

MATHS

BOOKS - MODERN PUBLICATION MATHS (KANNADA ENGLISH)

PARABOLA

Multiple Choice Question Level I

1. If the focus of a parabola is (0,-3) and its directrix is y =3 then its equation is

A.
$$x^2=\ -12y$$

$$\mathsf{B.}\,x^2=12y$$

C.
$$y^2 = -12x$$

$$\mathsf{D}.\,y^2 = 12x$$

Answer: A

Watch Video Solution

2. If the parabola $y^2 - 4ax$ passes through the point (3,2) then the length of its latus rectum is

3. If the vertex of a parabola is the point (-3, 0) and the directrix is the line x + 5 = 0, then its equation is

A.
$$y^2 = 8(x+3)$$

B. $x^2 = 8(y+3)$
C. $y^2 = -8(x+3)$
D. $y^2 = 8(x+5)$

D.
$$y^2 = 8(x+5)$$

Answer: A

4. The area of the triangle formed by the linea joining the vertex of th parabola $x^2 = 12y$ to the ends of Latus rectum is

A. 12 sq units

- B. 16 sq units
- C. 18 sq units
- D. 24 sq units

Answer: C

5. The equation of the lines joining the vertex of the parabola $y^2 = 6x$ to the points on ti which have abscissa 24 are

A.
$$y\pm 2x=0$$

$$\mathsf{B.}\, 2ypxx = 0$$

C.
$$x\pm 2y=0$$

D.
$$2x\pm y=0$$

Answer: B

• Watch Video Solution 6. The focus of the parabola

 $x^2 - 8x + 2y + 7 = 0$ is

Answer: C

Watch Video Solution

7. The co - ordinates of a point on the parabola

 $y^2 = 8x$ whose focal distance is 4 are :

A.
$$\left(1\pm 2\sqrt{2}
ight)$$

$$\mathsf{B.}\,(2\pm4)$$

$$\mathsf{C.}\left(\frac{1}{2}, px2\right)$$

D. none of these

Answer: B

8. Length of focal of the parabola $y^2 = 4ax$ making an angle lpha with the axis of the parabola is

A.
$$4a \sec^2 lpha$$

B. $a \cos ec^2 \alpha$

C. $4a \cos ec^2 \alpha$

D. none of these

Answer: C

Watch Video Solution

A. $\frac{5}{4}$ B. 10 C. 5 D. $\frac{5}{2}$

Answer: C

Watch Video Solution

10. Consider the equation of the parabola $y^2 + 4ax = 0$ where a > 0 which of the following is false

A. vertex of the parabola is at the origin

B. focus of the parabola is (a,0)

C. directrix of the parabola is x=0

D. tangent at the vertex is x=0

Answer: B

Watch Video Solution

11. The point of intersection of the tangents at the ends of the laturs rectum of the parabola $y^2 = 4x$ is

Answer: A

12. If x+y=k is a normal to the parabola $y^2=12x$ then it touches the parabola

A.
$$y^2=\ -9x$$

$$\mathsf{B}.\,y^2=\,-\,12x$$

C.
$$y^2 = -16x$$

D.
$$y^2 = -36x$$

Answer: D

Watch Video Solution

13. The line y=2x+c is a tangent to the parabola

$$y^2=4x$$
 if c is equal to

Watch Video Solution

14. If the line 2x-3y+6=0 is a tangent to the parabola $y^2 = 4ax$ then a is

A. 4/3

B. -3/4

C. - 4/3

D. 3/4

Answer: A

Watch Video Solution

15. The st line lx+my+n=0 will be a tangent to

the parabola $y^2=4bx$ if

A.
$$mn=bl^2$$

$$B.\ln = bm^2$$

C.
$$lm = bn^2$$

D.
$$bm=\ln^{\ln^2}$$

Answer: B

Watch Video Solution

16. The parametric equation of the parabola

are

$$x = t^2 + 1, y = 2t + 1$$

The cartesian equation of the directrix is

A. x=0

B. y=0

- C. x+1=0
- D. y+1=0

Answer: A

17. The curve described parametrically by

 $x = t^2 + t + 1, y = t^2 - t + 1$ represents

A. a pair of st lines

B. a parabola

C. an ellipse

D. a hyperbola

Answer: B

Watch Video Solution

18. The two parabolas $y^2 = 4x$ and $x^2 = 4y$ intersect at a point p whose abscissa is not zero such that

A. the tangents to each curve at p make

complementary angles with x axis

B. they cut at right angle at p

C. they both touch each other at p

D. none of these

Answer: A

Watch Video Solution

19. If the chord which is normal to the parabola $y^2 = 4ax$ at one end subteneds a right angle at the vertex then its slope is

A. 2

 $\mathsf{B.}\,\sqrt{2}$

C. $\sqrt{3}$

D. 6

Answer: B

20. If t is a parameter of one end of a focal chord of the parabola $y^2 = 4ax$ then its length is

A.
$$a\left(t-rac{1}{t}
ight)$$

B. $a\left(t+rac{1}{t}
ight)$
C. $a\left(t-rac{1}{t}
ight)^2$
D. $a\left(t+rac{1}{t}
ight)^2$

Answer: D

21. An equilateral triangle is inscribed in the parbola $y^2 = 4x$ one of whose verted is at the vertex of the parabola the length of each side of the triangle is

A.
$$8\sqrt{3}$$

B. $\frac{\sqrt{3}}{2}$
C. $\frac{4\sqrt{3}}{2}$
D. $\frac{8\sqrt{3}}{2}$

Answer: A

- 22. A set of parallel chords of the parabola $y^2=4ax$ have their mid point on any st line
 - A. through vertices
 - B. through axis
 - C. parallel to axis
 - D. none of these

Answer: C

23. The length of the latus rectum of the parabola 169[(x-1) 2 + (y-3) 2] = (5x-12y+17) 2

A.
$$\frac{12}{13}$$

B. $\frac{14}{13}$
C. $\frac{28}{13}$
D. $\frac{25}{13}$

Answer: C

24. If the line x -1=0 is the directrix of the parabola $y^2 - kx + 8 = 0$ then one of the values of k is

A.
$$\frac{1}{8}$$

B. 4
C. $\frac{1}{4}$

D. 8

Answer: B

Answer: B

26. The slopes of the normal to the parabola $y^2 = 4ax$ intersecting at a point on the axis of the parabola at a distance 4a from its vertex are in

A. H.P

B. G.P

C. A.P

D. none of these

Answer: C

27. The equation of the directix of the parabola $y^2+4y+4x+2=0$ is

A. x=-1

B. x=1 C. $x = -rac{3}{2}$ D. $x = rac{3}{2}$

Answer: D

28. The normal at the point on a parabola meets the parabola again in the point by_2^2 , $2by_2$ then

A.
$$t_2 = -t_1 + rac{2}{t_1}$$

B. $t_2 = t_1 - rac{2}{t_1}$
C. $t_2 = t_1 + rac{2}{t_1}$
D. $t_2 = -t_1 - rac{2}{t_1}$

Answer: D

29. The focal chord of $y^2 = 16x$ is tangent to $(x-6)^2 + y^2 = 2$ then the possible values of the slope of this chord are

A. 1, -1
B.
$$-\frac{1}{2}$$
, 2
C. -2 , $\frac{1}{2}$
D. $\frac{1}{2}$, 1

Answer: A

30. If a
eq 0 and the line 2bx+3cy+4d=0 passes through the points of intersection of the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ then

A.
$$d^2 + (2b + 3c)^2 = 0$$

- B. $d^2 + (3b + 2c)^2 = 0$
- $\mathsf{C}.\,d^2 + (2b 3c)^2 = 0$
- $\mathsf{D}.\,d^2 + (3b 2c)^2 = 0$

Answer:

31. Angle between tangents drawn from the point (1,4) to the parabola $y^2 = 4x$ is

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: C

32. Let p be the point (1,0) and Q a point on the locurs $y^2 = 8x$ the locus of mid point of PQ is

A.
$$y^2 + 4x + 2 = 0$$

B. $y^2 - 4x + 2 = 0$
C. $x^2 - 4y + 2 = 0$
D. $x^2 4y + 2 = 0$

Answer: B

33. Alngle between the tangents to the curve $y=x^2-5x+6$ at the point (2,0) and (3,0) is A. $\pi/2$ B. $\pi/3$ C. $\pi/6$ D. $\pi/4$

Answer: A

34. The equation of a tangent to the parabola $y^2 = 8x$ is y=x+2 the point on this line for which the other tangent to the parabola is perpendicular to the given tangent is

A. (0,2)

B. (2,4)

C. (-2,0)

D. (-1,1)

Answer: C

Watch Video Solution

35. A parabola has the origin as its focus and the line x=2 as the directix then the vertex of the parabola is at

A. (0,2)

B. (0,2)
C. (1,0)

D. (0,1)

Answer: C

Multiple Choice Question Level Ii

1. Length of sub normal to the parabola

 $y^2 = 4ax$ at any point is equal to

A. 2a

B. $\frac{a}{\sqrt{2}}$ C. $a\sqrt{2}$

D. $2\sqrt{2a}$

Answer: A

Watch Video Solution

2. The vertex of a parabola is (a,0) and the directrix is x+y=3a the equation of the parabola is

$$x^2-2xy+y^2-6ax+10ay-7a^2=0$$

B. $x^2-2xy+y^2+6ax+10ay-7a^2=0$
C. $x^2-2xy+y^2+6ax+10ay-7a^2=0$
D.

$$x^2 + 2xy + y^2 + 6ax + 10ay - 7a^2 = 0$$

Answer: B

Watch Video Solution

3. The normal at a point on $y^2 = 4x$ passes through (5,0) there are three such normals one of which is the axis the feet of three normals form a triangle whose centroid is

A. (0,2)

B. (2,2)

C. (2,0)

D. none of these

Answer: C

4. The arithmetic mean of the ordinates of the feet of the normals from (3,5) to the parabola $y^2 = 8x$ is

A. 0

B. 3

C. 4

D. 8

5. Let $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ be three points on the parabola $y^2 = 4ax$ if the normals meet in a point then

A.
$$x_1+x_2+x_3=0$$

B.
$$y_1+y_2+y_3=0$$

C. $y_1+y_2+y_3=2a$

D. none of these

Answer: B

6. We are given with two ends of the latus rectum of a parabola then the maximum number of parabolas which can be draw is

A. 0

B. 1

C. 2

D. infinite

Answer: C

7. A double ordinate of the parabola $y^2 = 8ax$ of length 16a the angle subtended by it at the vertex of the parabola is

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

8. The equation of the common tangent to equal parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is

A. x-y=a

B. x+y=a

C. x+y+a=0

D. x+y-a=0

Answer: C

9. The circle $x^2+y^2+2kx=0k\in R$ touches the parabola $y^2=4x$ externally then

A. k < 0

- ${\sf B}.\,k>0$
- $\mathsf{C}.\,k<1$
- $\mathsf{D}.\,k>1$

Answer: B

10. If the polar of the circle $x^2 + y^2 = 9$ is always touching the parabola $y^2 = 8x$ then the locus of the pole is

A.
$$4y=3x^2$$

$$\mathsf{B}.\,y^2=9x$$

C.
$$2y^2 = 9x$$

D.
$$2y^2 = -9x$$

Answer: D

Watch Video Solution

11. Angle substended by the latus rectum at the origin is

A.
$$\frac{\tan^{-1}4}{3}$$

B. $\pi - \frac{\tan^{-1}4}{3}$
C. $\pi - \frac{\tan^{-1}3}{4}$

D. none of these

Answer: A

12. A ray of light moving parallel to x axis gets reflected from a parabolic mirror whose equation is $(y-2)^2 = 4(x+1)$ after reflection the ray must pass through the point A. (2,0) B. (0,-2) C. (0,2)

D. (-1,-2)

Answer: C

- 13. Range of values of k for which the point (k-1) is exteriro to both the parabolas $y^2 = |x|$ is
 - A. (-1,0)
 - B. (-1,1)
 - C. (0,1)
 - D. (0,-1)

Answer: B

14. If PQ is a focal chord of the parbola $y^2 = 4ax$ with focus at s then $rac{2SP,\,SQ}{SP+SQ}$ is

equal to

A. a

B. 2a

C. 3a

D. 4a

Answer: B

15. The point (a,2a) is an interior point of the region bounded by the parabola $y^2 = 16x$ and the double ordinate through the focus the range of 'a' is

A. a < 4

 ${\sf B.}\,a>4$

 $\mathsf{C}.\, 0 < a < 2$

 ${\sf D}.\,0 < a < 4$

Answer: A

16. Locus of the middle points of parallel chords of a parabola $x^2=4ay$ is a

A. st line parallel to x axis

B. st line parallel to y axis

C. st line parallel to the bisector of the

angles between the axes

D. circle

Answer: B

Watch Video Solution

17. The tangent to a parabola at the vertex A and any point P meet at Q if S is the focus then SP ,SQ SA are in

A. A.P

B. G.P

C. H.P

D. none of these

Answer: B

Watch Video Solution

18. The tangents at three points A,B,C on the parabola $y^2 = 4x$ taken in pairs intersect at the points P,Q,R if \triangle_1 , \triangle_2 be the areas of triangle ABC and PQR respectively then

A.
$$riangle_1 \ = \ riangle_2$$

B.
$$riangle_2 = 2 riangle$$

C.
$$riangle_1 = 2 riangle_2$$

Answer: C

19. AB is a chord of a parabola $y^2 = 4ax$ with the end A at the vertex of the given parabola BC is drawn perpendicular to AB meeting the axis of the parabola at C then the projection

of BC on this axis is

A. a

B. 2a

C. 4a

D. 6a

Answer: C

20. The point of intersection of the tangents to the parabla $y^2 = 4x$ at the points where the circle $(x-3)^2 + y^2 = 9$ meets the parabola other than origin is

A. (0,0)

B. (-2,0)

C. (-1,-1)

D. (1,0)

Answer: B

21. If the tangents at (x_1, y_1) and (x_2, y_2) to the parabola $y^2 = 4ax$ meet at (x_3, y_3) then

A. x_1, x_2, x_3 are A.P

B. x_1, x_3, x_2 are A.P

C. y_1, y_2, y_3 are A.P

D. x_1, x_2, x_3 are A.P

Answer: B

Watch Video Solution

22. If b and c are the length of the segments of any focal chord of a parabola $y^2 = 4ax$ then the length of the semi latus rectum is

A.
$$\frac{b+c}{2}$$

B. $\frac{bc}{b+c}$
C. $\frac{2bc}{b+c}$

D.
$$\sqrt{bc}$$

Answer: C

Watch Video Solution

23. If the focus of a parabola divides a focal chord of the parabola in segment of length 3 and 2 the length of the latus rectum of the parbola is

A.
$$\frac{3}{2}$$

B. $\frac{24}{5}$
C. $\frac{12}{5}$
D. $\frac{6}{5}$

Answer: D

Watch Video Solution

A.
$$\sqrt{3y}=3x+1$$

B. $\sqrt{3y}=-(x+3)$
C. $\sqrt{3y}=x+3$
D. $\sqrt{3y}=-(3x+1)$

Answer: C

25. The locus of the mid point of the line segment joining the focus to a moving point on the parbola $y^2 = 4ax$ is another parabola with directix

A.
$$x = -a$$

B. $x = -rac{a}{2}$
C. x=0
D. $x = -rac{a}{2}$

Answer: C

26. A tangent is drawn to the parabola $y=x^2+6$ at the point (1,7) which also touches the circle $x^2 + ty^2 + 16x + 12y + c = 0$ at A. (-8, -6)B. (-7, -6)

C. (-6, -7)

D.(6,7)

Answer: C

Watch Video Solution

27. The locus of the vertices of the family of
parabolas
$$y = \frac{a^3x^2}{3} + \frac{a^2x}{2} - 2a$$
 is
A. $xy = \frac{105}{64}$
B. $xy = \frac{3}{4}$
C. $xy = \frac{35}{16}$

D.
$$xy=rac{64}{105}$$

Answer: A

Watch Video Solution

28. The axis of a parabola is along the line y=x and the distance of its vertex from origin is $\sqrt{2}$ and that from its focus is $2\sqrt{2}$ if vertex and focus both lie in the first quadrant then the equatio of the parbola is

A.
$$\left(x+y
ight)^2=\left(x-y-2
ight)$$

$$\mathsf{B.}\left(x-y\right)^2 = \left(x+y-2\right)$$

$$\mathsf{C.}\left(x-y\right)^2 = 4(x+y-2)$$

D.
$$\left(x-y
ight)^2=8(x+y-2)$$

Answer: D

Watch Video Solution

29. Three normals are dran to a parabola $y^2 = 4ax$ from a given point (x_1, y_1) the algebraic sum of the ordinates of their feet is

A. 0

B. 1

 $\mathsf{C}.-a$

D. none of these

Answer: A

30. Consider the two curves $C_1\!:\!y^2=4x, C_2\!:\!x^2+y^2-6x+1=0$ then

A. C_1 and C_2 touch each other only at one

point

- B. C_1 and C_2 touch each other only at two point
- C. C_1 and C_2 intersect at exactly two points
- D. C_1 and C_2 neither intersect nor touch

each other

Answer: B

Watch Video Solution

Latest Question From Aieee Jee Examinations

1. If two tangents drawn from a point p to the parabola $y^2 = 4x$ are at right angles then the locus of p is

A. x=1

- B. 2x+1=0
- C. x=-1

D. 2x-1=0

Answer: C

Watch Video Solution

2. Let a and b two distinct points on the parabola $y^2 = 4x$ if the axis fo the parabola touches a circle of raidus r haiving then the slope of the line joining a and b can be

$$A. -\frac{1}{r}$$
$$B. \frac{1}{r}$$
$$C. \frac{2}{r}$$

Answer: C::D

Watch Video Solution

3. Let (x,y) be any point on the parabla $y^2 = 4x$ let P be the point that divides the line segment from (0,0) to (x,y) in the ratio 1:3 then the locus of p is

A.
$$x^2 = y$$
$$\mathsf{B}.\,y^2=2x$$

$$\mathsf{C}.\,y^2=x$$

D.
$$x^2=2y$$

Answer: C

Watch Video Solution

4. The slope of theline touching both the parabolas $y^2 = 4x$ and $x^2 = 32y$ is

A.
$$\frac{3}{2}$$

B.
$$\frac{1}{8}$$

C. $\frac{2}{3}$
D. $\frac{1}{2}$

Answer: D

Watch Video Solution

5. Let O be the vertex and Q be any point on the parabola $x^2 = 8y$ if the point p divides the line segment OQ internally in the ratio 1:3 then the locus of P is

A.
$$x^2=y$$

B. $y^2=x$
C. $y^2=2x$

D.
$$x^2=2y$$

Answer: D

Recent Competition Question Question From Karnataka Cet Comed

1. The locus of the mid points of the line joining the focus and any point on the parabola $y^2 = 4ax$ is a parabola with equation of directrix as

A.
$$x=rac{a}{2}$$
B. x=0

C. 2x+a=0

D. x+a=0

Answer: B

2. The tangents drawn at the extremities of a focal chord of the parabola $y^2 = 16x$

A. intersect at an anlge of $45^{\,\circ}$

B. intersect at an angle of 60°

C. intersect on the line x+4=0

D. intersect on x=0

Answer: C

3. The locus of the point of intersection of tangents drawn at the ends of a focal chord of the parabola $x^2 = -8y$ is

A. y=-2

B. y=2

C. x=-2

D. x=2

Answer: B

View Text Solution

4. The condition for the line y =mx+c to be normal to the parabola $y^2 = 4ax$ is

A.
$$c=2a+am^3$$

$$\mathsf{B.}\,c=\frac{a}{m}$$

$$\mathsf{C.}\,c=\,-\,\frac{a}{m}$$

D.
$$c=~-2am-am^3$$

Answer: D

5. The length of the latus rectum of the parabola $bx^2 - 4ay + dx + e = 0$

A.
$$\frac{a}{b}$$

B. 4a
C. $\frac{4d}{b}$
D. $\frac{4a}{b}$

Answer: D

6. The length of the latus rectum of

 $3x^2 - 4y + 6x - 3 = 0$ is

A.
$$\frac{3}{4}$$

B. $\frac{4}{3}$

Answer: A

7. The sum of the reciprocals of focal distances

of a focal chord PQ of y^2 =4ax is

Answer: A

8. The area of the triangle formed by the lines joining the vertex of the parabola $x^2 = 12y$ to

the ends of latus rectum is

A. 18 sq units

B. 19 sq units

C. 20 sq units

D. 17 sq units

Answer: A

9. The ends of the latus rectum of the parabola $x^2 + 10x - 16y + 25 = 0$ are

A. (3x,4),(-13,4)

B. (5,-8),(-5,8)

C. (3,-4),(13,4)

D. (-3,-4),(13,-4)

Answer: A