

MATHS

BOOKS - MODERN PUBLICATION MATHS (KANNADA ENGLISH)

HYPERBOLA

Multiple Choice Questions Level I

- 1. The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half of the distance between the foci is:
 - A. $\frac{4}{3}$
 - B. $\frac{4}{\sqrt{3}}$ C. $\frac{2}{\sqrt{3}}$
 - D. None of these

Answer: C

Watch Video Solution

2. The distance between the foci of a hyperbola is 16 and its eccentricity is $\sqrt{2}$. Its equation is :

A.
$$x^2 - y^2 = 32$$

B.
$$\dfrac{x^2}{4}-\dfrac{y^2}{y}=1$$

$$\mathsf{C.}\,2x^2-3y^2=7$$

D. None of these

Answer: A

3. The length of the transverse axid, along x - axis with centre at origin of a hyperbola is 7 and it passes through the point (5,-2). The equations of the hyperbola is:

A.
$$\frac{4}{49}x^2 - \frac{196}{51}y^2 = 1$$

B.
$$\frac{49}{4}x^2 - \frac{21}{196}y^2 = 1$$

C.
$$\frac{4}{49}x^2 - \frac{51}{196}y^2 = 1$$

D. None of these

Answer: C

Watch Video Solution

4. If (5,12) and (24,7) are the foci of a hyperbola passing through the origin, then the eccentricity of the hyperbola is:

A.
$$\frac{\sqrt{386}}{12}$$

D.
$$\frac{\sqrt{386}}{25}$$

Answer: A

Watch Video Solution

5. If e and e' be the eccentricities of a hyperbola and its conjugate,

- then $rac{1}{e^2}+rac{1}{e^{\,\prime 2}}$ equals :
 - A. 0
 - B. 1
 - C. 2
 - D. None of these

Answer: B

Watch Video Solution

6. If e_1 and e_2 are eccentricities of two hyperbolas :

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 and $\frac{x^2}{b^2} - \frac{y^2}{a^2} = 1$, then:

A.
$$e_1 = e_2$$

B.
$$e_1e_2 = 1$$

$$c. e_1 = -e_2$$

D.
$$\frac{1}{e_1^2} + \frac{1}{e_2^2} = 1$$
.

Answer: D

Watch Video Solution

7. If e and e' be the eccentricities of a hyperbolas

$$xy=c^2 \ ext{and} \ x^2-y^2=c^2, ext{ then } e^2+e^\prime 2 ext{ equals}:$$

A. 1

B. 4

C. 6

D. 8

Answer: B

Watch Video Solution

8. The latus - rectum of the hyperbola:

$$9x^2 - 16y^2 - 18x - 32y - 151 = 0$$
 is :

A.
$$\frac{9}{4}$$

B. 9

 $\mathsf{C.}\,\frac{3}{2}$

D. $\frac{9}{2}$

Answer: D

$$9x^2 - 36x - 16y^2 + 96y - 252 = 0$$
 is

A.
$$(2, 3)$$

B.
$$(-2, -3)$$

$$\mathsf{C.}\,(\,-2,3)$$

D.
$$(2, -3)$$

Answer: A

Watch Video Solution

10. The equation of the hyperbola with vertices at (\pm 5, 0) and foci at

$$(\,\pm\,7,0)$$
 is :

$$A. -\frac{x^2}{25} + \frac{y^2}{24} = 1$$

C.
$$\frac{x^2}{24} - \frac{y^2}{25} = 1$$

B. $\frac{x^2}{25} - \frac{y^2}{24} = 1$

D.
$$-rac{x^2}{24}+rac{y^2}{25}=1$$

Answer: B

Watch Video Solution

11. If vertex and fous of a hyperbola are (2,3) and (6,3) respectively and eccentricity e of the hyperbola is 2, then equation of the hyperbola is:

A.
$$\frac{{{{\left({x + 2} \right)}^2}}}{9} - \frac{{{{\left({y - 3} \right)}^2}}}{{27}} = 1$$

B.
$$\frac{(x+1)^2}{16} - \frac{(y-3)^2}{48} = 1$$
C. $\frac{(x+2)^2}{16} - \frac{(y-3)^2}{48} = 1$

D. None of these

Answer: C

12. The equation of the hyperbola with eccentricity $\frac{3}{2}$ and foci at $(\pm 2,0)$ is

A.
$$\frac{x^2}{4} - \frac{y^2}{3} = \frac{4}{9}$$

$$\mathsf{B.}\, \frac{x^2}{9} - \frac{y^2}{9} = \frac{4}{9}$$

C.
$$\frac{x^2}{4} - \frac{y^2}{9} = 1$$

D. None of these

Answer: A

Watch Video Solution

13. The equations $x=rac{1}{2}igg(t+rac{1}{t}igg), y=rac{1}{2}igg(t-rac{1}{t}igg), t
eq 0$, represent

A. a circle

B. a parabola

C. an ellipse

D. a hyperbola

Answer: D

Watch Video Solution

14. The equations $x=rac{e^t+e^{-t}}{2},y=rac{e^t-e^{-t}}{2},t\in R$ represent :

A. a circle

B. a parabola

C. an ellipse

D. a hyperbola

Answer: D

15. The curve described parametrically by:

$$x=t^2+t+1, y=t^2-t+1$$
 represents

- A. a pair of st . Lines
- B. an ellipse
- C. a parabola
- D. a hyperbola

Answer: C

16. Let F_1 and F_2 be two fixed points and P be a point such that

 $||PF_1|-|PF_2|\;|\;=2a$ where $a>rac{1}{2}|F_1F_2|$. Then locus of P is

- A. a hyperbola

 - B. an ellipse
 - C. a parabola

D. None of these

Answer: D

View Text Solution

17. If F_1 and F_2 are foci of the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ and P is any point on the hyperbola, then : $||PF_1|-|PF_2|$ | is equal to :

- A. 2a
- $\mathsf{B.}\,2b$
- $\mathsf{C}.\,a+b$
- D. |a-b|

Answer: A

View Text Solution

18. The equation of the normal to the hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$ at point $(8, 3\sqrt{3})$ is :

A.
$$\sqrt{3}x+2y=25$$

B.
$$x + y = 25$$

$$\mathsf{C.}\,y + 2x = 25$$

D.
$$2x + \sqrt{3}y = 25$$

Answer: D

19. If the normal at $\left(ct,\frac{c}{t}\right)$ on the curve $xy=c^2$ meets the curve again in 't' , then :

A.
$$t' = -\frac{1}{t^3}$$

$$\mathsf{B.}\,t'=\,-\,\frac{1}{t}$$

$$extsf{C.}\ t^{\,\prime}=\,-\,rac{1}{t^2}$$
 $extsf{D.}\ t^{\,\prime 2}\,=\,-\,rac{1}{t^2}$

Answer: A

Watch Video Solution

- **20.** The st. line y = 4x + c touches the hyperbola $x^2 y^2 = 1$ if .
 - A. c = 0
 - B. $c = \pm \sqrt{2}$
 - $c. c = \pm \sqrt{15}$
 - D. $c = \pm \sqrt{17}$

Answer: C

21. The locus of the centre of the circle:

$$x^2+y^2+4x\cos heta-2y\sin heta-10=0$$
 is ,

- A. a parabola
- B. a hyperbola
- C. an ellipse
- D. None of these

Answer: C

times its distance from the line $x=-rac{9}{2}$ is :

22. The locus of variable point whose distance from (-2,0) is $\frac{2}{3}$

- A. a circle
 - B. a parabola
 - C. a hyperbola

D. all ellipse		

Answer: D

23. Locus of the centre of a circle which touches given circle externally is:

- A. an ellipse
- B. a parabola
- C. a hyperbola
- D. None of these

Answer: C

24. The locus of the middle points of chords of the hyperbola

$$3x^2 - 2y^2 + 4x - 6y = 0$$
 parallel to y = 2x is :

A.
$$4x - 4y = 3$$

B.
$$3x - 4y = 4$$

$$C. 3x - 4y = 2$$

D.
$$3y - 4x + 4 = 0$$

Answer: B

Watch Video Solution

25. If the polar of $y^2=4ax$ is always touching the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, then the locus of the pole is :

A. a circle

B. a parabola

C. all ellipse

D. a hyperbola

Answer: C

Watch Video Solution

26. A point moves in a plane so that its distances PA and PB from two fixed points A and B in the plane satisfy the relation PA-PB=(k
eq 0) , then the locus of P is :

A. a parabola

B. an ellipse

C. a hyperbola

D. a branch of a hyperbola.

Answer: C

27. A rectangular hyperbola whose centre is C is cut by any circle of radius r in four points P,Q,R and S . Then $CP^2+CQ^2+CR^2+CS^2$ equals .

A.
$$4r^2$$

B.
$$3r^2$$

$$\mathsf{C.}\ 2r^2$$

D.
$$r^2$$

Answer: A

Watch Video Solution

28. The equation of the chord joining the points (x_1,y_1) and (x_2,y_2) on the rectangular hyperbola $xy=c^2$ is :

A.
$$\dfrac{x}{x_1+x_2}+\dfrac{y}{y_1+y_2}=1$$

$$\mathsf{B.}\, \frac{x}{x_1 - x_2} + \frac{y}{y_1 - y_2} = 1$$

C.
$$\dfrac{x}{y_1+y_2}+\dfrac{y}{x_1+x_2}=1$$

D.
$$\dfrac{x}{y_1-y_2}+\dfrac{y}{x_1-x_2}=1$$

Answer: A

Watch Video Solution

29. If the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{h^2} = 1$ and the hyperbola

$$rac{x^2}{144}-rac{y^2}{81}=rac{1}{25}$$
 coincide then the value of b^2 is

- A. 1

B. 5

- C. 7
- D. 9

Answer: C

Watch Video Solution

30. Which one of the following is independent of α in the hyperbola

$$\Big(0$$

A. eccentricity

B. abscissa of foci

C. directrix

D. vertex

Answer: B

31. $2x+\sqrt{6}y=2$ touches the hyperbola $x^2-2y^2=4$, then the point of contact is :

A.
$$\left(-2,\sqrt{6}\right)$$

B.
$$\left(-5,2\sqrt{6}\right)$$

$$\mathsf{C.}\left(\frac{1}{2},\,\frac{1}{\sqrt{6}}\right)$$

D.
$$(4, -\sqrt{6})$$

Answer: D

Watch Video Solution

32. A circle touches the x - axis and also touches the circle with centre

(0,3) and radius 2. The locus of the centre of the circle is:

A. a circle

B. an ellipse

C. a parabola

D. a hyperbola

Answer: C

Watch Video Solution

33. For the hyperbola $\frac{x^2}{\cos^2\alpha}-\frac{y^2}{\sin^2\alpha}=1$, which of the following remains constant when α varies ?

A. Directix

B. Abscissa of vertices

C. Abscissa of foci

D. Eccentricity

Answer: C

Multiple Choice Questions Level Ii

1. The point of intersection of the curves whose parametric equations are $x=t^2+1, y=2t \ ext{and} \ x=2s, y=rac{2}{s}$ is given by :

A.
$$(1, -3)$$

B.
$$(-2, 4)$$

Answer: D

Watch Video Solution

2. The equation of the tangent to the hyperbola $2x^2-3y^2=6$, which is parallel to the line y = 3x + 4 is :

A.
$$y = 3x + 5$$

B.
$$y = 3x - 5$$

C.
$$y = 3x + 5$$
 and $y = 3x - 5$

D. None of these

Answer: C

Watch Video Solution

3. If the normal at P to the rectangular hyperbola $x^2-y^2=4$ touches the exes of x and y in G and g respectively and O is the centre of the hyperbola, then 2PO equals :

- A. PG
- B. Pg
- C. Gg
- D. None of these

Answer: C

4. The value of ' m ' for which y=mx+6 is a tangent to the hyperbola $\dfrac{x^2}{100}-\dfrac{y^2}{49}=1$ is :

A.
$$\sqrt{\frac{17}{20}}$$
B. $\sqrt{\frac{20}{17}}$
C. $\sqrt{\frac{3}{20}}$
D. $\sqrt{\frac{20}{3}}$

Answer: A

5. The equations to the common tangents to the two hyperbolas

$$\frac{x^2}{a^2} - \frac{v^2}{b^2} = 1$$
 and $\frac{v^2}{a^2} - \frac{x^2}{b^2} = 1$ are

$$\mathsf{A}.\,y=\,\pm\,x\pm\sqrt{a^2+b^2}$$

$$\mathsf{B.}\,y=\ \pm\,x\,\pm\,\left(a^2-b^2\right)$$

C.
$$y=\pm x\pm\sqrt{a^2-b^2}$$

D.
$$y=\ \pm\ x\pm\sqrt{b^2-a^2}$$

Answer: C

6. If the chords of contact of tangents from two points
$$(x_1,y_1)$$
 and (x_2,y_2) to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ are at right

angles , then $\frac{x_1x_2}{y_1y_2}$ equals :

A.
$$\frac{-b^2}{a^2}$$

$$B. - \frac{a^2}{h^2}$$

$$\mathsf{C.} - \frac{a^4}{b^4}$$

$$\mathsf{D.} - \frac{b^4}{a^4}$$

Answer: C

Watch Video Solution

7. If
$$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1(a>b)$$
 and $x^2-y^2=c^2$ cut at right angles , then .

A.
$$a^2+b^2=2c^2$$

B.
$$b^2 - a^2 = 2c^2$$

C.
$$a^2 - b^2 = 2c^2$$

D.
$$a^2b^2=2c^2$$

Answer: C

Watch Video Solution

8. The angle between the asymptotes of $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is equal to :

A.
$$2\tan^{-1}\!\left(\frac{b}{a}\right)$$

C.
$$2\tan^{-1}\left(\frac{a}{b}\right)$$

D.
$$\tan^{-1} \left(\frac{b}{a} \right)$$

 $B. \tan^{-1} \left(\frac{a}{h} \right)$

Answer: A

Watch Video Solution

9. If P is a point on the rectangular hyperbola $x^2-y^2=a^2,\,C$ being

A.
$$(CP)^2$$

B.
$$(CS)^2$$

Answer: A

Watch Video Solution

10. If x = 9 is the chord of contact of the hyperbola $x^2-y^2=9$, then the equation of the corresponding pair of tangents is :

A.
$$9x^2 - 8y^2 + 18x + 9 = 0$$

$$B. 9x^2 - 8y^2 - 18x - 9 = 0$$

$$\mathsf{C.}\, 9x^2 - 8y^2 + 18x - 9 = 0$$

$$D. 9x^2 - 8y^2 - 18x + 9 = 0$$

Answer: D

11. The equation of a tangent to the hyperbola $16x^2-25y^2-96x+100y-356=0$, which makes an angle of $\frac{\pi}{4}$ with the transverse axis is :

A.
$$y = x + 2$$

B.
$$y = x + 3$$

C.
$$x + y + 2 = 0$$

D.
$$x = y + 2$$

Answer: A

Watch Video Solution

12. The point of intersection of two tangents to the hyperbola

$$rac{x^2}{a^2}-rac{y^2}{b^2}=1$$
 , the product of whose slopes is c^2 , lies on the curve.

A.
$$y^2 - a^2 = c^2(x^2 + b^2)$$

B.
$$y^2+a^2=c^2ig(x^2-b^2ig)$$

C.
$$y^2 + b^2 = c^2(x^2 - a^2)$$

D.
$$y^2 - b^2 = c^2 ig(x^2 + a^2 ig)$$

Answer: C

Watch Video Solution

13. PM is perpendicular from a point on a rectangular hyperbola to its asymptotes, them the locus of the mid - point of PM is:

A. a circle

B. a parabola

C. an ellipse

D. a hyperbola

Answer: D

14. Product of lengths of perpendiculars drawn from the foci on any tangent to the hyperbola
$$rac{x^2}{a^2}-rac{y^2}{b^2}=1$$
 is :

A.
$$a^2$$

$$B. b^2$$

$$\operatorname{C.}\frac{a^2}{b^2}$$

D.
$$a^2b^2$$

Answer: B

Watch Video Solution

15. The equation of the tangent to the curve:

$$x^2 - y^2 - 8x + 2y + 11 = 0$$
 at (2,1) is :

A.
$$x + 2 = 0$$

B. 2x + 1 = 0

C. x - 2 = 0

D. x + y + 1 = 0

Answer: C

Watch Video Solution

- 16. The equation of the common tangent to the curves $y^2 = 8x \text{ and } xy = -1 \text{ is : }$
 - A. 3y = 9x + 2
 - B. y 2x + 1
 - C.2y = x + 8
 - D. y = x + 2

Answer: D

17. The locus of a point
$$P(\alpha,\beta)$$
 moving under the condition that the line $y=\alpha x+\beta$ is a tangent to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is :

Answer: C

Watch Video Solution

18. A hyperbola having the transversal axis of length $2\sin\theta$ is confocal with the ellipse $3x^2+4y^2=12$ Then its equations is :

A.
$$x^2 \csc^2 \theta - y^2 \sec^2 \theta = 1$$

$$B. x^2 \sec^2 \theta - y^2 \csc^2 \theta = 1$$

$$\mathsf{C.}\,x^2\sec^2\theta-u^2\cos^2\theta=1$$

$$D. x^2 \cos^2 \theta - y^2 \sin^2 \theta = 1$$

Answer: A

19.

Watch Video Solution

Consider

 $x^2-2y^2-2\sqrt{2}x-4\sqrt{2}y-6=0$ with vertex at the point A. Let B be one of the end points of its latus rectum . If C is the focus of the hyperbola nearest to the point A , then the area of the triangle ABC is :

branch

а

of

the

hyperbola

A.
$$1-\sqrt{rac{2}{3}}$$

$$\mathsf{B.}\;\sqrt{\frac{3}{2}}-1$$

$$\mathsf{C.}\,1+\sqrt{\frac{2}{3}}$$

$$\mathsf{D.}\,\sqrt{\frac{2}{3}}+1$$

Answer: B

Watch Video Solution

20. The locus of the orthocenter of the triangle formed by the lines

$$(1+p)x-py+p(1+p)=0, (1+q)x-qy+q(1+q)=0 \,\, {
m and} \,\, y=0$$

, where p
eq q , is

A. a hyperbola

B. a parabola

C. an ellipse

D. a straight line

Answer: D

1. The equation of the hyperbol whose foci are (-2,0) and (2,0) and eccentricity is 2 is given by:

A.
$$x^2 - 3y^2 = 3$$

$$\mathtt{B.}\,3x^2-y^2=3$$

$$\mathsf{C.} - x^2 + 3y^2 = 3$$

D.
$$-3x^2 + y^2 = 3$$

Answer: B

2. Tangents are drawn to the hyperbol $\frac{x^2}{9}-\frac{y^2}{4}=1$,parallel to the straight line 2x - y = 1 . The points of contacts of the tangents of the hypebola are :

A.
$$\left(\frac{9}{2\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$

- B. $2\sqrt{2}$
- D. $4\sqrt{2}$

- Answer: A::B
 - **Watch Video Solution**

 $\mathsf{B.}\left(-\frac{9}{2\sqrt{2}}-\frac{1}{\sqrt{2}}\right)$

C. $(3\sqrt{3}, -2\sqrt{2})$

D. $(-3\sqrt{3}, 2\sqrt{2})$

Recent Competitive Questions

- - 1. The distance of the focus of $x^2-y^2=4$, from the directrix , which in near to it is:
 - A. $\sqrt{2}$
 - C. $8\sqrt{2}$

Answer: A

Watch Video Solution

- **2.** If the focii of $\frac{x^2}{16}+\frac{y^2}{4}=1$ and $\frac{x^2}{a^2}-\frac{y^2}{3}$ =1 coincide, then value of a is
 - A. $\sqrt{3}$
 - B. $\frac{1}{\sqrt{3}}$
 - C. 2
 - D. 3

Answer: D

3. The equation of a hyperbola whose asymtotes are 3x \pm 5y=0 and vertices are (\pm 5, 0) is

A.
$$3x^2 - 5y^2 = 0$$

B.
$$5x^2 - 3y^2 = 25$$

$$\mathsf{C.}\,25^x - 9y^2 = 225$$

D.
$$9x^2 - 25y^2 = 225$$

Answer: D

Watch Video Solution

4. If the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the hyperbola

$$rac{x^2}{144}-rac{y^2}{81}=rac{1}{25}$$
 coincide then the value of b^2 is

A. 25

B. 9

C. 16

D. 4

Answer: C

Watch Video Solution

If the ecentricity of 5. the hyperbola

$$rac{x^2}{a^2}-rac{y^2}{b^2}=1israc{5}{4}$$
 and $2x+3y-6=0$ is focal chord of the

hyperbola, then the length of tranverse axis is equal to _____.

- A. $\frac{12}{5}$
- B. $\frac{24}{5}$
- $\mathsf{C.} \; \frac{6}{5}$
- D. $\frac{5}{24}$

Answer: B

