c$$

$$\mathsf{D}.\tan x = (\sec x + c)y$$

Answer: A

rattii video Solution

2. If
$$\displaystyle \frac{dy}{dx} = y+3 > 0 \, ext{ and } \, y(0) = 2$$
, then y (ln 2)

is equal to:

A. 7

B. 5

C. 13

D.-2

Answer: A

3. Let I be the purchase value of an equipment and v (t) be the value after it has been used for t years. The value v (t) depriciates at a rate given by the differential equation $\frac{dv(t)}{dt}=-k(T-t)$, where k>0 is a constant and T is the total life in years of the equipment . Then the scrap value v (t) of the equipment is :

A.
$$T^2 - \frac{I}{K}$$

$$\mathsf{B.}\,I - \frac{kT^2}{2}$$

$$\mathsf{C.}\,I - \frac{k(T-t)^2}{2}$$

D.
$$e^{-kt}$$

Answer: B

Watch Video Solution

4. Consider the differential equation $y^2 dx + \left(x - \frac{1}{u}\right) dy = 0$ if y(1) = 1 then x is

A.
$$4-rac{2}{y}-rac{e^{1/y}}{e}$$

$$\texttt{B.}\,3-\frac{1}{y}+\frac{e^{1/y}}{e}$$

$$\mathsf{C.1} + \frac{1}{y} + \frac{e^{1/y}}{e}$$

D.
$$1 - \frac{1}{y} + \frac{e^{1/y}}{e}$$

Answer: C

5. The curve that passes through the point (2,3) and has the property that the segment of any tangent to it lying between the co - ordinate axes is bisected by the point of contact is given by :

A.
$$2y - 3x = 0$$

$$\mathsf{B.}\,y = \frac{6}{x}$$

C.
$$x^2 + y^2 = 13$$

D.
$$\left(\frac{x}{2}\right)^2+\left(\frac{y}{3}\right)^2=2$$

Answer: B

6. The population p (t) at time t of a cetrain mouse species satisfies the differential equation $\frac{dp(t)}{dt}=0.5pt-450 \text{ . If p (0) = 850 , then the time}$ at which the population becomes zero is :

A.
$$2l_n 18$$

B.
$$l_n 9$$

c.
$$\frac{1}{2}l_n 18$$

D.
$$l_n 18$$

Answer: A

7. If y(x) satisfies the differential equation:

 $y' - y \tan x = 2x \sec x$ and y(0) = 0, then:

A.
$$y\Big(rac{\pi}{4}\Big)=rac{\pi^2}{8\sqrt{2}}$$

B.
$$y'\left(\frac{\pi}{4}\right) = \frac{\pi^2}{18}$$

$$\mathsf{C.}\,y\Big(\frac{\pi}{3}\Big) = \frac{\pi^2}{9}$$

D.
$$y'\Bigl(rac{\pi}{3}\Bigr)=rac{4\pi}{3}+rac{2\pi^2}{3\sqrt{3}}$$

Answer: A::D

8. At present, a firm is manufacturing 2000 iterm.

It is estimated that the rate of change of production P w.r.t additional number of workers x is given by:

$$\frac{dP}{dx} = 100 - 12\sqrt{x}.$$

If the empolys 25 more workers, then the new level of production of items is:

A. 3000

B. 3500

C. 4500

D. 2500

Answer: B

Watch Video Solution

9. A curve passes through the point $(1,\pi/6)$. Let the slope of the curve at each point (x,y) be $\frac{y}{x}+\sec\Big(\frac{y}{x}\Big), x>0 \ .$ Then the equation of the curve is :

A.
$$\sin\left(\frac{y}{x}\right) = \log x + \frac{1}{2}$$

$$\mathsf{B.}\cos\!\left(\frac{y}{x}\right) = \log x + 2$$

$$\mathsf{C.}\sec\!\left(rac{2y}{x}
ight) = \log x + 2$$

D.
$$\log x + \frac{1}{2}$$

Answer: A

Watch Video Solution

10. Let the popution of rabbits surviving at a time t be governed by the differential equation $\frac{dp(t)}{dt}=\frac{1}{2}p(t)-200 \text{ . If p(0) = 100 , then p(t)}$ equals :

A.
$$300-200e^{-t/12}$$

B.
$$600-500e^{t/12}$$

C.
$$400-300e^{t/12}$$

D.
$$400-300e^{-t/12}$$

Answer: D

Watch Video Solution

11. Let y(x) be the solution of the differential equaiton:

$$(x\log x)rac{dy}{dx} + y = 2x\log x, (x\geq 1)$$

Then y(e) is equal to:

A. e

B. 0

C. 2

D. 2e

Answer: C

Watch Video Solution

Recent Competitive Questions

1. If 'm' and 'n' are the order and degree of the differential equation

$$\left(y^{\prime\prime}
ight)^{5}+4.\,rac{\left(y^{\prime\prime}
ight)^{3}}{y^{\prime\prime\prime}}+y^{\prime\prime\prime}=\sin x$$
 , then

A.
$$m = 3, n = 5$$

B.
$$m = 3, n = 1$$

C.
$$m = 3, n = 3$$

D.
$$m = 3, n = 2$$

Answer: D

Watch Video Solution

2. The general solution of the differential equation

$$\sqrt{1-x^2y^2}$$
. $dx=y$. $dx+x$. dy is

$$A.\sin(xy) = x + c$$

$$\mathsf{B.}\sin^{-1}(xy) + x = c$$

$$\mathsf{C.}\sin(x+c) = xy$$

$$\mathsf{D.}\sin(xy) + x = c$$

Answer: C

Watch Video Solution

3. The order and degree of the differential equation $y=x\frac{dy}{dx}+\frac{2}{\frac{dy}{dx}}$ is

A. 1,3

B. 1,1

C. 1,2

D. 2,1

Answer: C

4. The general solution of the differential equation

$$rac{dy}{dx} + rac{y}{x} = 3x$$
 is

A.
$$y=x+rac{C}{x}$$

$$\mathtt{B.}\,y = x^2 + \frac{C}{x}$$

$$\mathsf{C}.\,y = x - \frac{C}{x}$$

D.
$$y=x^2-rac{C}{x}$$

Answer: B

5. The particular solution of $\frac{y}{x}\frac{dy}{dx}=\frac{1+y^2}{1+x^2}$, when x = 1 , y = 2 is :

A.
$$5(t+y^2)=2(1+x^2)$$

B.
$$2ig(1+y^2ig)=5ig(1+x^2ig)$$

$$\mathsf{C.}\, \mathsf{5} ig(1 + y^2 ig) = ig(1 + x^2 ig)$$

D.
$$(1+y^2) = 2(1+x^2)$$

Answer: B

6. The solution of the differential equation :

$$rac{dy}{dx}=x+y^2$$
 is :

$$A. \frac{1}{x+y} = c$$

$$\mathsf{B.}\sin^{-1}(x+y) = x+c$$

$$\mathsf{C.}\tan^{-1}(x+y)=c$$

$$\operatorname{D.tan}^{-1}(x+y) = x+c$$

Answer: D

7. The order of differential equation of all circles of given radius "a" is _____

A. 4

B. 2

C. 1

D. 3

Answer: B

8. The solution of differential equation :

$$x rac{dy}{dx} + 2y = x^2$$
 is :

A.
$$y=rac{x^2+C}{4x^2}$$

B.
$$y=rac{x^2}{4}+C$$

C.
$$y=rac{x^4+C}{x^2}$$

D.
$$y=rac{x^4+C}{4x^2}$$

Answer: D

9. The differential equation of the family of parabolas $y^2=4ax$, where a is parameter is :

A.
$$rac{dy}{dx}=rac{y}{2x}$$

$$\mathsf{B.}\,\frac{dy}{dx}=\,-\,\frac{y}{2x}$$

$$\mathsf{C.}\,\frac{dy}{dx}=\,-\,\frac{2y}{x}$$

D.
$$\frac{dy}{dx} = \frac{2y}{x}$$

Answer: A

10. If
$$\dfrac{dy}{dx}=\dfrac{y+x anrac{y}{x}}{x}$$
 , then $\sinrac{y}{x}=$

A. cx^2

B. cx

 $\mathsf{C}.\,cx^3$

 $D. \log x$

Answer: B

11. The product of the degree and order of the D.E.:

$$\left(rac{d^2y}{dx^2}
ight)^2-\left(rac{dy}{dx}
ight)^3=y^3$$
 is :

A. 4

B. 6

C. 2

D. 3

Answer: A

12. The general solution of the differential equation $\frac{dy}{dx} + y\,g'(x) = g(x)g'(x)$ where g(x) is a given function of x is $g(x) + \log\{1 + y + g(x)\} = C$

$$g(x) + \log\{1+y-g(x)\} = C$$

 $g(x) - \log\{1 + y - g(x)\} = C$ None of these

A.
$$g(x) + \log(1+y+g(x)) = c$$

$$\mathsf{B.}\, g(x) + \log(1+y-g(x)) = c$$

$$\mathsf{C.}\, g(x) - \log(1 - y - g(x)) = c$$

$$\mathsf{D}.\,g(x) - \log(1-y+g(x)) = c$$

Answer: B

