©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION MATHS

(KANNADA ENGLISH)

DIFFERENTIAL EQUATIONS

Multiple Choice Questions Level I

1. The solution of the differential equations
$2 x \frac{d y}{d x}-y=3$ re[resemts a family of :
A. straight lines
B. circles
C. parabolas
D. ellipses

Answer: C

- Watch Video Solution

2. The integrating factor of the differential equation :
$\frac{d y}{d x}(x \log x)+y=2 \log x$ is :
A. e^{x}
B. $\log x$
C. $\log (\log x)$
D. x

Answer: B

D Watch Video Solution

3. Solution of the differential equation
$\frac{d x}{x}+\frac{d y}{y}=0$ is
A. $\frac{1}{x}+\frac{1}{y}=c$
B. $\log x \cdot \log y=c$
C. $x y=c$
D. $x+y=c$

Answer: C

- Watch Video Solution

4. Find the general solution of the differential equation $x \frac{d y}{d x}+2 y=x^{2},(x \neq 0)$

$$
\begin{aligned}
& \text { A. } y=\frac{x^{2}+c}{4 x^{2}} \\
& \text { B. } y=\frac{x^{2}}{4}+c
\end{aligned}
$$

C. $y=\frac{x^{4}+c}{x^{2}}$
D. $y=\frac{x^{4}+c}{4 x^{2}}$

Answer: D

- Watch Video Solution

5. The differential equation $y \frac{d y}{d x}+x=c$ represents
A. Family of hyperbolas
B. Family of parabolas
C. Family of ellipses
D. Family of circles.

Answer: D

- Watch Video Solution

6. The general
$e^{x} \cos y d x-e^{x} \sin y d y=0$ is :
A. $e^{x} \cos y=k$
B. $e^{x} \sin y=k$
C. $e^{x}=k \cos y$
D. $e^{x}=k \sin y$.

- Watch Video Solution

7. Family $y=A x+A^{3}$ of curves will correspond to a differential equation of order :
A. 3
B. 2
C. 1
D. not defined

Answer: C
8. General solution of $\frac{d y}{d x}+y \tan x=\sec x$ is :
A. $y \sec x=\tan x+c$
B. $y \tan x=\sec x+c$
C. $\tan x=y \tan x+c$
D. $x \sec x=\tan y+c$

Answer: A

- Watch Video Solution

9. The general solution of $\frac{d y}{d x}=2 x e^{x^{2}-y}$ is

$$
\begin{aligned}
& \text { A. } e^{x^{2}-y}=c \\
& \text { B. } x^{-y}+e^{x^{2}}=c \\
& \text { C. } e^{y}=e^{x^{2}}+c \\
& \text { D. } e^{x^{2}}+y=c
\end{aligned}
$$

Answer: C

- Watch Video Solution

10. The solution of $\frac{d y}{d x}+y=e^{-x}, y(0)=0$ is:
A. $y=e^{x}(x-1)$
B. $y=x e^{-x}$
C. $y=\mathrm{xe}^{-x}+1$
D. $y=(x+1) e^{-x}$

Answer: B

D Watch Video Solution

11. The order of the differential equation whose general solution is given by
$y=\left(C_{1}+C_{2}\right) \cos \left(x+C_{3}\right)-C_{4} e^{x+c_{5}}, \quad$ where
$C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$ are aritrary constants , is :
A. 5
B. 4
C. 3
D. 2

Answer: C

- Watch Video Solution

12. If $f(x)$ and $g(x)$ are two solutions of the differential equations a $\frac{d^{2} y}{d x^{2}}+x^{2} \frac{d y}{d x}+y=e^{x}$, then $f(x)-g(X)$ is the solution of :
A. $a^{2} \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=e^{x}$
B. $a^{2} \frac{d^{2} y}{d x^{2}}+y=e^{x}$
C. $a \frac{d^{2} y}{d x^{2}}+y=e^{x}$
D. $a \frac{d^{2} y}{d x^{2}}+x^{2} \frac{d y}{d x}+y=0$

Answer: D

- Watch Video Solution

13. The solution of the differential equation $\frac{d y}{d x}+\frac{y}{x}=x^{2}$ is :
A. $x+y=\frac{x^{2}}{2}+c$

$$
\begin{aligned}
& \text { B. } x-y=\frac{1}{3} x^{3}+c \\
& \text { C. } x y=\frac{1}{4} x^{4}+c \\
& \text { D. } y-x=\frac{1}{4} x^{4}+c
\end{aligned}
$$

Answer: C

- Watch Video Solution

14. Solution of differential equation:
$d y-\sin x \sin y d x=0$ is :
A. $e^{\cos x} \tan \frac{y}{2}=c$
B. $e^{\cos x} \tan y=c$
C. $\cos x \tan y=c$
D. $\cos x \sin y=c$

Answer: A

- Watch Video Solution

15. Solution of differential equation : $\frac{d y}{d x}+a y=e^{m x}$ is :

$$
\text { A. }(a+m) y=e^{m x}+c
$$

B. $y e^{a x}=m e^{\max }+c$
C. $y=e^{m x}+c e^{-a x}$
D. $(a+m) y=e^{m x}+c e^{-a x}$

Answer: D

- Watch Video Solution

16. The general

$$
(1+x) y d x=(1-y) x d y \text { is : }
$$

A. $x-y+\log (x / y)=c$
B. $x+y+\log (x y)=c$
C. $x+y+\log (x / y)=c$
D. $x-y+\log (x y)=c$

Answer: C

- Watch Video Solution

17. The general solution of the differential equations : $x\left(1+y^{2}\right) d x+y\left(1+x^{2}\right) d y=0$ is:
A. $\left(1+x^{2}\right)\left(1+y^{2}\right)=c$
B. $\left(1+x^{2}\right)=c\left(1+y^{2}\right)$
C. $\left(1+y^{4}\right)=c\left(1+x^{2}\right)$
D. $\left(1+x^{2}\right)\left(1+y^{2}\right)=0$, is constant.

- Watch Video Solution

18. Equation of the curve passing through , $(3,9)$, which satisfies the differential equation $\frac{d y}{d x}=x+\frac{1}{x^{2}}$, is :
A. $6 x y=3 x^{3}-29 x+6$
B. $6 x y=3 x^{3}-6+29 x$
C. $6 x y=3 x^{3}-6 x$
D. None of these

Answer: B

19. The differential equation of all parabolas having

 their axes of symmetry coinciding with the x - axis isA. $x y_{2}+y_{1}=0$
B. $\mathrm{yy}_{2}+y_{1}^{2}=0$
C. $x y_{1}+y_{2}=0$
D. None of these

Answer: B
20. A particle moves in a st. line with a velocity given by $\frac{d x}{d t}=x+1, \quad(\mathrm{x}$ is the distacne descirbed) . The time taken by a prticle to transverse a distance of 99 metres is :
A. $2 \log _{10} e$
B. $\log _{10} e$
C. $2 \log _{e} 10$
D. None of these

Answer: C
21. Family of curves $y=e^{x}(A \cos x+B \sin x)$ represents the differential equation :

$$
\begin{aligned}
& \text { A. } \frac{d^{2} y}{d x^{2}}=2 \frac{d y}{d x}-y \\
& \text { B. } \frac{d^{2} y}{d x^{2}}=2 \frac{d y}{d x}-2 y \\
& \text { C. } \frac{d^{2} y}{d x^{2}}=a \frac{d y}{d x}-2 y \\
& \text { D. } \frac{d^{2} y}{d x^{2}}=2 \frac{d y}{d x}+y
\end{aligned}
$$

Answer: B

22. A solutionof of the differential differential equation $\left(\frac{d y}{d x}\right)^{2}-x \frac{d y}{d x}+y=0$ is :
A. $y=2$
B. $y=2 x$
C. $y=2 x-4$
D. $y=2 x^{2}-4$

Answer: C

- Watch Video Solution

23. The degree of the differential equation : $\frac{d^{3} y}{d x^{3}}+7\left(\frac{d^{2} y}{d x^{2}}\right)^{2}=x^{2} \log \frac{d^{2} y}{d x^{2}}$ is :
A. 2
B. 3
C. 1
D. None of these

Answer: D

- Watch Video Solution

24. The degree of the differential equation of all curves having normal of constant length c is :
A. 2
B. 3
C. 4
D. None of these

Answer: A
25. The solution of $\frac{d y}{d x}=\frac{p x+q}{r y+s}$ represents a parabola if :

> A. $\mathrm{p}=0, \mathrm{r}=0$
> B. $\mathrm{p}=1, \mathrm{q}=2$
> C. $p=0, r \neq 0$
> D. $p=1, r=1$

Answer: C

- Watch Video Solution

26. The differential equations of all conics having centre at te origin is of order :
A. 2
B. 3
C. 4
D. 5

Answer: B
27. If $f(x)=f^{\prime}(x)$ and $f(1)=2$, then $f(3)$ equals :
A. e^{2}
B. $2 e^{2}$
C. $3 e^{2}$
D. $4 e^{2}$

Answer: B
28. The family $y=a x+a^{3}$ of curves is represented by the differential equation of degree
A. one
B. two
C. three
D. None of these

Answer: A
29. Solution of the differential equation
$x d y-y d x=0$
represents a
A. a st. line passing through (0,0)
B. circle having centre at $(0,0)$
C. parabola having vertex at $(0,0)$
D. a rectangular hyperbola

Answer: A

- Watch Video Solution

30. Integral curve staisfying $\frac{d y}{d x}=\frac{x^{2}+y^{2}}{x^{2}-y^{2}}$, y (1) =

1 has the slope at the point $(1,0)$ of the curve equal to :
A. -1
B. 1
C. $-5 / 3$
D. $5 / 3$

Answer: B
31. The differential equation $y \frac{d y}{d x}+x=a$ being a constant) represents :
A. set of circles with centres on x - axis
B. set of circles with centres on y-axis
C. set of parabolas
D. set of ellipses

Answer: A

- Watch Video Solution

32. The solution of $\frac{d^{2} y}{d x^{2}}=0$ represents:
A. a st . line
B. a circle
C. a parabola
D. a point

Answer: A

- Watch Video Solution

33. Solution of $\frac{d^{2} y}{d x^{2}}=\log x$ is

$$
\begin{aligned}
& \text { A. } y=\frac{1}{2} x^{2} \log x-\frac{3}{4} x^{2}+C_{1} x+C_{2} \\
& \text { B. } y=\frac{1}{2} x^{2} \log x+\frac{3}{4} x^{2}+C_{1} x+C_{2}
\end{aligned}
$$

C. $y=\frac{-1}{2} x^{2} \log x-\frac{3}{4} x^{2}+C_{1} x+C_{2}$
D. None of these

Answer: A

- Watch Video Solution

34. The differential equation of all non - vertical
lines in a plane is:

$$
\begin{aligned}
& \text { A. } \frac{d^{2} y}{d x^{2}}=0 \\
& \text { B. } \frac{d^{2} x}{d y^{2}}=0 \\
& \text { C. } \frac{d y}{d x}=0
\end{aligned}
$$

D. $\frac{d x}{d y}=0$.

Answer: A

- Watch Video Solution

35. The solution of the equation $\frac{d^{2} y}{d x^{2}}=e^{-2 x}$ is:
A. $\frac{1}{4} e^{-2 x}$
B. $\frac{1}{4} e^{-2 x}+c x+d$
C. $\frac{1}{4} e^{-2 x}+c x^{2}+d$
D. $\frac{1}{4} e^{-2 x}+c x+d$.

Answer: B

- Watch Video Solution

36. The order and degree of the differential equation $\left(1+3 \frac{d y}{d x}\right)^{2 / 3}=4 \frac{d^{3} y}{d x^{3}}$ are :
A. $\left(1, \frac{2}{3}\right)$
B. $(3,1)$
C. $(3,3)$
D. $(1,2)$
37. The degree and order of the differential equation of the family of all parabolas whose axis is x -axis, are respectively :
A. 1,2
B. 3,2
C. 2,3
D. 2,1

Answer: A
38. The differential equation for the family of curves $x^{2}+y^{2}-2 a y=0$, where a is an arbitrary constant, is :
A. $2\left(x^{2}-y^{2}\right) y^{\prime}=x y$
B. $2\left(x^{2}+y^{2}\right) y^{\prime}=x y$
C. $\left(x^{2}-y^{2}\right) y^{\prime}=2 x y$
D. $\left(x^{2}+y^{2}\right) y^{\prime}=2 x y$

Answer: C

39. The differential equation representing the family of curves $y^{2}=2 c(x+\sqrt{c})$, where $c>0$, is a parameter is of order and degree as follows :
A. order 1, degree 1
B. order 1, degree 2
C. order 2, degree 2
D. order 1, degree 3

Answer: D
40. The differential equation which represents the
family of curves $y=c_{1} e^{c_{2} x}$ where c_{1} and c_{2} are arbitrary constants, is :
A. $y^{\prime}=y^{2}$
B. $y^{\prime \prime}=y^{\prime} y$
C. $y y^{\prime \prime}=y^{\prime}$
D. $y y^{\prime \prime}=\left(y^{\prime}\right)^{2}$

Answer: D

- Watch Video Solution

Multiple Choice Questions Level Ii

1. The solution of the differential equation

$$
x^{2} \frac{d y}{d x}-x y=1+\cos \frac{y}{x} \text { is }
$$

> A. $\tan \frac{y}{2 x}=c-\frac{1}{2 x^{2}}$
> B. $\tan \frac{y}{x}=c+\frac{1}{x}$
> C. $\cos \frac{y}{x}=1+\frac{c}{x}$
D. $x^{2}=\left(c+x^{2}\right) \cdot \tan \frac{y}{x}$.

Answer: A
2. The solution of the equation $x+y \frac{d y}{d x}=2 y$ is :

$$
\text { A. } \log \left(\frac{x}{x-y}\right)=c+y-x
$$

B. $\log (y-x)=c+\frac{x}{y-x}$
C. $x y^{2}=c^{2}(x+2 y)$
D. $y^{2}=c\left(x^{2}+2 y\right)$

Answer: B

- Watch Video Solution

3. The differential equation of all circles which pass

 through origin and whose centres lie on y-axis is :$$
\begin{aligned}
& \text { A. }\left(x^{2}-y^{2}\right) \frac{d y}{d x}-2 x y=0 \\
& \text { B. }\left(x^{2}-y^{2}\right) \frac{d y}{d x}+2 x y=0 \\
& \text { C. }\left(x^{2}-y^{2}\right) \frac{d y}{d x}-x y=0 \\
& \text { D. }\left(x^{2}-y^{2}\right) \frac{d y}{d x}+x y=0
\end{aligned}
$$

Answer: A

- Watch Video Solution

4. The curve for which the slope of the tangent at any point equals the ratio of the abscissa to the ordinate of the point is :
A. an ellipse
B. a circle
C. a rectangular hyperbola
D. None of these

Answer: C
5. The slope of the tangent at (x, y) to a curve passing through $(1, \pi / 4)$ is given by $\frac{y}{x}-\cos ^{2} \frac{y}{x}$, then the equation of the curve is :
A. $y=x \tan ^{-1}[\log e / x]$
B. $y=\tan ^{-1} \log (e / x)$
C. $y=x \tan ^{-1}(x / e)$
D. None of these

Answer: A
6. Solution of $\mathrm{y} d x-x d y=x^{2} \mathrm{ydx}$ is :
A. $y e^{x^{2}}=c x^{2}$
B. $y e^{-x^{2}}=c x^{2}$
C. $y^{2} e^{x^{2}}=c x^{2}$
D. $y^{2} e^{-x^{2}}=c x^{2}$

Answer: C

$$
\begin{aligned}
& \text { 7. } \\
& \text { Solution } \\
& (x+y-1) d x+(2 x+3 y-3) d y=0 \text { is : }
\end{aligned}
$$

A. $y+x+\log (x+y-2)=c$
B. $y+2 x+\log (x+y-2)=c$
C. $2 y+x+\log (x+y-2)=c$
D. $2 y+2 x+\log (x+y-2)=c$

Answer: B
8. The equation of the curve, which does not pass through $(0,0)$ and having the portion of the tangent included between the co - ordinate axes is bisected at the point of contact, is :
A. a st. line or an ellipse
B. a circle or an ellipse
C. a parabola
D. a hyperbola

Answer: D
9. The solution of the differential equation :
$\left(1+y^{2}\right)+\left(x-e^{\tan ^{-1} y}\right) \frac{d y}{d x}=0$ is :
A. $2 x e^{\tan ^{-1} y}=e^{2 \tan ^{-1} y}+k$
B. $x e^{\tan ^{-1} y}=\tan ^{-1} y+k$
C. $x e^{2 \tan ^{-1} y}=e^{\tan ^{-1} y}+k$
D. $(x-2)=k e^{-\tan ^{-1} y}$

Answer: A

- Watch Video Solution

10. If $\mathrm{y}(\mathrm{t}) \quad$ is solution is
$(t+1) \frac{d y}{d x}-t y=1, y(0)=-1$ At $t=1$, the soulution is :

$$
\begin{aligned}
& \text { A. } e+\frac{1}{2} \\
& \text { B. }-\frac{1}{2} \\
& \text { C. } \frac{1}{2} \\
& \text { D. } e-\frac{1}{2}
\end{aligned}
$$

Answer: B
11. The differential equation for the family of curves
$x^{2}+y^{2}-2 a y=0$, where a is an arbitrary constant, is :
A. $\left(x^{2}-y^{2}\right) y^{\prime}=x y$
B. $2\left(x^{2}+y^{2}\right) y^{\prime}=x y$
C. $\left(x^{2}-y^{2}\right) y^{\prime}=2 x y$
D. $\left(x^{2}+y^{2}\right) y^{\prime}=2 x y$

Answer: C

- Watch Video Solution

12. The solution of the differential equation :
$y d x+\left(x+x^{2} y\right) d y=0$ is :

$$
\begin{aligned}
& \text { A. } \frac{1}{x y}+\log y=0 \\
& \text { B. }-\frac{1}{x y}+\log y=c \\
& \text { C. }-\frac{1}{x y}=c \\
& \text { D. } \log y=c x
\end{aligned}
$$

Answer: B

- Watch Video Solution

13. If $x \frac{d y}{d x}=y(\log y-\log x+1)$, then the solution of the equation is :

$$
\begin{aligned}
& \text { A. } x \log \left(\frac{y}{x}\right)=c y \\
& \text { B. } y \log \left(\frac{x}{y}\right)=c x \\
& \text { C. } \log \left(\frac{x}{y}\right)=c y \\
& \text { D. } \log \left(\frac{y}{x}\right)=c x
\end{aligned}
$$

Answer: D

- Watch Video Solution

14. $x \quad d y=y \quad d x+y^{2}$ and $y(1)=1$, then y
(-3) is equal to :
A. 1
B. 5
C. 4
D. 3

Answer: D
15. The differential equation whose solution is
$A x^{2}+B y^{2}=1$, where A and B are arbitrary
constants, is of :
A. second order and second degree
B. first order and second degree
C. first order and first degree
D. second order and first degree

Answer: D

- Watch Video Solution

16. The differential equation of all circles passing
through the origin and having their centres on the
x - axis is :

$$
\begin{aligned}
& \text { A. } x^{2}=y^{2}+3 x y \frac{d y}{d x} \\
& \text { B. } y^{2}=x^{2}+2 x y \frac{d y}{d x} \\
& \text { C. } y^{2}=x^{2}-2 x y \frac{d y}{d x} \\
& \text { D. } x^{2}=y^{2}+x y \frac{d y}{d x}
\end{aligned}
$$

Answer: B
17. The normal to a curve at $P(x, y)$ meets the x - axis at G. If the distance of G from the origin is twice the abscissa of P, then the curve is a :
A. parabola
B. circle
C. hyperbola
D. ellipse

Answer: C
18.
$y=y(x)$ and $\frac{2+\sin x}{y+1}\left(\frac{d y}{d x}\right)=-\cos x, y(0)=1$
then $y\left(\frac{\pi}{2}\right)$ equals :
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. $-\frac{1}{3}$
D. 1

Answer: A
19. If $\left(x^{2}+y^{2}\right) d y=x y$ dxand $y(1)=1$. If $f\left(x_{0}\right)=e$, then x_{0} is equal to :
A. $e \sqrt{2}$
B. $e \sqrt{3}$
C. $2 e$
D. $e \sqrt{5}$

Answer: B
20. The differential equation : $\frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{y}$ determines a family of circles with :
A. variable radius and a fixed centre at $(0,1)$
B. variable radius and a fixed centre at ($0,-1$)
C. fixed radius 1 and variable centres along x axis.
D. fixed radius 1 and variable centres along y axis.

Answer: C

Latest Questions From Aieee Jee Examinations

1. The solution of differential equation

 $\cos x d y=y(\sin x-y) d x, 0<x<\pi / 2$ isA. $\sec x=(\tan x+c) y$
B. $y \sec x=\tan x+c$
C. $y \tan x=\sec x+c$
D. $\tan x=(\sec x+c) y$

Answer: A
2. If $\frac{d y}{d x}=y+3>0$ and $y(0)=2$, then $\mathrm{y}(\ln 2)$ is equal to :
A. 7
B. 5
C. 13
D. -2

Answer: A

- Watch Video Solution

3. Let I be the purchase value of an equipment and $v(t)$ be the value after it has been used for t years.

The value $v(t)$ depriciates at a rate given by the differentail equation $\frac{d v(t)}{d t}=-k(T-t)$, where $k>0$ is a constant and T is the total life in years of the equipment . Then the scrap value $v(t)$ of the equipment is :

$$
\begin{aligned}
& \text { A. } T^{2}-\frac{I}{K} \\
& \text { B. } I-\frac{k T^{2}}{2} \\
& \text { C. } I-\frac{k(T-t)^{2}}{2} \\
& \text { D. } e^{-k t}
\end{aligned}
$$

Answer: B

- Watch Video Solution

4. Consider the differential equation
$y^{2} d x+\left(x-\frac{1}{y}\right) d y=0$ if $y(1)=1$ then x is
A. $4-\frac{2}{y}-\frac{e^{1 / y}}{e}$
B. $3-\frac{1}{y}+\frac{e^{1 / y}}{e}$
C. $1+\frac{1}{y}+\frac{e^{1 / y}}{e}$
D. $1-\frac{1}{y}+\frac{e^{1 / y}}{e}$

- Watch Video Solution

5. The curve that passes through the point $(2,3)$
and has the property that the segment of any tangent to it lying between the co - ordinate axes is bisected by the point of contact is given by :
A. $2 y-3 x=0$
B. $y=\frac{6}{x}$
C. $x^{2}+y^{2}=13$
D. $\left(\frac{x}{2}\right)^{2}+\left(\frac{y}{3}\right)^{2}=2$
6. The population $p(t)$ at time t of a cetrain mouse species satisfies the differential equation $\frac{d p(t)}{d t}=0.5 p t-450$. If $\mathrm{p}(0)=850$, then the time at which the population becomes zero is :
A. $2 l_{n} 18$
B. $l_{n} 9$
C. $\frac{1}{2} l_{n} 18$
D. $l_{n} 18$

- Watch Video Solution

7. If $y(x)$ satisfies the differential equation :
$y^{\prime}-y \tan x=2 x \sec x$ and $y(0)=0$, then :

> A. $y\left(\frac{\pi}{4}\right)=\frac{\pi^{2}}{8 \sqrt{2}}$
> B. $y^{\prime}\left(\frac{\pi}{4}\right)=\frac{\pi^{2}}{18}$
C. $y\left(\frac{\pi}{3}\right)=\frac{\pi^{2}}{9}$
D. $y^{\prime}\left(\frac{\pi}{3}\right)=\frac{4 \pi}{3}+\frac{2 \pi^{2}}{3 \sqrt{3}}$

Answer: A: D

- Watch Video Solution

8. At present, a firm is manufacturing 2000 iterm .

It is estimated that the rate of change of production P w.r.t additional number of workers x is given by :
$\frac{d P}{d x}=100-12 \sqrt{x}$.
If the empolys 25 more workers, then the new level of production of items is:
A. 3000
B. 3500
C. 4500
D. 2500

- Watch Video Solution

9. A curve passes through the point $(1, \pi / 6)$. Let the slope of the curve at each point (x, y) be $\frac{y}{x}+\sec \left(\frac{y}{x}\right), x>0$. Then the equation of the curve is :
A. $\sin \left(\frac{y}{x}\right)=\log x+\frac{1}{2}$
B. $\cos \left(\frac{y}{x}\right)=\log x+2$
C. $\sec \left(\frac{2 y}{x}\right)=\log x+2$
D. $\log x+\frac{1}{2}$

- Watch Video Solution

10. Let the popution of rabbits surviving at a time t
be governed by the differential equation $\frac{d p(t)}{d t}=\frac{1}{2} p(t)-200$. If $\mathrm{p}(0)=100$, then $\mathrm{p}(\mathrm{t})$ equals :
A. $300-200 e^{-t / 12}$
B. $600-500 e^{t / 12}$
C. $400-300 e^{t / 12}$
D. $400-300 e^{-t / 12}$

Answer: D

- Watch Video Solution

11. Let $y(x)$ be the solution of the differential equaiton :
$(x \log x) \frac{d y}{d x}+y=2 x \log x,(x \geq 1)$
Then $\mathrm{y}(\mathrm{e})$ is equal to :
A. e
B. 0
C. 2
D. 2 e

Answer: C

- Watch Video Solution

Recent Competitive Questions

1. If ' m ' and ' n ' are the order and degree of the

$$
\left(y^{\prime \prime}\right)^{5}+4 \cdot \frac{\left(y^{\prime \prime}\right)^{3}}{y^{\prime \prime \prime}}+y^{\prime \prime \prime}=\sin x \text {, then }
$$

A. $m=3, n=5$
B. $m=3, n=1$
C. $m=3, n=3$
D. $m=3, n=2$

Answer: D

- Watch Video Solution

2. The general solution of the differential equation
$\sqrt{1-x^{2} y^{2}} . d x=y . d x+x . d y$ is
A. $\sin (x y)=x+c$
B. $\sin ^{-1}(x y)+x=c$
C. $\sin (x+c)=x y$
D. $\sin (x y)+x=c$

Answer: C

- Watch Video Solution

3. The order and degree of the differential equation $y=x \frac{d y}{d x}+\frac{2}{\frac{d y}{d x}}$ is
A. 1,3
B. 1,1
C. 1,2
D. 2,1

- Watch Video Solution

4. The general solution of the differential equation $\frac{d y}{d x}+\frac{y}{x}=3 x$ is
A. $y=x+\frac{C}{x}$
B. $y=x^{2}+\frac{C}{x}$
C. $y=x-\frac{C}{x}$
D. $y=x^{2}-\frac{C}{x}$

Answer: B
5. The particular solution of $\frac{y}{x} \frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$, when $\mathrm{x}=1, \mathrm{y}=2$ is:
A. $5\left(t+y^{2}\right)=2\left(1+x^{2}\right)$
B. $2\left(1+y^{2}\right)=5\left(1+x^{2}\right)$
C. $5\left(1+y^{2}\right)=\left(1+x^{2}\right)$
D. $\left(1+y^{2}\right)=2\left(1+x^{2}\right)$

Answer: B

- Watch Video Solution

6. The solution of the differential equation :

$$
\frac{d y}{d x}=x+y^{2} \text { is : }
$$

A. $\frac{1}{x+y}=c$
B. $\sin ^{-1}(x+y)=x+c$
C. $\tan ^{-1}(x+y)=c$
D. $\tan ^{-1}(x+y)=x+c$

Answer: D

- Watch Video Solution

7. The order of differential equation of all circles of given radius " a " is \qquad
A. 4
B. 2
C. 1
D. 3

Answer: B

- Watch Video Solution

8. The solution of differential equation :
$x \frac{d y}{d x}+2 y=x^{2}$ is :
A. $y=\frac{x^{2}+C}{4 x^{2}}$
B. $y=\frac{x^{2}}{4}+C$
C. $y=\frac{x^{4}+C}{x^{2}}$
D. $y=\frac{x^{4}+C}{4 x^{2}}$

Answer: D
9. The differential equation of the family of parabolas $y^{2}=4 a x$, where a is parameter is:

$$
\begin{aligned}
& \text { A. } \frac{d y}{d x}=\frac{y}{2 x} \\
& \text { B. } \frac{d y}{d x}=-\frac{y}{2 x} \\
& \text { C. } \frac{d y}{d x}=-\frac{2 y}{x} \\
& \text { D. } \frac{d y}{d x}=\frac{2 y}{x}
\end{aligned}
$$

Answer: A

- Watch Video Solution

10. If $\frac{d y}{d x}=\frac{y+x \tan \frac{y}{x}}{x}$, then $\sin \frac{y}{x}=$
A. $c x^{2}$
B. cx
C. $c x^{3}$
D. $\log x$

Answer: B

- Watch Video Solution

11. The product of the degree and order of the D.E. :

$$
\left(\frac{d^{2} y}{d x^{2}}\right)^{2}-\left(\frac{d y}{d x}\right)^{3}=y^{3} \text { is : }
$$

A. 4
B. 6
C. 2
D. 3

Answer: A
12. The general solution of the differential equation $\frac{d y}{d x}+y g^{\prime}(x)=g(x) g^{\prime}(x)$ where $g(x)$

$$
\begin{aligned}
& \text { is a given function of } x \\
& g(x)+\log \{1+y+g(x)\}=C \\
& g(x)+\log \{1+y-g(x)\}=C \\
& g(x)-\log \{1+y-g(x)\}=C \text { None of these }
\end{aligned}
$$

$$
\begin{aligned}
& \text { A. } g(x)+\log (1+y+g(x))=c \\
& \text { B. } g(x)+\log (1+y-g(x))=c \\
& \text { C. } g(x)-\log (1-y-g(x))=c \\
& \text { D. } g(x)-\log (1-y+g(x))=c
\end{aligned}
$$

Watch Video Solution

