©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION MATHS (KANNADA ENGLISH)

ELLIPSE

Level I Mcq

1. If question of the ellipse whose focus is $(1,-1)$,
then directrix the line $x-y-3=0$ and eccentricity
$\frac{1}{2}$ is

> А. $7 x^{2}+2 x y+7 y^{2}-10 x+10 y+7=0$
> В. $7 x^{2}+2 x y+7 y^{2}+7=0$
> С. $7 x^{2}+2 x y+7 y^{2}+10 x-10 y-7=0$
D. None of these

Answer: A

D Watch Video Solution

2. The lenth of the latus rectum of the ellipse

 $3 x^{2}+y^{2}=12$ is :A. 4
B. 3
C. 8
D. $\frac{4}{\sqrt{3}}$

Answer: D

D Watch Video Solution
3. If e^{\prime} is the eccentricity of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b)$, then
A. $b^{2}=a^{2}\left(1-e^{2}\right)$
B. $a^{2}=b^{2}\left(1-e^{2}\right)$
C. $a^{2}=b^{2}\left(e^{2}-1\right)$
D. $b^{2}=a^{2}\left(e^{2}-1\right)$

Answer: B

- Watch Video Solution

4. Find the equation of the ellipse which passes through the points (3,1) and (2,2).
A. $5 x^{2}+3 y^{2}=32$
B. $3 x^{2}+5 y^{2}=32$
C. $5 x^{2}-3 y^{2}=32$
D. $3 x^{2}+5 y^{2}+32=0$

Answer: B

D Watch Video Solution

5. The eccentricity of the ellipse $25 x^{2}+16 y^{2}-150 x-175=0$ is

5
A. $\frac{5}{6}$
B. $\frac{2}{5}$
C. $\frac{\sqrt{2}}{3}$
D. $\frac{3}{5}$

Answer: D

D Watch Video Solution
6. Find the foci of the ellipse $25(x+1)^{2}+9(y+2)^{2}=225$.
A. $(-2,1)$ and $(-2,6)$
B. ($-1,2$) and ($-1,-6)$
C. $(-1,-2)$ and $(-2,-1)$
D. $(-1,-2)$ and $(-1,-6)$

Answer: B

- Watch Video Solution

7. The length of the latus rectum of the ellipse
$5 x^{2}+9 y^{2}=45$ is
A. $\frac{10}{3}$
B. $\frac{5}{3}$
C. $\frac{2 \sqrt{5}}{3}$
D. $\frac{\sqrt{5}}{3}$

Answer: A

D Watch Video Solution
8. A circle is a limiting case of an ellipse whose eccentricity :
A. tends to 0
B. tends to a
C. tends to b
D. None of these

Answer: A
(Watch Video Solution
9. The equatio $\frac{x^{2}}{2-r}+\frac{y^{2}}{r-5}+1=0$ represents an ellipse, if
A. $r>5$
B. $2<r<5$
C. $r<2$
D. none of these

Answer: B

- Watch Video Solution

10. The equation $\frac{x^{2}}{1-r}+\frac{y^{2}}{r-3}+1=0$ represents an ellipse if :
A. $r>1$
B. $r>3$
C. $1<r<3$
D. None of these

Answer: C

- Watch Video Solution

11. Sum of focal distances of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is :
A. $2 a$
B. $2 b$
C. $a+b$
D. None of these

Answer: A
12. If F_{1} is $(3,0)$ and F_{2} is $(-3,0)$ and P is any point on the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$, then $\left|P F_{1}\right|+\left|P F_{2}\right|$ equals :
A. 6
B. 8
C. 10
D. 12

Answer: C
13. Let F_{1} and F_{2} be the points
$(0,-4)$ and $(0,4)$. The locus of the point P
such that $\left|P F_{1}\right|+\left|P F_{2}\right|=6$ is:
A. an ellipse
B. the segment $\left[F_{1} F_{2}\right]$
C. the st. line containing F_{1} and F_{2}
D. None of these

Answer: D

D View Text Solution
14. The foci of an ellipse are $(0, \pm 1)$ and minor axis is of unit length. Then the equation of the ellipse is :
A. $2 x^{2}+y^{2}=2$
B. $x^{2}+2 y^{2}=2$
C. $4 x^{2}+20 y^{2}=5$
D. $20 x^{2}+4 y^{2}=5$

Answer: D

- Watch Video Solution

15. The equation of the ellipse with foci at
$(\pm 3,0)$ and vertices $(\pm 5,0)$ is :
A. $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
B. $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$
C. $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$
D. None of these

Answer: B

D Watch Video Solution
16. Equation of the ellipse whose focus is

$$
\begin{aligned}
& (6,7) \quad \text { directrix } \\
& x+y+2=0 \text { and } e=\frac{1}{\sqrt{3}} \text { is- }
\end{aligned}
$$

A.

$$
5 x^{2}-2 x y+5 y^{2}+76 x+88 y-506=0
$$

B.

$$
5 x^{2}-2 x y+5 y^{2}-76 x-88 y+506=0
$$

C.

$$
5 x^{2}+2 x y+5 y^{2}-76 x-88 y+506=0
$$

D.

$$
5 x^{2}+2 x y+5 y^{2}+76 x+88 y+506=0
$$

Answer: B

D Watch Video Solution

17. The curve represented by
 $x=3(\cos t+\sin t), y=4(\cos t-\sin t)$, is

A. a circle
B. a parabola

C. an ellipse

D. a hyperbola

Answer: C

D Watch Video Solution

18. The equations of tangents to the ellipse $9 x^{2}+16 y^{2}=144$ from the point $(2,3)$ are:

$$
\text { A. } y=3, x=5
$$

$$
\text { B. } y=3, x=2
$$

$$
\text { C. } y=2, x=3
$$

$$
\text { D. } y=3, x+y=5
$$

Answer: D

D Watch Video Solution

19. The number of real tangents that can be drawn to the ellipses $3 x^{2}+5 y^{2}=32$ and $25 x^{2}+9 y^{2}=450$, passes through $(3,5)$, is
A. 0
B. 2
C. 3
D. 4

Answer: C

D Watch Video Solution
20. The line $y=m x+c$ is a normal to the
ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, if c
A. $c=\frac{a^{2} m}{b^{2}}$

$$
\text { B. } c^{2}=a^{2} m^{2}+b^{2}
$$

C. $c^{2}=a^{2} m^{2}-b^{2}$
D. None of these

Answer: B

D Watch Video Solution

21.

The
equation,
$2 x^{2}+3 y^{2}-8 x-18 y+35=K$ represents
A. a point if $k=0$
B. no locus if $k>0$
C. an ellipse if $k<0$
D. None of these

Answer: A

- Watch Video Solution

22. The equations of tangents to the ellipse $9 x^{2}+16 y^{2}=144$ from the point $(2,3)$ are:
A. 3
B. 4
C. $3 / 2$
D. None of these

Answer: B

D Watch Video Solution

23.

$P=(x, y), F_{1}=(3,0), F_{2}=(-3,0)$, and
$16 x^{2}+25 y^{2}=400$, then $P F_{1}+P F_{2}$ equal 8
(b) 6 (c) 10 (d) 12
A. 8
B. 6
C. 10
D. 12

Answer: C

D Watch Video Solution

24. The number of values of c such that the straight line $y=4 x+c$ touches the curve

$\frac{x^{2}}{4}+\frac{y^{2}}{1}=1$ is 0 (b) 1 (c) 2 (d) infinite

A. 0
B. 1
C. 2
D. infinite

Answer: C
25. Chords of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ are drawn through the positive end of the minor axis. Then prove that their midpoints lie on the ellipse.
A. a circle
B. a parabola
C. an ellipse
D. a hyperbola

Answer: C
26. the centre of the ellipse

$$
\frac{(x+y-2)^{2}}{9}+\frac{(x-y)^{2}}{16}=1 \text {, is }
$$

A. $(0,0)$
B. $(1,1)$
C. $(1,0)$
D. $(0,1)$

Answer: B
27. The radius of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}$ and having its center $(0,3)$ is 4 (b) 3 (c) $\sqrt{12}$ (d) $\frac{7}{2}$
A. 4
B. 3
C. $\sqrt{12}$
D. $\frac{7}{2}$

Answer: A
28. The equation to the ellipse whose foci are
$(\pm 2,0)$ and eccentricity $\frac{1}{2}$ is :

$$
\begin{aligned}
& \text { A. } \frac{x^{2}}{12}+\frac{y^{2}}{16}=1 \\
& \text { B. } \frac{x^{2}}{16}+\frac{y^{2}}{12}=1 \\
& \text { C. } \frac{x^{2}}{16}+\frac{y^{2}}{8}=1
\end{aligned}
$$

D. None of these

Answer: B
29. Tangents are drawn to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ at the end of latus rectum. Find the area of quadrilateral so formed
A. 27
B. $27 / 2$
C. $27 / 4$
D. $27 / 5$

Answer: A

D Watch Video Solution
30. The eccentricity of an ellipse with its centre at the origin is $\frac{1}{2}$. If one of the directrices is x $=4$, then the equation of ellipse is
A. $3 x^{2}+4 y^{2}=1$
B. $3 x^{2}+4 y^{2}=12$
C. $4 x^{2}+3 y^{2}=12$
D. $4 x^{2}+3 y^{2}=1$

Answer: B

Level li Mcq

1. Let P be a variable point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with foci S_{1} and S_{2}. If A be the area of the triangle $P S_{1} S_{2}$, then the maximum
value of A is :
A. ab
B. abe
C.e

D. None of these

Answer: B

D Watch Video Solution

2. If the normal at any point P on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ meets the axes at Gandg, respectively, then find the raio $P G: P g$.
A. $b: a$
B. $b^{2}: a^{2}$

C. $a: b$

D. none of these

Answer: B

D Watch Video Solution

3. the equation of the circle passing through
the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and having centre at $(0,3)$ is
A. 3
B. 5
C. 4
D. None of these

Answer: C

D Watch Video Solution

4. P is a variable on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with \forall^{\prime} as the major axis. Find the maximum area of triangle $A P A^{\prime}$
A. $\frac{1}{2} a b$
B. 2 ab
C. ab
D. none of these

Answer: C

D Watch Video Solution
5. if the tangent at the point $\left(4 \cos \phi, \frac{16}{\sqrt{11}} \sin \phi\right)$ to the ellipse
$16 x^{2}+11 y^{2}=256$ Is also a tangent to the circle $x^{2}+y^{2}-2 x=15$, then the value of ϕ is
A. $\pm \pi / 3$
B. $\pm \pi / 4$
C. $\pm \pi / 2$
D. None of these

Answer: A

D Watch Video Solution
6. If a tangent of slope m ' at a point of the ellipse passes through $(2 a, 0)$ and if e denotes
the eccentricity of the ellipse then
$m^{2}+e^{2}=1$
(C) $3 m^{2}+e^{2}-1$
$2 m^{2}+e^{2}=1$ (D) none of these
A. $m^{2}+e^{2}=1$
B. $2 m^{2}+e^{2}=1$
C. $3 m^{2}+e^{2}=1$
D. None of these
7. The normal at an end of a latus rectum of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes through an end of the minor axis if
A. $e^{2}+e-1=0$
B. $e^{3}+e-1=0$
C. $e^{3}+e^{2}-1=0$
D. $e^{4}+e^{2}-1=0$
8. Let E be the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and C be the circle $x^{2}+y^{2}=9$. Let P and Q be the points (1,2) and (2,1) respectively . Then
A. Q lies inside C but outside E
B. Q lies outside both C and E
C. P lies inside both C and E
D. P lies inside C but outside E

Answer: D

D Watch Video Solution

9. The eccentricity of an ellipse whose pair of a
conjugate diameter are $y=x$ and $3 y=-2 x$
is (A) $\frac{2}{3}$ (B) $\frac{1}{3}$ (C) $\frac{1}{\sqrt{3}}$ (D) none
A. $\frac{1}{\sqrt{3}}$
B. $\frac{1}{3}$
C. $\frac{2}{3}$

D. None of these

Answer: D

D Watch Video Solution

10. An ellipse has $O B$ as a semi-minor axis.
S_{1}, S_{2} are its foci and the angle $S_{1} B S_{2}$ is a right-angle, then the eccentricity of the ellipse is :

$$
\text { A. } \frac{1}{\sqrt{2}}
$$

B. $\frac{1}{\sqrt{3}}$
C. $\frac{2}{3}$
D. None of these

Answer: A

D Watch Video Solution

11. The equation of the auxiliary circle of the ellipse :
$9 x^{2}+4 y^{2}-8 y-32=0$ is :
A. $x^{2}+y^{2}-2 y-8=0$
B. $x^{2}+y^{2}-8 y+7=0$
C. $x^{2}+y^{2}-4 x-5=0$
D. None of these

Answer: A

D Watch Video Solution
12. The equation of the director circle of the ellipse $x^{2}+2 y^{2}+2 x-12 y+15=0$ is :
A. $x^{2}+y^{2}+2 x-6 y-4=0$
B. $x^{2}+y^{2}+2 x-6 y+4=0$
C. $x^{2}+y^{2}+2 x-12 y+4=0$
D. $x^{2}+y^{2}+2 x-12 y-4=0$

Answer: B

D Watch Video Solution

13. A man running around a race course notes
that the sum of the distances of two flagposts
from him a always 10 m and the distance
between the flag posts is 8 m . Then the area of
the path he encloses in square meters is 15π
(b) 20π (c) 27π (d) 30π
A. 8π
B. 12π
C. 18π
D. 15π

Answer: D

D Watch Video Solution
14. If the focal distance of an end of the minor axis of an ellipse (referred to its axes as the axes of xandy, respectively) is k and the distance between its foci is $2 h$, them find its equation.
A. $\frac{x^{2}}{k^{2}}+\frac{y^{2}}{k^{2}+h^{2}}=1$
B. $\frac{x^{2}}{k^{2}}+\frac{y^{2}}{h^{2}-k^{2}}=1$
c. $\frac{x^{2}}{k^{2}}+\frac{y^{2}}{k^{2}-h^{2}}=1$
D. $\frac{x^{2}}{k^{2}}+\frac{y^{2}}{h^{2}}=1$

Answer: C

15. A tangent at any point on the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ is cut by the tangents at the extremities of the major axis at T_{1} and T_{2}.

The circle on $T_{1} T_{2}$ as diameter passes through the point :
A. $(2,1)$
B. $(\sqrt{5}, 0)$
C. $(0, \sqrt{5})$
D. $(0,-\sqrt{5})$

Answer: B

D Watch Video Solution

16. If $y=x$ and $2 x+3 y=0$ are equations
of a pair of conjugate diameters of an ellipse,
then its eccentricity is :
A. $\frac{1}{\sqrt{3}}$
B. $\frac{1}{\sqrt{2}}$
C. $\sqrt{\frac{2}{3}}$
D. $\frac{2}{\sqrt{5}}$

Answer: A

D Watch Video Solution

17. If chord ofcontact ofthe tangents drawn from the point (α, β) to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$,touches
$x^{2}+y^{2}=c^{2}$, then the locus of the point

$$
\begin{aligned}
& \text { A. } c^{2}\left(a^{4} x^{2}+b^{4} y^{2}\right)=a^{4} b^{4} \\
& \text { B. } c^{2}\left(a^{4} y^{2}+b^{4} x^{2}\right)=a^{4} b^{4} \\
& \text { C. } c^{2}\left(a^{4} y^{2}+b^{4} x^{2}-a^{3} b^{3}\right)=a^{4} b^{4}
\end{aligned}
$$

D. None of these

Answer: B

D Watch Video Solution

18. If the polar of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is always touching the ellipse $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$, then the locus of the polar is:
A. a circle
B. a parabola

C. an ellipse

D. a hyperbola

Answer: C

D View Text Solution

19. S_{1} and S_{2} are the foci of the elipse $\frac{x^{2}}{\sin ^{2} \alpha}+\frac{y^{2}}{\cos ^{2} \alpha}=1\left(\alpha \in\left(0, \frac{\pi}{4}\right)\right)$ and P
is the point on the ellipse, then perimeter of triangle $P S_{1} S_{2}$ is

> A. $(1+e) x^{2}+(1-e) y^{2}=a^{2} e^{2}$
> B. $(1-e) x^{2}+(1+e) y^{2}=a^{2}$
> C. $(1-e) x^{2}+(1+e) y^{2}=a^{2} e^{2}$
> D. $(1+e) x^{2}+(1-e) y^{2}=a^{2}$

Answer: C

D Watch Video Solution

20. Suppose S and S^{\prime} are foci of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$. If P is a variable point on the
ellipse and if Δ is the area (in sq. units) of the
triangle PSS' then the maximum value of Δ is double of
A. 8
B. 12
C. 16
D. 20

Answer: B

D Watch Video Solution
21. If the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25}$ coincide write the value of b^{2}.
A. 1
B. 5
C. 7
D. 9

Answer: C

- Watch Video Solution

22. If $\tan \alpha \tan \beta=-\frac{a^{2}}{b^{2}}$, then the chord joining the points ' α ' and ' β ' on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ will subtend a right angle at the :
A. centre
B. focus
C. end of major axis
D. end of minor axis

Answer: A
23. Find the equation of the normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the positive end of the latus rectum.

$$
\begin{aligned}
& \text { A. } x-e y-e^{3} a=0 \\
& \text { B. } x+e y+e^{3} a=0 \\
& \text { C. } x-e y-e^{2} a=0
\end{aligned}
$$

D. None of these

- Watch Video Solution

24. if tangents are drawn to the ellipse $x^{2}+2 y^{2}=2$ all points on the ellipse other its four vertices then the mid-points of the tangents intercepted between the coordinate axis lie on the curve

$$
\begin{aligned}
& \text { A. } \frac{1}{2 x^{2}}+\frac{1}{4 y^{2}}=1 \\
& \text { B. } \frac{1}{4 x^{2}}+\frac{1}{2 y^{2}}=1 \\
& \text { C. } \frac{x^{2}}{2}+\frac{y^{2}}{4}=1 \\
& \text { D. } \frac{x^{2}}{4}+\frac{y^{2}}{2}=1
\end{aligned}
$$

Answer: A

D Watch Video Solution

25. Area of the greatest rectangle that can be
inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is :
A. ab
B. 2 ab
C. $\frac{a}{b}$
D. $\sqrt{a b}$

Answer: B

D Watch Video Solution

26. An ellipse has $O B$ as the semi-minor axis,
$F a n d F^{\prime}$ as its foci, and $\angle F B F^{\prime}$ a right angle.
Then, find the eccentricity of the ellipse.

> A. $\frac{1}{2}$
> B. $\frac{1}{\sqrt{2}}$
> C. $\frac{1}{\sqrt{3}}$
> D. $\frac{1}{4}$

Answer: B

D Watch Video Solution

27. A focus of an ellipse is at the origin. The directrix is the line $x=4$ and the eccentricity
is $\frac{1}{2}$ Then the length of the semi-major axis is
$\frac{5}{3}$
B. $\frac{8}{3}$
C. $\frac{2}{3}$
D. $\frac{4}{3}$

Answer: B

- Watch Video Solution

28. The ellipse $x^{2}+4 y^{2}=4$ is inscribed in a rectangle aligned with the coordinate axes, which in turn is inscribed in another ellipse that passes through the point $(4,0)$. Then the equation of the ellipse is (1) $x^{2}+16 y^{2}=16$
(2) $x^{2}+12 y^{2}=16$ (3) $4 x^{2}+48 y^{2}=48$
$4 x^{2}+64 y^{2}=48$
A. $x^{2}+16 y^{2}=16$
B. $x^{2}+12 y^{2}=16$
C. $4 x^{2}+48 y^{2}=48$
D. $4 x^{2}+64 y^{2}=48$

Answer: C

- Watch Video Solution

29. If the locus of the middle point of the portion of a tangent of the ellipse
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ included between the axes
$\left(\frac{a^{2}}{x^{2}}\right)+\left(\frac{b^{2}}{y^{2}}\right)=k$, then the value of k is
A. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=4$
B. $b^{2} x^{2}+a^{2} y^{2}=4$
C. $a^{2} x^{2}+b^{2} y^{2}=4$
D. $\frac{a^{2}}{x^{2}}+\frac{b^{2}}{y^{2}}=4$

Answer: D

- Watch Video Solution

30. In a model, it is shown that an arc of a bridge is semi-elliptical having major axis
horizontal. If the length of the base is 9 m and
the highest point of the bridge is 3 m from the
horizontal, the best approximation of the
height of the arch, 2 m from the centre of the base is approximately :
A. 2 m
B. $\frac{8}{3} m$
C. $\frac{7}{2} m$

$$
\text { D. } \frac{11}{4} m
$$

Answer: B

D Watch Video Solution

31. A tangent is drawn at the point $(3 \sqrt{3} \cos \theta, \sin \theta)$ for $0<\theta<\frac{\pi}{2}$ of an ellipse $\frac{x^{2}}{27}+y^{2}=1$.The least value of the sum of the intercepts on the coordinate axes by this tangent is attained at θ equal to
A. $\frac{\pi}{6}$
B. $\frac{2 \pi}{3}$
C. $\frac{3 \pi}{8}$
D. $\frac{3 \pi}{4}$

Answer: A

D Watch Video Solution

32. If $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is an ellipse and tangent at any point cuts the co-ordinate axes at P and

Q , then the minimum area of triangle OPQ is :
A. $a b$
B. $\frac{a^{2}+b^{2}}{2}$
C. $\frac{a^{2}-b^{2}}{2}$
D. $\frac{1}{2} a b$

Answer: A

- Watch Video Solution

33. The line passing through the extremity A
of the major exis and extremity B of the minor
axis of the ellipse $x^{2}+9 y^{2}=9$ meets is
auxiliary circle at the point M. Then the area of the triangle with vertices at A, M, and O
(the origin) is

$$
\begin{aligned}
& \text { A. } \frac{31}{10} \\
& \text { B. } \frac{29}{10} \\
& \text { C. } \frac{21}{10} \\
& \text { D. } \frac{27}{10}
\end{aligned}
$$

Answer: D

D Watch Video Solution
34. The normal at a point P on the ellipse $x^{2}+4 y^{2}=16$ meets the x-axisat Q . If M is the mid-point of the line segment $P Q$, then the locus of M intersects the latus-rectum of the given ellipse at the points :

$$
\begin{aligned}
& \text { A. }\left(\pm \frac{3 \sqrt{5}}{2}, \pm \frac{2}{7}\right) \\
& \text { В. }\left(\pm \frac{3 \sqrt{5}}{2}, \pm \frac{\sqrt{19}}{4}\right) \\
& \text { C. }\left(\pm 2 \sqrt{3}, \pm \frac{1}{7}\right) \\
& \text { D. }\left(\pm 2 \sqrt{3}, \pm \frac{4 \sqrt{3}}{7}\right)
\end{aligned}
$$

- Watch Video Solution

Latest Questions From Aieee Jee Examinations

1. Equation of the ellipse whose axes are the axes of co-ordinates and which passes
through the point $(-3,1)$ and has eccentricity $\sqrt{2 / 5}$ is :

$$
\begin{aligned}
& \text { A. } 3 x^{2}+5 y^{2}-32=0 \\
& \text { B. } 5 x^{2}+3 y^{2}-48=0
\end{aligned}
$$

C. $3 x^{2}+5 y^{2}-15=0$

$$
\text { D. } 5 x^{2}+3 y^{2}-32=0
$$

Answer: A

D Watch Video Solution

2. An ellipse is drawn by taking the diameter of
the circle $(x-1)^{2}+y^{2}=1$ as semi-minor axis and a diameter of the circle
$x^{2}+(y-2)^{2}=4$ as its semi-major axis. If
the centre of the ellipse is the origin and its
axes are the co-ordinate axes, then the equation of the ellipse is :
A. $4 x^{2}+y^{2}=4$
B. $x^{2}+4 y^{2}=8$
C. $4 x^{2}+y^{2}=8$
D. $x^{2}+4 y^{2}=16$

Answer: D

D Watch Video Solution
3. The equation of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$, and having centre $(0,3)$ is :

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}-6 y+7=0 \\
& \text { B. } x^{2}+y^{2}-6 y-5=0 \\
& \text { C. } x^{2}+y^{2}-6 y+5=0 \\
& \text { D. } x^{2}+y^{2}-6 y-7=0
\end{aligned}
$$

Answer: D

Watch Video Solution

4. The locus of the foot of perpendicular drawn from the centre of the ellipse $x^{2}+3 y^{2}=6$ on any tangent to it is:

$$
\begin{aligned}
& \text { A. }\left(x^{2}-y^{2}\right)^{2}=6 x^{2}-2 y^{2} \\
& \text { B. }\left(x^{2}+y^{2}\right)^{2}=6 x^{2}+2 y^{2} \\
& \text { C. }\left(x^{2}+y^{2}\right)^{2}=6 x^{2}-2 y^{2} \\
& \text { D. }\left(x^{2}-y^{2}\right)^{2}=6 x^{2}+2 y^{2}
\end{aligned}
$$

Answer: B

- Watch Video Solution

5. The are (in sq. units) of the quadrilateral
formed by the tangents at the end points of
the latera-recta to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$, is :
A. $\frac{27}{4}$
B. 18
C. $\frac{27}{2}$
D. 27

Answer: D

Recent Competitive Questions

1. The eccentric angle of the point $(2, \sqrt{3})$
lying on $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1$ is
А. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

Answer: B

D Watch Video Solution

2. If the latus-rectum of the ellipse is half the

minor axis, then its eccentricity is :

> A. $\frac{\sqrt{3}}{2}$
> B. $\frac{1}{\sqrt{3}}$
> C. $\frac{1}{\sqrt{2}}$
D. None of these

Answer: A

D Watch Video Solution

3. If C is the centre and L and L are the ends of
the latus-rectum of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$, then the area of the triangle CLL' is :
A. 4.8 sq. units
B. 9.6 sq. units
C. 19.6 sq. units

D. None of these

Answer: B

D Watch Video Solution

